
Code: analysis, bugs, and security
supported by Bitdefender

Memory corruption errors and defenses

Marius Minea
marius@cs.upt.ro

15 November 2017

mailto:marius@cs.upt.ro

Memory corruption: still a problem

String of vulnerabilities over past 30 years
still ongoing
new protection solutions every year

Reason: lack of memory and type safety in low-level languages
main culprits: C and C++
(unsafe inputs, pointer arithmetic, unsafe casts)

A classic paper:
Aleph One, Smashing the stack for fun and profit

Phrack magazine 7(49), 1997

Classic buffer overflow

SEED Labs – Buffer Overflow Vulnerability Lab 7

gcc -o stack -fno-stack-protector -z noexecstack stack.c

It should be noted that non-executable stack only makes it impossible to run shellcode on the stack, but it
does not prevent buffer-overflow attacks, because there are other ways to run malicious code after exploiting
a buffer-overflow vulnerability. The return-to-libc attack is an example. We have designed a seperate lab for
that attack. If you are interested, please see our Return-to-Libc Attack Lab for details.

If you are using our Ubuntu 12.04 VM, whether the non-executable stack protection works or not de-
pends on the CPU and the setting of your virtual machine, because this protection depends on the hardware
feature that is provided by CPU. If you find that the non-executable stack protection does not work, check
our document (“Notes on Non-Executable Stack”) that is linked to the lab’s web page, and see whether the
instruction in the document can help solve your problem. If not, then you may need to figure out the problem
yourself.

3 Guidelines

We can load the shellcode into “badfile”, but it will not be executed because our instruction pointer will not
be pointing to it. One thing we can do is to change the return address to point to the shellcode. But we have
two problems: (1) we do not know where the return address is stored, and (2) we do not know where the
shellcode is stored. To answer these questions, we need to understand the stack layout the execution enters
a function. The following figure gives an example.

str (a pointer to a string)

Return Address

Previous Frame Pointer (FP)

buffer[0] … buffer[11]

variable_a

void func (char *str) {

char buffer[12];

int variable_a;

strcpy (buffer, str);

}

Int main() {

char *str = “I am greater than 12 bytes”;

func (str);

}

C
u
rr
e
n
t
F
ra
m
e

Current FP

(a) A code example (b) Active Stack Frame in func()

High Address

Low Address

Finding the address of the memory that stores the return address. From the figure, we know, if we
can find out the address of buffer[] array, we can calculate where the return address is stored. Since
the vulnerable program is a Set-UID program, you can make a copy of this program, and run it with your
own privilege; this way you can debug the program (note that you cannot debug a Set-UID program).
In the debugger, you can figure out the address of buffer[], and thus calculate the starting point of the
malicious code. You can even modify the copied program, and ask the program to directly print out the
address of buffer[]. The address of buffer[] may be slightly different when you run the Set-UID
copy, instead of of your copy, but you should be quite close.

If the target program is running remotely, and you may not be able to rely on the debugger to find out
the address. However, you can always guess. The following facts make guessing a quite feasible approach:

• Stack usually starts at the same address.

http://www.cis.syr.edu/˜wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

What happens on overflow

buffer[0] e
buffer[1] v
buffer[2] i
buffer[3] l

... ⇓
buffer[10] p
buffer[11] a

prev.frame ptr y
return address l
str (fct. arg.) o

a
nxt stack frame d

⇓

?

?

return address slot overwritten

on function return, execution jumps
wherever that points to

For successful exploit, must know:
1) position of return address slot
relative to buffer start:
i.e., buffer size and stack layout
(calling convention)

2) absolute memory address of buffer
(to fill in proper payload address)

Exploit: getting the address right

SEED Labs – Buffer Overflow Vulnerability Lab 8

• Stack is usually not very deep: most programs do not push more than a few hundred or a few thousand
bytes into the stack at any one time.

• Therefore the range of addresses that we need to guess is actually quite small.

Finding the starting point of the malicious code. If you can accurately calculate the address of buffer[],
you should be able to accurately calcuate the starting point of the malicious code. Even if you cannot accu-
rately calculate the address (for example, for remote programs), you can still guess. To improve the chance
of success, we can add a number of NOPs to the beginning of the malcious code; therefore, if we can jump
to any of these NOPs, we can eventually get to the malicious code. The following figure depicts the attack.

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

buffer [0] …... buffer [11]

Previous FP

Return Address

str

Malicious Code

NOP

NOP

NOP

…… (many NOP’s)

(a) Jump to the malicious code (b) Improve the chance

S
ta
c
k
’s
 g
ro
w
in
g
 d
ir
e
c
ti
o
n

Storing an long integer in a buffer: In your exploit program, you might need to store an long integer (4
bytes) into an buffer starting at buffer[i]. Since each buffer space is one byte long, the integer will actually
occupy four bytes starting at buffer[i] (i.e., buffer[i] to buffer[i+3]). Because buffer and long are of different
types, you cannot directly assign the integer to buffer; instead you can cast the buffer+i into an long pointer,
and then assign the integer. The following code shows how to assign an long integer to a buffer starting at
buffer[i]:

char buffer[20];
long addr = 0xFFEEDD88;

long *ptr = (long *) (buffer + i);

*ptr = addr;

References

[1] Aleph One. Smashing The Stack For Fun And Profit. Phrack 49, Volume 7, Issue 49. Available at
http://www.cs.wright.edu/people/faculty/tkprasad/courses/cs781/alephOne.html

http://www.cis.syr.edu/˜wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Software/Buffer_Overflow/Buffer_Overflow.pdf

Steps to successful exploit

Let’s revisit exploit assumptions:

can determine where to inject payload (address)

can overwrite return address

tampering is not detected

can execute payload code

Variants:
a) overwrite base pointer rather than return address

returns into attacker-crafted stack frame ⇒ then into exploit
b) overwrite C++ exception handling pointers (stored on stack),
and cause exception

How to protect? (1)

Option 1: detect change
check before function return if RET address altered

Two basic ideas:
Check return address itself ⇒ need copy of correct value
Check bytes next to (before) ret address ⇒ canaries

terminator canary: 0, CR, LF, EOF
random canary (created at process startup time)

don’t know ⇒ can’t put back)
random XOR canary (XOR’ed with protected/control data – if it

changes, canary will be wrong)

Checks inserted by compiler where needed

How to protect? (2)

Option 2: hamper execution

Attacker must execute injected code:
Non-executable stack / write XOR execute
(operating system support)

Attacker must know what address to jump to:
Address Space Layout Randomization

good, but ineffective against brute force

Return-to-libc attack
Typical attack is to call exec or some other library function
⇒ instead of executing code (call exec),
put address (and parameters) of libc function on stack,
in place of normal ret address

http://geekscomputer.blogspot.ro/2008/12/buffer-overflows.html

Can chain calls – put multiple library addresses on stack

http://geekscomputer.blogspot.ro/2008/12/buffer-overflows.html

Attack: Overwriting a pointer

Function pointers (denote code)
pointers from longjmp
pointers to user functions
pointers to library functions (PLT: procedure linkage table)
pointers to virtual method (C++ vtable)

or usual pointers to data

Attacks has two steps:
a buffer overflow overwrites a pointer (to desired address)
in later code, this is used to overwrite critical area

ret address, PLT, etc.

Return-oriented programming (ROP)

(H. Shacham, ACM CCS 2007)
Generalizes return-to-libc by chaining returns

Stack overwritten so returns go from a piece libc code to another
control flow given by stack contents

Pieces (“gadgets”) chosen with useful instructions

libc contains enough gadgets for arbitrary programs
(Turing-complete)

ROP “compilers” can produce arbitrary code

Return-oriented programming
Return Oriented Programming

8/15/2011 13

addr1
pop %eax

ret

addr2
pop %ebx

ret

addr3
movl %eax, (%ebx)

ret

Exploit
nextaddr

addr3
address
addr2

eax
ebx

stack
value

Gadgets

figure: Schwartz, Avgerinos, Brumley, USENIX 2011

Taxonomy of attacks

Non-executable Data /
Instruction Set Randomization

VII.A.
Data Integrity

V.B.
Data Space

Randomization

VII.B.
Data-flow Integrity

VIII.B.
Control-flow Integrity

V.A.
Address Space

Randomization

Code Integrity
VIII.A.

Code Pointer Integrity

Instruction Set
Randomization

VI.
Memory Safety

Information
leak

Make a pointer go
out of bounds

Make a pointer
become dangling

Use pointer
to write (or free)

Use pointer
to read

Modify a
code pointer ...

Output data
variable

… to the address of
shellcode / gadget

Use pointer by
indirect call/jump

Execute injected
shellcode

Execute available
gadgets / functions

Control-flow
hijack attack

Modify
code ...

Code corruption
attack

Modify a
data pointer

Modify a data
variable ...

Data-only
attack

… to the attacker
specified value

Use corrupted
data variable

Use pointer by
return instruction

… to the attacker
specified code

Interpret the
output data

1

2

3

4

5

6

Figure 1. Attack model demonstrating four exploit types and policies mitigating the attacks in different stages

included in the output. The classic example of this attack is
the printf format string bug, where the format string is
controlled by the attacker. By specifying the format string
the attacker creates invalid pointers and reads (and writes)
arbitrary memory locations.

printf(user_input); // input "%3$x" prints the
// 3rd integer on the stack

If an attacker controlled pointer is used to write the
memory, then any variable, including other pointers or even
code, can be overwritten. Buffer overflows and indexing
bugs can be exploited to overwrite sensitive data such as
a return address or virtual table (vtable) pointer. Corrupting
the vtable pointer is an example of the backward loop in
Figure 1. Suppose a buffer overflow makes an array pointer
out of bounds in the first round that is exploited (in Step 3)
to corrupt a nearby vtable pointer in memory in the second
round. When the corrupted vtable pointer is dereferenced (in
Step 2), a bogus virtual function pointer will be used. It is
important to see that with one memory error, more and more
memory errors can be raised by corrupting other pointers.
Calling free() with an attacker controlled pointer can also
be exploited to carry out arbitrary memory writes [19]. Write
dereferences can be exploited to leak information as well.

printf("%s\n", err_msg);

For instance, the attacker is able to leak arbitrary mem-
ory contents in the above line of code by corrupting the
err_msg pointer.

Temporal errors, when a dangling pointer is dereferenced
in Step 2, can be exploited similarly to spatial errors. A
constraint for exploitable temporal errors is that the memory
area of the deallocated object (the old object) is reused by
another object (new object). The type mismatch between
the old and new object can allow the attacker to access
unintended memory.

Let us consider first reading through a dangling pointer
with the old object’s type but pointing to the new object,
which is controlled by the attacker. When a virtual function
of the old object is called and the virtual function pointer is
looked up, the contents of the new object will be interpreted
as the vtable pointer of the old object. This allows the
corruption of the vtable pointer, comparable to exploiting
a spatial write error, but in this case the dangling pointer
is only dereferenced for a read. An additional aspect of
this attack is that the new object may contain sensitive
information that can be leaked when read through the
dangling pointer of the old object’s type.

5050

Szekeres et al., SoK: Eternal War in Memory, S&P’13

Control Flow Integrity

(Abadi, Budiu, Erlingsson, Ligatti, ACM CCS 2005)

Fundamental idea: exploits deviate from normal program execution
(regardless whether in injected code or libc gadgets)

Capture legal control flow graph (at compile time)
Ensure execution never leaves the CFG

true for direct calls/jumps (if code not modifiable)
checked at runtime for indirect calls/jumps (add instrumentation

before these instructions)

Tradeoff between precision/safety and performance overhead

Recently: Code Pointer Integrity: protect only code pointers,
stored in a separate memory area.

Protecting data

One main problem is unrestricted pointer use
any pointer arithmetic / pointer creation must be checked

Techniques:
encrypt pointers (in theory, they are abstract values, even in C)

but much nonportable code relies on pointer representation
fat pointer:

pointer is not just address word but has info on base + block size
incompatible with standard libraries (must be recompiled)

store metadata separately from pointers
use (hash)map from pointers to metadata
still must update metadata on library call

store address ranges of live objects in a global table
[Jones & Kelly], first implementation in GCC, high overhead

An escalating race: where to?

Many solutions, not all adopted (cf. Szekeres et al. ’13)
performance overhead outweighs potential benefit/safety
not compatible with legacy programs
lack of robustness / incomplete

attacks often discovered soon after protection proposed
toolchain dependence blocks adoption

Trends:
use higher-level languages with better safety guarantees

but: their implementation may still have low-level bugs

implement stronger safety policies
(control flow integrity, data integrity)

