Computer Programming
 Recursion. Character input

Marius Minea
marius@cs.upt.ro

30 September 2014

Review

We solve a (computational) problem by writing a function.
the answer to the problem $=$ the function result produced with the statement return expression ; (mandatory, else the function won't return a result!) if no return value (e.g., just print) declare function type void
the input data $=$ the function parameters
(based on which the result is computed)

Review: the purpose of a function

Computes a value

```
double discrim(double a, double b, double c)
{
    return b*b - 4*a*c;
}
Produces an effect (e.g. prints a message)
void myerr(int code) // void type: returns nothing
{
    printf("error code %d\n", code);
}
effect + value (computes + writes: several statements)
int sqr(int x)
{
    printf("Computing the square of %d\n", x);
    return x * x;
}
```


Review: structure of a simple program

```
#include <stdio.h> // if we need to read/write
#include <math.h> // if we use math functions
// function definition: third side of a triangle
double thirdside(unsigned a, unsigned b, double phi)
{
    // the expression contains 2 function calls: cos, sqrt
    return sqrt(a*a + b*b - 2*a*b*cos(phi));
}
int main(void)
{
    // function call with values for its arguments
    printf("third side: %f\n", thirdside(3, 5, atan(1)));
    return 0;
}
```


Program structure: separating concerns

passing an argument is NOT reading from input computing a value is NOT writing it

A function will typically NOT ask for input.
The smallest functions will receive arguments and return results This allows them to be composed and used anywhere.

A function will typically NOT print its result, just return it. (printing is inflexible: may want different format, language, etc.)

We might write wrapper functions that ask for input, then call the computation function.
We might also write display functions that get a value and print it.

Recursion: power by repeated squaring

Recursion $=$ reduction to a simpler case of the same problem Base case is simple enough for direct computation (can / need no longer be reduced)

$$
x^{n}= \begin{cases}1 & n=0 \\ \left(x^{2}\right)^{n / 2} & n>0 \text { even } \\ x \cdot\left(x^{2}\right)^{n / 2} & n>0 \text { odd }\end{cases}
$$

double pow2(double x, unsigned n)
\{
return $\mathrm{n}=0$? 1

$$
\begin{array}{rl}
: \mathrm{n} \% 2==0 & ? \operatorname{pow} 2(x * x, n / 2) \\
& : x * \operatorname{pow} 2(x * x, n / 2) ;
\end{array}
$$

\}

Let's follow the recursive calls

```
#include <stdio.h>
double pow2(double x, unsigned n)
{
    printf("base %f exponent %u\n", x, n);
    return n == 0 ? 1
        : n % 2 == 0 ? pow2(x*x, n/2)
        : x * pow2(x*x, n/2);
}
int main(void)
{
    printf("5 to the 6th = %f\n", pow2(5, 6));
    return 0;
}
```

Each call halves the exponent $\Rightarrow 1+\left\lceil\log _{2} n\right\rceil$ calls $\operatorname{pow} 2(5,6) \rightarrow \operatorname{pow} 2(25,3) \rightarrow \operatorname{pow} 2(625,1)$

Elements of a recursive definition

1. Base case: no recursive call
$=$ simplest case, defined directly
e.g. in sequences: initial term x_{0} of the recurrence the empty list (for a list of elements)

A missing base case is an $E R R O R \Rightarrow$ recursion never stops!
2. the recurrence relation
defines a notion using a simpler case of the same notion
3. Proof/argument that recursion stops in a finite number of steps
(e.g. a nonnegative measure that decreases on each application

- for recurrent sequences: the index (smaller in the definition body
but ≥ 0)
- for recursive objects: size (component objects are smaller)

Are the following definition recursive and correct ?

$? x_{n+1}=2 \cdot x_{n}$
$? x_{n}=x_{n+1}-3$
? $a^{n}=a \cdot a \cdot \ldots \cdot a$ (n times)
? a sentence is a sequence of words
? a sequence is the concatenation of two smaller sequences
? a string is a character followed by a string
A recursive definition must be well formed (conditions 1-3) something cannot be defined only in terms of itself one can only use other notions which are already defined computation has to stop at some point

Recursion for computing approximations: square root

Babylonian method: $a_{0}=1, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{x}{a_{n}}\right)$
recurrent sequence of approximations \Rightarrow recursive solution given (parameters): x and the current approximation result $=$ a satisfactory approximation (precision ϵ)
Re-state problem: compute \sqrt{x} given current approximation a_{n} In recursion, partial result is usually carried as parameter
Computation:
if precision good $\left|a_{n+1}-a_{n}\right|<\epsilon$ return current approximation a_{n} (base case)
else, return value computed starting from new approximation a_{n+1} (recursive call)
We no longer need an index n, and the base case is not $n=0$ (but it's still the case when nothing left to compute)

Can prove: error to \sqrt{x} is less than distance between last two terms

Square root by approximation

```
#include <math.h>
// needed for double fabs(double x); (abs. value for reals)
// root of x with error < 1e-6 given approximation a_n
double root2(double x, double a_n)
{
    return fabs(a_n - x/a_n) < 2e-6 ? a_n
                        : root2(x, (a_n + x/a_n)/2);
}
double root(double x) { return x < 0 ? -1 : root2(x, 1); }
Two functions:
auxiliary root2 needs two parameters (also approximation) for user: root defined as required: only one parameter returns -1 for negative numbers (error code)
```


Recursion in numbers: sequences of digits

A natural number (in base 10) can be defined/viewed recursively: a number is a single digit or: last digit preceded by another number (in base 10)
We can find the two parts using integer division (with remainder)

$$
\begin{array}{ll}
n=10 \cdot(n / 10)+n \% 10 & 1457=10 \cdot 145+7 \\
\text { the last digit of } n \text { is } n \% 10 & 1457 \% 10=7 \\
\text { the number remaining in front is } n / 10 & 1457 / 10=145
\end{array}
$$

Problems with a simple recursive solution:
sum of a number's digits
number of digits; largest/smallest digit, etc.
Solution: always follow the structure of the recursive definition
base case: give result for single-digit number
recurrence: combine last digit with result for the remaining number before it

How many digits in a number?

1 , if number <10 else, one digit more than the number without its last digit ($n / 10$)

```
unsigned ndigits(unsigned n)
```

\{
return n < 10 ? 1 : 1 + ndigits($\mathrm{n} / 10$);
\}

Alternative: use an accumulator for the digits already counted

- start counting from 1 (surely has one digit)
- if the number is single-digit, return the digits already counted
- else, count for $n / 10$, accumulating current digit in parameter

```
unsigned ndigs2(unsigned n, unsigned r)
```

\{

```
    return n < 10 ? r : ndigs2(n / 10, r + 1);
```

\}

Need function with only one parameter: wrap auxiliary function (called with starting value 1 : single-digit number)
unsigned ndig(unsigned n) \{ return ndigs2(n, 1); \}

Largest digit in a number

base case: single-digit number (digit is also max) else, max of last digit and result for the remaining number

```
unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdigit(unsigned n)
{
    return n < 10 ? n : max(n%10, maxdigit(n/10));
}
```

Variant with accumulator: maximal digit seen so far: md

- if the number is zero, return the maximum so far: md
- else, continue with maximum of last digit and previous max
unsigned maxdig2(unsigned n, unsigned md)
\{
return $\mathrm{n}==0$? md : maxdig2(n/10, max(md, n\%10));
\}
unsigned maxdig(unsigned n) \{ return maxdig2(n/10, n\%10); \}

Characters. ASCII code

ASCII = American Standard Code for Information Interchange Characters are represented as a numeric code $=$ index in this table e.g. '0' $==48$, ' A ' $==65$, 'a' $==97$, etc.

$0 x 0 \quad$ \0 \quad a $\backslash \mathrm{b} \backslash t \backslash n \backslash v \backslash f$ \r
0×10 :

Prefix 0x denotes hexazecimal constants (in base 16)
Characters < 0x20 (space): control characters digits; uppercase letters; lowercase letters: 3 contiguous sequences ASCII: only up to $0 x 7 f$ (127); then national chars, multi-byte, etc.

The character type

The standard type char is used to represent characters char is an integer type, with smaller range than int or unsigned \Rightarrow can be stored in a byte (CHAR_BIT ≥ 8 bits)
char can be signed char, at least -128 to 127 , or unsigned char, at least 0 to 255 . Both are included in int. character constants are written betweeen (single) quotes ' , They are integer values. In expressions: implicitly converted to int Digits, lowercase letters and uppercase letters are consecutive \Rightarrow

'7' == '0' + 7 '5' - '0' == 5 ' $\mathrm{E}^{\prime}-\mathrm{A}^{\prime} \mathrm{A}=4$ 'f' == 'a' + 5

Escape sequences (textual representation) for special chars:

' $\ 0$ '	null	' $\backslash \mathrm{n}$ '	newline
'\a'	alarm	' \backslash r ${ }^{\prime}$	carriage return
' $\backslash \mathrm{b}$,	backspace	' $\backslash \mathrm{f}$,	form feed
' $\backslash \mathrm{t}$,	tab	'\',	single quote
'\v'	vertical tab	'	
'	backslash		

Reading a character: getchar()

Declaration, in stdio.h: int getchar(void);
Call (use): getchar() without parameters, but with ()
Returns an unsigned char converted to int, or the value EOF (negative int, usually -1) if no char could be read (e.g. at end-of-file)
getchar() needs to return int, not char to also encompass EOF (negative, different from any unsigned char) When typing, characters are echoed, and placed in a buffer. They are available to getchar()) only after typing Enter.

WARNING! We have NO CONTROL over input data!
\Rightarrow program must validate (check) them, and handle errors

Writing a character: putchar

Declaration, în stdio.h: int putchar(int c); Call (sample use): putchar('7')
Writes an unsigned char (given as int); returns its value, or EOF on error
\#include <stdio.h>
int main(void)
\{
putchar('A'); putchar(':'); // writes A then :
putchar(getchar()); // prints character read return 0;
\}

Reading a natural number

The number is read as string of digits; base case: last digit Consider $c_{1} c_{2} \ldots c_{m}$, and the partial sequences $c_{1}, c_{1} c_{2}, c_{1} c_{2} c_{3}, \ldots$ We have: $\quad r_{0}=0, r_{k}=10 \cdot r_{k-1}+c_{k},(k>0)$.
Redefine the problem: Define a function that computes the number from the already read part r and the current digit c :

- when the char read is not a digit, return accumulated number r
- else, recursive call with $10 \cdot r+c$, reading next character

WARNING! getchar() returns the character code (e.g. ASCII), NOT the value of the digit
when typing 6, getchar() does NOT return 6, but '6'
\Rightarrow we adjust with -'0': $6==$ '6' - '0'

Reading a natural number (cont.)

ctype.h has declarations of functions for classifying characters: isalpha, isalnum, isdigit, isspace, islower, isupper, etc. They take a character as parameter and return true (nonzero) or false (zero) (the character is of the stated type, or not)
Redefined problem: Define a function that computes the number from the already read part r and the current digit c :

```
#include <ctype.h>
#include <stdio.h>
unsigned readnat_rc(unsigned r, int c)
{
    return isdigit(c) ? readnat_rc(10*r+(c-'0'), getchar()) : r;
}
```

As a final solution, we write a function without auxiliary parameters unsigned readnat(void) \{ return readnat_rc(0, getchar()); \} Note: no error checking; consumes first character that is not a digit

Side effects

Pure computation has no other effect: this program prints nothing! int $\operatorname{sqr}($ int x$) ~\{r e t u r n ~ \mathrm{x} * \mathrm{x}$; \} int main(void) \{ return sqr(2); \}
Repeatedly calling the same function (in mathematics, or examples sqr, pwr, etc.) with the same parameters gives the same result.
Output (printf) produces a visible (and irreversible) effect. Input (with getchar()) returns a different character on each call; the character is consumed.

A change in the state of the execution environment is called a side effect (e.g., reading, writing, assignment).

Combining functions that have side effects requires a lot of care, since they also interact through these effects.
\Rightarrow write side-effect free functions whenever possible!

From parameters to variables

So far, we've written functions that work with their parameters Parameters are bound at call time to the values of the arguments.

Sometimes, we repeatedly need to work with values that are obtained within a function \Rightarrow need to also bind these to a name.

We declare a (local) variable and initialize it with a value.
readnat can read the char c rather than get it as parameter:
unsigned readnat_r (unsigned r)
\{
int $c=$ getchar();
return isdigit(c) ? readnat_r(10*r + (c-'0')) : r; \}
unsigned readnat(void) \{ return readnat_r(0); \}

Reading an integer

We now read an integer, with an optional sign

```
int readint(void)
{
    int c = getchar();
    return c == '_' ? - readnat() :
    c == '+' ? readnat() : (ungetc(c, stdin), readnat());
}
```

If c is not a sign, it may be the first digit of the number ungetc (c, stdin) puts c back into standard input it will be returned again on the next read, e.g. with getchar()

Comma, is the sequencing operator for expressions: expr1, expr2 expr1 is evaluated, ignored; the expression's result is that of expr2

Declaring variables

A variable is an obiect with a name and a type.
It stores values (other than function arguments) needed later
parameters: for values given to the function (by the caller)
variables: for (auxiliary) values computed in the function
Variable declaration: for one or more variables of the same type:
double x;
int $\mathrm{a}=1, \mathrm{~b}, \mathrm{c}$;
a is initialized with 1 , the other variables are not
WARNING! Variables declared locally in a block (function) are NOT initialized by default!

When we declare a variable, we should know why we need it \Rightarrow good practice to initialize it immediately with the needed value

About variables

The scope of an identifier (e.g., variable) is the program region where it is visible (can be used)

Function parameters and variables declared in functions have the function body as scope \Rightarrow are not visible outside the function Thus, parameter names for different functions do not conflict (like in mathematics, we can have $f(x)=\ldots$ and $g(x)=\ldots$); same for local variables

The storage duration or lifetime of an object (e.g., variable) is the part of program execution during which storage is reserved for it.
Local variables have automatic storage duration: they are automatically created on each call and destroyed on return (they do not exist between calls, thus do not preserve their value)

A function body \{ \} is a sequence of declarations and statements since C99, declarations and statements can appear in any order (in previous standards: first all declarations, then statements)

