Code: analysis, bugs, and security
supported by Bitdefender

Memory corruption errors and defenses

Marius Minea

marius@cs.upt.ro

15 November 2017

mailto:marius@cs.upt.ro

Memory corruption: still a problem

String of vulnerabilities over past 30 years
still ongoing
new protection solutions every year

Reason: lack of memory and type safety in low-level languages
main culprits: C and C++
(unsafe inputs, pointer arithmetic, unsafe casts)

A classic paper:
Aleph One, Smashing the stack for fun and profit
Phrack magazine 7(49), 1997

Classic buffer overflow

void func (char *str) { High Address
char buffer[12];
int variable_a;
strepy (buffer, str); str (a pointer to a string)
°
} g Return Address
e
Int main() { g Previous Frame Pointer (FP) Current FP
char *str = “| am greater than 12 bytes”; 3 buffer(0] .. buffer[11]
func (str);
} variable_a
Low Address
(a) A code example (b) Active Stack Frame in func()

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

What happens on

overflow

buffer[0]

buffer[1]

buffer[2]

buffer[3]

buffer[10]

buffer[11]

prev.frame ptr

return address

str (fct. arg.)

nxt stack frame

o v |0|—I<|v|T|l&|—|—<|o®

return address slot overwritten

on function return, execution jumps
wherever that points to

For successful exploit, must know:
1) position of return address slot
relative to buffer start:

i.e., buffer size and stack layout
(calling convention)

2) absolute memory address of buffer
(to fill in proper payload address)

Exploit: getting the address right

Malicious Code Malicious Code
> c
il
B
2
5
2
=
<]
str >
x
&
17}

Previous FP Previous FP
buffer [0] buffer [11] v buffer [0] buffer [11]
(a) Jump to the malicious code (b) Improve the chance

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

Steps to successful exploit

Let's revisit exploit assumptions:

can determine where to inject payload (address)
can overwrite return address
tampering is not detected

can execute payload code

Variants:
a) overwrite base pointer rather than return address

returns into attacker-crafted stack frame =- then into exploit
b) overwrite C++ exception handling pointers (stored on stack),
and cause exception

How to protect? (1)

Option 1: detect change
check before function return if RET address altered

Two basic ideas:
Check return address itself = need copy of correct value
Check bytes next to (before) ret address = canaries

terminator canary: 0, CR, LF, EOF

random canary (created at process startup time)

don’t know = can't put back)

random XOR canary (XOR'ed with protected/control data — if it

changes, canary will be wrong)

Checks inserted by compiler where needed

How to protect? (2)

Option 2: hamper execution

Attacker must execute injected code:
Non-executable stack / write XOR execute
(operating system support)

Attacker must know what address to jump to:
Address Space Layout Randomization
good, but ineffective against brute force

Return-to-libc attack

Typical attack is to call exec or some other library function
= instead of executing code (call exec),

put address (and parameters) of libc function on stack,

in place of normal ret address

Highar
memory | | |
Argument N
Caller's R
slack lrame Argument 2
Argurment 1
T To korary
Arbiteary filler P rautine
Raturn addrass e reium address "
Saved frama ptr
o ! Arbitrary filler
Lower | |
e
A Before After
attack atfack

http://geekscomputer.blogspot.ro/2008/12/buffer-overflows.html

Can chain calls — put multiple library addresses on stack

http://geekscomputer.blogspot.ro/2008/12/buffer-overflows.html

Attack: Overwriting a pointer

Function pointers (denote code)
pointers from longjmp
pointers to user functions
pointers to library functions (PLT: procedure linkage table)
pointers to virtual method (C++ vtable)

or usual pointers to data

Attacks has two steps:
a buffer overflow overwrites a pointer (to desired address)
in later code, this is used to overwrite critical area
ret address, PLT, etc.

Return-oriented programming (ROP)

(H. Shacham, ACM CCS 2007)
Generalizes return-to-libc by chaining returns

Stack overwritten so returns go from a piece libc code to another
control flow given by stack contents
Pieces (“gadgets”) chosen with useful instructions

libc contains enough gadgets for arbitrary programs
(Turing-complete)

ROP “compilers” can produce arbitrary code

Return-oriented programming

nextaddr :

[Exploit I addr3 |,
|€aX address ||

g |ebx addr2_ ||
|

|

pop %eax | | pop %ebx ! | movl %eax, (%ebx)
ret ret ret

figure: Schwartz, Avgerinos, Brumley, USENIX 2011

Taxonomy of attacks

Make a pointer go
out of bounds
Use pointer
to write (or free)

Make a pol
become dang!
Use pointer
toread

‘Wemory Safety|

vi.

S
£ = 2
odt o2 Wodty 2622 cupuaa
v woepomere. | gual | e aon
F4) VILA.|
| [) | ootointegry) ‘
!

| I

S : L
® BE= } = B E=
specified code | shellcode / gadget P e specified value output data V8.
‘Randomization) ‘Randomization) I Aandemization|
I
N
veporeriy | [e portarny e crmied
indirect call/jump return instruction. data variable
—
Control-flow Integrity iy
e
et
Non-executable Data /|
Code corruption Information

o s

Figure 1. Attack model demonstrating four exploit types and policies mitigating the atta

s in different stages

Szekeres et al., SoK: Eternal War in Memory, S&P'13

Control Flow Integrity

(Abadi, Budiu, Erlingsson, Ligatti, ACM CCS 2005)

Fundamental idea: exploits deviate from normal program execution
(regardless whether in injected code or libc gadgets)
Capture legal control flow graph (at compile time)
Ensure execution never leaves the CFG
true for direct calls/jumps (if code not modifiable)
checked at runtime for indirect calls/jumps (add instrumentation
before these instructions)

Tradeoff between precision/safety and performance overhead

Recently: Code Pointer Integrity: protect only code pointers,
stored in a separate memory area.

Protecting data

One main problem is unrestricted pointer use
any pointer arithmetic / pointer creation must be checked

Techniques:

encrypt pointers (in theory, they are abstract values, even in C)
but much nonportable code relies on pointer representation

fat pointer:
pointer is not just address word but has info on base + block size
incompatible with standard libraries (must be recompiled)

store metadata separately from pointers
use (hash)map from pointers to metadata
still must update metadata on library call

store address ranges of live objects in a global table
[Jones & Kelly], first implementation in GCC, high overhead

An escalating race: where to?

Many solutions, not all adopted (cf. Szekeres et al. '13)
performance overhead outweighs potential benefit/safety
not compatible with legacy programs
lack of robustness / incomplete

attacks often discovered soon after protection proposed
toolchain dependence blocks adoption

Trends:
use higher-level languages with better safety guarantees
but: their implementation may still have low-level bugs

implement stronger safety policies
(control flow integrity, data integrity)

