
Computer Programming

Tail recursion. Decision. Assignment. Iteration

Marius Minea
marius@cs.upt.ro

7 October 2014

mailto:marius@cs.upt.ro

Two ways of writing recursion

unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }

unsigned maxdig(unsigned n) {
return n < 10 ? n : max(n%10, maxdig(n/10));

} // directly from: number ::= digit | number digit

unsigned maxdig2(unsigned n, unsigned maxd) {
unsigned md1 = max(n%10, maxd);
return n < 10 ? md1 : maxdig2(n/10, md1);

} // keep maxd found so far

unsigned maxdig1(unsigned n) {
return n < 10 ? n : maxdig2(n/10, n%10);

} // 1-arg wrapper for function above

Is recursion efficient?

S0 = 1, Sn = Sn−1 + cos n S1000000 = ?

#include <stdio.h>
#include <math.h>

double s(unsigned n) {
return n == 0 ? 1 : s(n-1) + cos(n);

}

int main(void) {
printf("%f\n", s(1000000));
return 0;

}

./a.out
Segmentation fault

Recursion and the stack

Code executes sequentially (except for branch/call/return)

When calling a function, must remember where to return
(right after call)

Must remember function parameters and locals to keep using them

These are placed on the stack
since nested calls return in opposite order made
must restore values in reverse order of saving (last in, first out)

If recursion is very deep, stack may be insufficient⇒ program crash
even if not, save/call/restore may be expensive

Tail recursion

S0 = 1, Sn = Sn−1 + cos n
We know we’ll have to add cos n (but not yet to what)
⇒ can anticipate and accumulate values we need to add
When reaching the base case, add accumulator (partial result)

double s2(double acc, unsigned n)
{

return n == 0 ? 1 + acc : s2(acc + cos(n), n-1);
}

double s1(unsigned n) { return s2(0, n); }

Program now works!

Tail recursion IS iteration!

A function is tail-recursive if recursive call is last in the function.
no computation done after call (e.g., with result)

result (if any) is returned unchanged between calls

⇒ parameter and local values no longer needed
⇒ no need for stack: replace recursive call with jump,
return value at end (base case)

(Optimizing) compiler converts tail recursion to iteration (loop)
need not worry about efficiency

Review: conditional expression
condition ? expr1 : expr2 everything is an expression
expr1 or expr2 may be conditional expression themselves
(if we need more questions to find out the answer)

f (x) =

−6 x < −3

2 · x x ∈ [−3, 3]
6 x > 3

double f(double x)
{

return x < -3 ? -6 // else, we know x >= -3
: x <= 3 ? 2*x : 6;

}

or: x >= -3 ? (x <= 3 ? 2*x : 6) : -6
if x ≥ −3 we still need to ask x ≤ 3 ?

or: x < -3 ? -6 : (x > 3 ? 6 : 2*x)
if x is not < −3 or > 3, it must be x ∈ [−3, 3]

Conditional expression (cont’d)
The conditional expression is an expression
⇒ may be used anywhere an expression is needed

Example: as an expression of type string in puts
(function that prints a string to stdout, followed by a newline)

#include <ctype.h>
#include <stdio.h>

int main(void)
{

int c = getchar(); // variable initialized w/ char read
puts(isupper(c) ? "uppercase letter"

: islower(c) ? "lowercase letter"
: isdigit(c) ? "digit"
: "not letter or digit");

return 0;
}

Note layout for readability: one question per line.

Expressions and statements

Expression: computes a result
arithmetic operations: x + 1
function call: fact(5)

Statement: executes an action
return n + 1;

Any expression followed by ; becomes a statement
n + 3; (computes, but does not use the result)
printf("hello!"); we do not use the result of printf

but are interested in the side effect, printing
printf returns an int: number of chars written (rarely used)

Statements contain expressions. Expressions don’t contain statements.

Sequencing

Statements are written and executed in order (sequentially)
With decision, recursion and sequencing we can write any program

Compound statement: several statements between braces { }
A function body is a compound statement (block).
{

statement
...
statement

}

{
int c = getchar();
printf("let’s print the char: ");
putchar(c);

}
A compound statement is considered a single statement.
May contain declarations: anywhere (C99/C11)/at start (C89).
All other statements are terminated by a semicolon ;

The sequencing operator is the comma: expr1 , expr2
Evaluate expr1, ignore, the value of the expression is that of expr2

The conditional statement (if)
Conditional operator ? : selects from two expressions to evaluate
Conditional statement selects between two statements to execute
Syntax:
if (expression)

statement1
else

statement2

or if (expression)
statement1

Effect:
If the expresson is true (nonzero) statement1 is executed,
else statement2 is executed (or nothing, if the latter is missing)

Each branch has only one statement. If several statements are
needed, these must be grouped in a compound statement { }

The parantheses () around the condition are mandatory.
The else branch always belongs to the closest if :
if (x > 0) if (y > 0) printf("x+, y+"); else printf("x+, y-");

Example with the if statement
Printing roots of a quadratic equation:

void printsol(double a, double b, double c)
{

double delta = b * b - 4 *a * c;
if (delta >= 0) {

printf("root 1: %f\n", (-b-sqrt(delta))/2/a);
printf("root 2: %f\n", (-b+sqrt(delta))/2/a);

} else printf("no solution\n"); // puts("no solution");
}

Can rewrite the conditional operator ? : using the if statement

int abs(int x)
{

return x > 0 ? x : -x;
}

int abs(int x)
{

if (x > 0) return x;
else return -x;

}

Decisions with multiple branches

The branches of an if can be any statements
⇒ also if statements
⇒ can chain decisions one after another

// ints a and b have been read before
int c = getchar(); // read operator
if (c == ’+’) return a + b;
else if (c == ’-’) return a - b;
else { puts("bad operator"); exit(1); } // exit program

The checks c==’+’ and c==’-’ are not independent. DON’T write
if (c == ’+’) return a + b;
if (c == ’-’) return a - b;
It is pointless do the second test if the first was true

(c cannot be both + and -)
The proper code is with chained ifs (or a switch statement)

Example with if: printing a number

#include <stdio.h>

void printnat(unsigned n) { // recursive, digit by digit
if (n >= 10) // if it has several digits

printnat(n/10); // write first part
putchar(’0’ + n % 10); // always write last digit

}

int main(void)
{

printnat(312);
return 0;

}

Logical expressions in C

The condition in the if statement or the ? : operator is usually a
relational expression, with a logical value: x != 0, n < 5, etc.
The C language was conceived without a special boolean type
(since C99, stdbool.h has bool, false (0) and true (1)).

A value is considered true when nonzero and false when zero
(when used as a condition in ? : , if , while etc.)
⇒ condition must have scalar type (integer, floating point, enum)
Comparison operators (== != < etc.)
return the integer values 1 (for true) or 0 (for false)
⇒ suitable for direct use as conditions

Library functions often return zero or nonzero (NOT zero or one!)
only compare if (isdigit(c)) (nonzero), don’t compare to 1 !

Logical operators

With logical operators, we can write complex decisions:

expr ! expr
0 1
6= 0 0
negation ! NOT

e1

e2
e1 && e2 0 6= 0

0 0 0
6= 0 0 1

conjunction && AND

e1

e2
e1 || e2 0 6= 0

0 0 1
6= 0 1 1

disjunction || OR

Reminder: logical operators produce 1 for true, 0 for false
An integer is interpreted as true if nonzero, and as false if 0

Example: leap year

A year is a leap year if

it is divisible by 4 and
it is not divisible by 100 or it is divisible by 400

int isleap(unsigned yr) // 1: leap year, 0: not
{

return yr % 4 == 0 && (!(yr % 100 == 0) || yr % 400 == 0);
}

!(yr % 100 == 0) is equivalent with (yr % 100 != 0)

Example: leap year

A year is a leap year if

it is divisible by 4 and
it is not divisible by 100 or it is divisible by 400

int isleap(unsigned yr) // 1: leap year, 0: not
{

return yr % 4 == 0 && (!(yr % 100 == 0) || yr % 400 == 0);
}

!(yr % 100 == 0) is equivalent with (yr % 100 != 0)

Precedence of logical operators

The unary logical operator ! (logical negation): highest precedence
if (!found) same as if (found == 0) (zero is false)
if (found) same as if (found != 0) (nonzero is true)

Relational operators: lower precedence than arithmetic ones
⇒ we can naturally write x < y + 1 for x < (y + 1)

Precedence: > >= < <= , then == !=

Binary logic operators: && (AND) evaluated before || (OR)
have lower precedence than relational operators
⇒ can naturally write x < y + z && y < z + x

Short-circuit evaluation
Logical expressions are evaluated left to right
(in general, for other operators, evaluation order is unspecified)
Evaluation stops (short-circuit) when the result is known:

for &&, when the left argument is false (right is not evaluated)
for ||, when the left argument is true

if (p != 0 && n % p == 0)
printf("p divides n");

if (p != 0) // only if nonzero
if (n % p == 0) // test the remainder

printf("p divides n");

⇒ Be careful when writing compound tests!
⇒ Avoid side-effects in compound tests (or place them first)

Evaluation order and precedence are different notions!
2 * f(x) + g(x) : multiplication before addition (precedence)
Unspecified which part of sum is evaluated first (f or g)

Assignment

In recursive functions we don’t need to change variable values
a programming style typical for (pure) functional languages

Recursive calls create new parameter instances with new values.
In imperative programming, we use:
variables to represent objects used in solving the problem

(current character; partial result; number left to process)
assignment, to give a new value to a variable

(to express a computation step in the program)

Syntax: variable = expression
Everything is an assignment expression.
Effect: 1. The expression is evaluated
2. the value is assigned to the variable and becomes the value of
the entire expression.
Example: c = getchar() n = n-1 r = r * n

Assignment (cont’d)

May appear in other expressions: if ((c = getchar()) != EOF)
. . .

May be chained: a = b = x+3 (a and b get the same value)

Any expression (function call, assignment) with ; is a statement
printf("hello"); c = getchar(); x = x + 1;

A variable changes value only by assignment!
NOT in other expressions, or by passing as parameter!
n + 1 sqr(x) toupper(c) compute, DON’T change!
n = n + 1 x = sqr(x) c = toupper(c) change

WARNING! = assignment == comparison.

Iteration. The while loop (initial test)

Expresses the repetition of a statement, guarded by a condition:

Syntax:
while (expression)

statement

!!! Expression must be
between parantheses ()

?

H
HH���HHH��
�expression

?true

-
false

?

statement

?�

6
-

Semantics: evaluate expression. If it is true (nonzero):
(1) execute statement (loop body)
(2) go back to start of while (evaluate expression)

Else (if condition is false/zero), don’t execute anything.
⇒ body executes repeatedly, as long as (while) condition is true

Iteration and recursion

We can define iteration (the while loop) recursively:

while (expression)
statement

is the same as

if (expression) {
statement
while (expression)

statement
}

Rewriting recursion as iteration

unsigned fact_r(unsigned n,
unsigned r) {

return n > 0
? fact_r(n - 1, r * n)
: r;

}
// called with fact_r(n, 1)

unsigned fact_it(unsigned n) {
unsigned r = 1;
while (n > 0) {

r = r * n;
n = n - 1;

}
return r;

}

int pow_r(int x, unsigned n,
int r) {

return n > 0
? pow_r(x, n-1, x*r)
: r;

}
// called with pow_r(x, n, 1)

int pow_it(int x, unsigned n) {
int r = 1;
while (n > 0) {

r = x * r;
n = n - 1;

}
return r;

}

Rewriting recursion as iteration

Easier if function is written by accumulating a partial result
(tail recursion)
Stop test and initial result value are the same as in recursion
Recursion creates new instances of parameters for each recursive
call, with new values dependent on the old ones:

ex. n * r, n - 1, x * r, etc.
Iteration updates (assigns) values to variables in each iteration,
using the same rules/expressions

Ex. r = n * r, n = n - 1, r = x * r

Both variants return the accumulated result

!!!: Recursion and iteration both repeat a processing step
⇒ in a problem we use one or the other, rarely both

Reading a number iteratively, digit by digit

#include <ctype.h> // for isdigit()
#include <stdio.h> // for getchar(), ungetc(), stdin
unsigned readnat(void)
{

unsigned r = 0; // accumulates result
int c; // character read
while (isdigit(c = getchar())) // while digit

r = 10*r + c - ’0’; // build number
ungetc(c, stdin); // put back char != digit
return r;

}
int main(void)
{

printf("number read: %u\n", readnat());
}
ungetc(c, stdin) puts character c back to standard input
Character will be read next time, e.g. on using getchar()

Basic text processing: reading all text

Reading all input, doing nothing
(body of while is empty, ; is the empty statement)

#include <stdio.h>

int main(void) {
int c;
while ((c = getchar()) != EOF);
return 0;

}

Reading and printing all input:

int c;
while ((c = getchar()) != EOF)

putchar(c);

Basic text processing: finding a char
int c;
while ((c = getchar()) != EOF)

if (c == ’.’) puts("Found period!");

Often, we search for more text of some sort after that character.
looking for the first word:

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF)

if (c == ’.’) { // found period
while (isspace(c = getchar())); // skip whitespace
// print next word made of letters
while (isalpha(c = getchar())) putchar(c);

}
return 0;

}

Reading character by character: filters

Function that reads and prints up to a specified character
returns that character or EOF if reached before that char
int printto(int stopchar) // up to what char ?
{

int c;
while ((c = getchar()) != EOF && c != stopchar)

putchar(c);
return c;

}
DON’t forget () (c=getchar())!=EOF (assign, then compare)

int skipto(int stopchar) // ignore up to stopchar
{

int c;
while ((c = getchar()) != EOF && c != stopchar);
return c;

}
; after while means an empty loop body. Don’t use by mistake!

ERRORS with characters and loops

NO! char c = getchar(); YES: int c = getchar();
If char is unsigned char, c will never compare equal to EOF (-1)
⇒ will never leave a while (c != EOF) loop

If char is signed char, reading byte 255 becomes -1 (EOF)
⇒ a valid char (code 255) will be taken as EOF (early stop)

NO! while (!EOF) EOF is a nonzero constant (-1)
thus the condition is always false, the loop is never entered!
YES: while ((c = getchar()) != EOF) and careful with the () !
NO! while (c = getchar() != EOF)
!= has higher precedence, its result (0 or 1) is assigned to c

NO! int c = getchar(); if (c < 5) puts("failed exam");
c is ASCII code, not value of a one-digit number. Need c-’0’

NO! while ((c = getchar()) != ’\n’) may loop forever!
YES: while ((c = getchar()) != ’\n’ && c != EOF) will exit!

