
Computer Programming

Recursion. Character input

Marius Minea
marius@cs.upt.ro

30 September 2014

mailto:marius@cs.upt.ro

Review

We solve a (computational) problem by writing a function.

the answer to the problem = the function result
produced with the statement return expression ;
(mandatory, else the function won’t return a result!)
if no return value (e.g., just print) declare function type void

the input data = the function parameters
(based on which the result is computed)

Review: the purpose of a function
Computes a value
double discrim(double a, double b, double c)
{

return b*b - 4*a*c;
}

Produces an effect (e.g. prints a message)
void myerr(int code) // void type: returns nothing
{

printf("error code %d\n", code);
}

effect + value (computes + writes: several statements)
int sqr(int x)
{

printf("Computing the square of %d\n", x);
return x * x;

}

Review: structure of a simple program

#include <stdio.h> // if we need to read/write
#include <math.h> // if we use math functions

// function definition: third side of a triangle
double thirdside(unsigned a, unsigned b, double phi)
{

// the expression contains 2 function calls: cos, sqrt
return sqrt(a*a + b*b - 2*a*b*cos(phi));

}

int main(void)
{

// function call with values for its arguments
printf("third side: %f\n", thirdside(3, 5, atan(1)));
return 0;

}

Program structure: separating concerns

passing an argument is NOT reading from input
computing a value is NOT writing it

A function will typically NOT ask for input.
The smallest functions will receive arguments and return results
This allows them to be composed and used anywhere.

A function will typically NOT print its result, just return it.
(printing is inflexible: may want different format, language, etc.)

We might write wrapper functions that ask for input, then call the
computation function.
We might also write display functions that get a value and print it.

Recursion: power by repeated squaring

Recursion = reduction to a simpler case of the same problem
Base case is simple enough for direct computation

(can / need no longer be reduced)

xn =


1 n = 0
(x2)n/2 n > 0 even
x · (x2)n/2 n > 0 odd

double pow2(double x, unsigned n)
{

return n == 0 ? 1
: n % 2 == 0 ? pow2(x*x, n/2)

: x * pow2(x*x, n/2);
}

Let’s follow the recursive calls

#include <stdio.h>

double pow2(double x, unsigned n)
{

printf("base %f exponent %u\n", x, n);
return n == 0 ? 1

: n % 2 == 0 ? pow2(x*x, n/2)
: x * pow2(x*x, n/2);

}
int main(void)
{

printf("5 to the 6th = %f\n", pow2(5, 6));
return 0;

}

Each call halves the exponent ⇒ 1 + dlog2 ne calls
pow2(5, 6)→ pow2(25, 3)→ pow2(625, 1)

Elements of a recursive definition

1. Base case: no recursive call
= simplest case, defined directly

e.g. in sequences: initial term x0 of the recurrence
the empty list (for a list of elements)

A missing base case is an ERROR ⇒ recursion never stops!

2. the recurrence relation
defines a notion using a simpler case of the same notion

3. Proof/argument that recursion stops in a finite number of steps
(e.g. a nonnegative measure that decreases on each application
– for recurrent sequences: the index (smaller in the definition body
but ≥ 0)
– for recursive objects: size (component objects are smaller)

Are the following definition recursive and correct ?

? xn+1 = 2 · xn
? xn = xn+1 − 3
? an = a · a · . . . · a (n times)
? a sentence is a sequence of words
? a sequence is the concatenation of two smaller sequences
? a string is a character followed by a string

A recursive definition must be well formed (conditions 1-3)
something cannot be defined only in terms of itself
one can only use other notions which are already defined
computation has to stop at some point

Recursion for computing approximations: square root

Babylonian method: a0 = 1, an+1 = 1
2(an + x

an
)

recurrent sequence of approximations ⇒ recursive solution
given (parameters): x and the current approximation
result = a satisfactory approximation (precision ε)

Re-state problem: compute
√

x given current approximation an
In recursion, partial result is usually carried as parameter

Computation:
if precision good |an+1−an|<ε return current approximation an

(base case)
else, return value computed starting from new approximation an+1

(recursive call)
We no longer need an index n, and the base case is not n = 0
(but it’s still the case when nothing left to compute)

Can prove: error to
√

x is less than distance between last two terms

Square root by approximation

#include <math.h>
// needed for double fabs(double x); (abs. value for reals)

// root of x with error < 1e-6 given approximation a_n
double root2(double x, double a_n)
{

return fabs(a_n - x/a_n) < 2e-6 ? a_n
: root2(x, (a_n + x/a_n)/2);

}
double root(double x) { return x < 0 ? -1 : root2(x, 1); }

Two functions:
auxiliary root2 needs two parameters (also approximation)
for user: root defined as required: only one parameter

returns -1 for negative numbers (error code)

Recursion in numbers: sequences of digits

A natural number (in base 10) can be defined/viewed recursively:
a number is a single digit
or: last digit preceded by another number (in base 10)

We can find the two parts using integer division (with remainder)
n = 10 · (n/10) + n%10 1457 = 10 · 145 + 7
the last digit of n is n%10 1457%10 = 7
the number remaining in front is n/10 1457/10 = 145

Problems with a simple recursive solution:
sum of a number’s digits
number of digits; largest/smallest digit, etc.

Solution: always follow the structure of the recursive definition
base case: give result for single-digit number
recurrence: combine last digit with result for the remaining

number before it

How many digits in a number?
1, if number < 10
else, one digit more than the number without its last digit (n/10)
unsigned ndigits(unsigned n)
{

return n < 10 ? 1 : 1 + ndigits(n / 10);
}

Alternative: use an accumulator for the digits already counted
– start counting from 1 (surely has one digit)
– if the number is single-digit, return the digits already counted
– else, count for n/10, accumulating current digit in parameter
unsigned ndigs2(unsigned n, unsigned r)
{

return n < 10 ? r : ndigs2(n / 10, r + 1);
}

Need function with only one parameter: wrap auxiliary function
(called with starting value 1: single-digit number)
unsigned ndig(unsigned n) { return ndigs2(n, 1); }

Largest digit in a number

base case: single-digit number (digit is also max)
else, max of last digit and result for the remaining number
unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdigit(unsigned n)
{

return n < 10 ? n : max(n%10, maxdigit(n/10));
}

Variant with accumulator: maximal digit seen so far: md
– if the number is zero, return the maximum so far: md
– else, continue with maximum of last digit and previous max
unsigned maxdig2(unsigned n, unsigned md)
{

return n == 0 ? md : maxdig2(n/10, max(md, n%10));
}
unsigned maxdig(unsigned n) { return maxdig2(n/10, n%10); }

Characters. ASCII code
ASCII = American Standard Code for Information Interchange
Characters are represented as a numeric code = index in this table
e.g. ’0’ == 48, ’A’ == 65, ’a’ == 97, etc.

0 1 2 3 4 5 6 7 8 9 A B C D E F
--
0x0 \0 \a \b \t \n \v \f \r
0x10:
0x20: ! " # $ % & ’ () * + , - . /
0x30: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0x40: @ A B C D E F G H I J K L M N O
0x50: P Q R S T U V W X Y Z [\] ˆ _
0x60: ‘ a b c d e f g h i j k l m n o
0x70: p q r s t u v w x y z { | } ˜
Prefix 0x denotes hexazecimal constants (in base 16)
Characters < 0x20 (space): control characters
digits; uppercase letters; lowercase letters: 3 contiguous sequences
ASCII: only up to 0x7f (127); then national chars, multi-byte, etc.

The character type
The standard type char is used to represent characters
char is an integer type, with smaller range than int or unsigned
⇒ can be stored in a byte (CHAR_BIT ≥ 8 bits)
char can be signed char, at least -128 to 127,
or unsigned char, at least 0 to 255. Both are included in int.
character constants are written betweeen (single) quotes ’ ’
They are integer values. In expressions: implicitly converted to int
Digits, lowercase letters and uppercase letters are consecutive ⇒
’7’ == ’0’ + 7 ’5’ - ’0’ == 5 ’E’ - ’A’ == 4 ’f’ == ’a’ + 5

Escape sequences (textual representation) for special chars:
’\0’ null ’\n’ newline
’\a’ alarm ’\r’ carriage return
’\b’ backspace ’\f’ form feed
’\t’ tab ’\’’ single quote
’\v’ vertical tab ’\\’ backslash

Reading a character: getchar()

Declaration, in stdio.h : int getchar(void);
Call (use): getchar() without parameters, but with ()

Returns an unsigned char converted to int,
or the value EOF (negative int, usually -1) if no char could be read
(e.g. at end-of-file)
getchar() needs to return int, not char to also encompass EOF
(negative, different from any unsigned char)
When typing, characters are echoed, and placed in a buffer.
They are available to getchar()) only after typing Enter.

WARNING! We have NO CONTROL over input data!
⇒ program must validate (check) them, and handle errors

Writing a character: putchar

Declaration, ı̂n stdio.h : int putchar(int c);
Call (sample use): putchar(’7’)

Writes an unsigned char (given as int); returns its value,
or EOF on error

#include <stdio.h>
int main(void)
{

putchar(’A’); putchar(’:’); // writes A then :
putchar(getchar()); // prints character read
return 0;

}

Reading a natural number

The number is read as string of digits; base case: last digit
Consider c1c2 . . . cm, and the partial sequences c1, c1c2, c1c2c3, . . .
We have: r0 = 0, rk = 10 · rk−1 + ck , (k > 0).
Redefine the problem: Define a function that computes the number
from the already read part r and the current digit c:
– when the char read is not a digit, return accumulated number r
– else, recursive call with 10 · r + c, reading next character

WARNING! getchar() returns the character code (e.g. ASCII),
NOT the value of the digit

when typing 6, getchar() does NOT return 6, but ’6’
⇒ we adjust with -’0’: 6 == ’6’ - ’0’

Reading a natural number (cont.)

ctype.h has declarations of functions for classifying characters:
isalpha, isalnum, isdigit, isspace, islower, isupper, etc.
They take a character as parameter and return true (nonzero) or
false (zero) (the character is of the stated type, or not)
Redefined problem: Define a function that computes the number
from the already read part r and the current digit c:
#include <ctype.h>
#include <stdio.h>
unsigned readnat_rc(unsigned r, int c)
{

return isdigit(c) ? readnat_rc(10*r+(c-’0’), getchar()) : r;
}

As a final solution, we write a function without auxiliary parameters
unsigned readnat(void) { return readnat_rc(0, getchar()); }
Note: no error checking; consumes first character that is not a digit

Side effects

Pure computation has no other effect: this program prints nothing!
int sqr(int x) { return x * x; }
int main(void) { return sqr(2); }

Repeatedly calling the same function (in mathematics, or examples
sqr, pwr, etc.) with the same parameters gives the same result.
Output (printf) produces a visible (and irreversible) effect.
Input (with getchar()) returns a different character on each call;
the character is consumed.

A change in the state of the execution environment is called
a side effect (e.g., reading, writing, assignment).

Combining functions that have side effects requires a lot of care,
since they also interact through these effects.
⇒ write side-effect free functions whenever possible!

From parameters to variables

So far, we’ve written functions that work with their parameters
Parameters are bound at call time to the values of the arguments.

Sometimes, we repeatedly need to work with values that are
obtained within a function ⇒ need to also bind these to a name.

We declare a (local) variable and initialize it with a value.

readnat can read the char c rather than get it as parameter:
unsigned readnat_r(unsigned r)
{

int c = getchar();
return isdigit(c) ? readnat_r(10*r + (c-’0’)) : r;

}
unsigned readnat(void) { return readnat_r(0); }

Reading an integer

We now read an integer, with an optional sign
int readint(void)
{

int c = getchar();
return c == ’-’ ? - readnat() :

c == ’+’ ? readnat() : (ungetc(c, stdin), readnat());
}

If c is not a sign, it may be the first digit of the number
ungetc(c, stdin) puts c back into standard input
it will be returned again on the next read, e.g. with getchar()

Comma , is the sequencing operator for expressions: expr1 , expr2
expr1 is evaluated, ignored; the expression’s result is that of expr2

Declaring variables

A variable is an obiect with a name and a type.
It stores values (other than function arguments) needed later

parameters: for values given to the function (by the caller)
variables: for (auxiliary) values computed in the function

Variable declaration: for one or more variables of the same type:
double x;
int a = 1, b, c;

a is initialized with 1, the other variables are not

WARNING! Variables declared locally in a block (function) are
NOT initialized by default!

When we declare a variable, we should know why we need it
⇒ good practice to initialize it immediately with the needed value

About variables
The scope of an identifier (e.g., variable) is the program region
where it is visible (can be used)
Function parameters and variables declared in functions have the
function body as scope ⇒ are not visible outside the function
Thus, parameter names for different functions do not conflict
(like in mathematics, we can have f (x) = . . . and g(x) = . . .);
same for local variables

The storage duration or lifetime of an object (e.g., variable) is the
part of program execution during which storage is reserved for it.
Local variables have automatic storage duration:
they are automatically created on each call and destroyed on return
(they do not exist between calls, thus do not preserve their value)

A function body { } is a sequence of declarations and statements
since C99, declarations and statements can appear in any order
(in previous standards: first all declarations, then statements)

