
Computer Programming

Modular compilation. Preprocessor
Abstract data types. Exceptions

Marius Minea
marius@cs.upt.ro

9 December 2014

mailto:marius@cs.upt.ro

Properties of identifiers

Scope of identifiers: where is identifier visible ?
block scope: from declaration to end of enclosing }
file scope: if declared outside any block
also: function prototype scope; function scope (goto labels)

if redeclared, outer scope hidden while inner scope in effect

Linkage of identifiers: do they refer to the same object ?
external: same in all translation units (files) making up program

default for functions and file scope identifiers;
explicit with extern declaration

internal: same within one translation unit; static keyword
none: each declaration denotes distinct object (for block scope)

Storage duration of objects (variables)

automatic, for variables declared with block scope
lifetime: from block entry to exit; re-initialized every time

static: lifetime is program execution; initialized once

allocated: with malloc

thread: for _Thread_local objects (since C11)

Declarations and definitions

An identifier can be declared multiple times, only defined once

A declaration with initializer is a definition.

A file scope declaration with no initializer and no storage class
specifier or with static is a tentative definition
several tentative definitions for same object must match

become definition by end of translation unit

How to use in practice

functions: define in one file, declare in all others
variables: define in one file, declare extern in all others

Can put declarations in a header file, and include where needed

C preprocessor

Preprocessing is done prior to compilation: cpp or gcc -E :

header file inclusion
#include <file.h> or
#include "file.h"

conditional compilation: e.g. to avoid multiple inclusion
#ifndef _MYHEADER_H
#define _MYHEADER_H
// contents of header here
#endif

also: #ifdef, #undef name, #else, #elif, #error

can test arbitrary constant (compile-time) expressions
#if sizeof(int) == 2
// code only gets compiled if this true
#endif

Preprocessor macros
object-like macro #define NAME replacement

function-like macro
#define NAME(arg1,...,argn) replacement
#define MAX(a,b) ((a)>(b)?a:b)
#define NAME(arg1,arg2,...) replacement

can use VA_ARGS to refer to extra arguments
CAREFUL with macros: put args in parantheses in macro body
Don’t use with side-effects if arg evaluated twice: MAX(x++,y)

In macro replacements:
arg produces string literal for tokens represented by arg
x ## y produces string concatenation of tokens for x and y

#define STR(s) #s
#define STRSUB(s) STR(s)
#define JOIN(x,y) x ## y
#define SFMT(m) STRSUB(JOIN(%m,s))
#define MAX 32
scanf(SFMT(MAX), s); // scanf("%32s", s);

Typical library structure

function declarations: in mylibrary.h

#ifndef _MYLIBRARY_H
#define _MYLIBRARY_H
// function declarations (prototpes) go here
#endif

library code (function definition) in mylibrary.c
has #include "mylibrary.h" (declaration/definition consistency)

library compiled to object code: gcc -c mylibrary.c
produces mylibrary.o (with symbols for function names)

main file has #include "mylibrary.h" and uses functions
compile with gcc program.c mylibrary.o

Abstract datatypes

An abstract datatype is a mathematical model for datastructures
defined by the operations applicable to them (functions)
and the constraints among them (axioms)

without exposing details about the implementation.

ADTs separate interface from implementation
the interface provides the abstraction
the implementation is encapsulated (hidden)

ADTs allow changeable and interchangeable implementations
client program relies only on interface, is not affected

Lists as abstract data types

An ADT list L with elementtype E is usually defined by:
nil : ()→ L empty list constructor

can also be constant rather than function
isempty : L→ Bool is empty ?
cons : E × L→ L list constructor
head : L→ E head of list
tail : L→ L tail of list

and the axioms
head(cons(e, l)) = e and tail(cons(e, l)) = l

Some language have lists as algebraic data type:
a sum type (alternative) between (1) the value for empty list, and
(2) a product type of an element and a list (constructor cons).

How to declare an ADT with structures

For structure types, encapsulation is enforced if:
header file only contains declaration of pointer type

typedef struct mytype *mytype_t;

C file for implementation contains structure definition
struct mytype {
// declare fields here

};
// functions can access structure fields

Exported functions only work with pointer type mytype_t
⇒ not knowing structure, user program cannot access fields

For example, the FILE datatype enforces such an encapsulation

Why exceptions ?

Error handling is absolutely needed for any environment interaction

Also needed when proper result can’t be returned
non-numeric string to number; 5th element of 3-element list

Error situations can happen anywhere in the “normal” control flow
end-of-file, read error, insufficient memory
or user-level errors (input does not match format)
handling complicates code, obscures the main functionality

Functions must be designed to return error conditions
complicates their interface

User code has to check for errors at all points
and propagate recovery up from from deep within processing

Exceptions as a programming language feature
Exceptions are a control flow mechanism

different from function call/return, breaking from loops
can transfer control across functions

Exceptions are raised and caught (handled)
can be raised by a library function, or by the user

Imagine a statement that says:
setup exception-name in protected-code with handler-code
When this is executed, the runtime system sets up things so that
if the named exception appears (is raised/thrown) when executing
protected-code, control is transferred to the handling code.
If nothing happens, execution proceeds with the next statement.

Syntax varies:
Java: try protected-code catch (exception) handler-code
ML: try protected-code with exception -> handler-code

Exceptions in C: setjmp/longjmp
#include <setjmp.h>
jmp_buf myexc;
...
if (setjmp(myexc)) {

// nonzero: exception was thrown, handle here
} else {

// protected code where exception is caught
}
...
// somewhere else, usually in another function
longjmp(myexc, nonzero); // throws myexc with nonzero param

Can handle in a switch, to distinguish values from longjmp:
switch (setjmp(myexc)) {
case 0: /* normal code that may throw myexc */ break;
case val1: ...; break;
case val2: ...; break;
default: /* any other value */
}

