Computer programming
lterative processing

Marius Minea

marius@cs.upt.ro

14 October 2014

mailto:marius@cs.upt.ro

Basic text processing: reading all text

Reading all input, doing nothing
body of while is empty, ; is the empty statement

#include <stdio.h>

int main(void) {

int c;
while ((c = getchar()) != EQF);
return O;

}
Reading and printing all input:

int c;
while ((c = getchar()) != EOF)
putchar(c);

Text processing: pattern starting with given char

If we search for text starting with a given char,
continue checking for text in the if () that has found that char:
e.g. ignore \ if followed by letters, print rest

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) !'= EOF) {
if (c == ’\\?) // found backslash

if (isalpha(c = getchar())) // if letter
while (isalpha(c = getchar())); // skip more letters

else putchar (’\\’);
putchar(c); // print, also after cases above

3

return O;

3

This has a slight problem, do you notice ?

Text processing: pattern starting with given char

If string of letters ends with EOF, will also try to print EOF
-1 converted to code 255 (strange character, ¥)

When searching for a given char, must also test for EOF
When using a char (e.g. after a loop), must check it's not EOF

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) !'= EOF) {
if (¢ == "\\") { // found backslash

if (isalpha(c = getchar())) // skip any letters
while (isalpha(c = getchar()));

else putchar(’\\’); // no letters
if (c != EOF) putchar(c); // last char read
} else putchar(c); // not backslash
}
return O;

}

Finding repeated patterns

Ex: ignore \ followed by repeated text between braces
\{text1}{text2}...

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF)
if (c == \\") { // found backslash
while ((c = getchar()) == ’{’)

while ((c = getchar()) != ’}’)
if (¢ == EOF) return 1; // incomplete
if (¢ != EOF) putchar(c); // char after pattern
} else putchar(c); // anything else
return 0O;

}

Often, it is useful two write functions for parts of the pattern
(makes code more manageable)

The do-while loop (final test)

statement

expressiof

false

do
statement
while (expression) ;
true

Sometimes we know that a cycle needs to be executed at least once
(we read at least one character, a number has at least one digit)

Like the while loop, executes statement as long as the expression
evaluates to true (nonzero)
Expression is (re)evaluated after every iteration

statement
Equivalent with: while (expression)
statement

Assignment operators

We've used the simple assignment: /value = expression
Ivalue: variable; also: array element; pointer dereference

Compound assignment operators: += -= *= [= /=
X += expr is a shorthand for x = x + expr
also for bitwise assignment operators >> << & ~ |
use them: shorter, but also makes intent of transformation clearer

Increment /decrement operators prefix/postfix: ++ --
++i increments i, expression value is value after assignment
i++ increments i, expression value is value before assignment

both have same side effect (assignment) but different value
int x=2, y, 2z; y = x++; /*x y=2,x=3 */; z = ++x; // x=4,z=4

Side effects and sequencing points

The C standard defines sequence points, which constrain the
evaluation order. Examples of sequence points are (Annex C)

— between evaluating the function designator (function expression)
and arguments, and the actual call

— between evaluating first and second arguments for &&, ||, ,

— between evaluating the first operand in ? : and the second/third

If a side effect on a scalar object is unsequenced relative to either a
different side effect on the same scalar object or a value computation
using the value of the same scalar object, the behavior is undefined. If
there are multiple allowable orderings of the subexpressions of an
expression, the behavior is undefined if such an unsequenced side effect
occurs in any of the orderings. C standard, 6.5 Expressions

Thus, i = i++ or af[i] = i++ are undefined!

Caution with multiple side effects!

Even when order of side effects is well defined, use with caution!

DON'T write: return i++;
assignment to i is useless, since the function returns
obscures intent: should it be return i; or return i+1; ?

DON'T: ¢ = toupper(c); return c; DO: return toupper(c);

DON'T read multiple characters in an expression:

if ((c1l = getchar()) == %’ && ((c2 = getchar()) == ’/’))
if first comparison fails, second char is not read
= hard to reason about program behavior

The break statement
Exits the immediately enclosing switch or loop statement
Used if we don't want to continue the remaining processing
Usually: if (condition) break;

#include <ctype.h>
#include <stdio.h>

int main(void) { // count words in input

unsigned nrw = 0;

while (1) { // infinite loop, exit with break
int c;
while (isspace(c = getchar())); // consume spaces
if (¢ == EQOF) break; // done
nrw = nrw + 1; // else: start of word
while (!isspace(c = getchar()) && c != EOF); // word

}

printf ("%u\n", nrw);

return O;

}

The for statement

for (init-clause ; test-expr ; update-expr jpjt_clause;

) while (test-expr) {
statement statement

is equivalent™ with: update-expr,

* except: continue statement, see later }

Any of the 3 parts in (...) may be missing, but semicolons stay
If test-expr is absent, it is considered true (infinite loop)

Before C99: init part could only be an expression, e.g. 1 = 0
Since C99: init-clause can also be a declaration, e.g. int i = 0
scope of declared identifiers is loop body only

= USE loop scope for counters, if they are not needed later

(scope of identifiers should only be as much as needed)

WARNING! The semicolon ; is the empty statement
DO NOT use after closing) of for unless for empty body!

Counting with for loops

#include <stdio.h>
int main(void)

{

unsigned n = 5;

while (n--) // from n-1 to 0: n-- != 0, postdecrement
printf("loop 1: n = %d\n", n);
n = 5; // reinitialize after countdown to 0

for (int i = 0; i < n; ++i) // from O to n-1
printf ("loop 2: counter %d\n", 1i);

for (int i = 1; i <= n; ++i) // from 1 to n
printf ("loop 3: counter %d\n", 1i);

for (int i = n; i > 0; ——1i) // from n to 1
printf ("loop 4: counter %d\n", 1i);

for (int i = n; i--3;) // from n-1 to O, postdecr.
printf("loop 5: counter %d\n", i);

return O;

Counting with for loops

If direction does not matter, this is shortest:
for (int i = n; i--;)
also easier to compare to zero

Warning: test expression is computed every time
= avoid needless computation, e.g.
for (int i = 0; i < strlen(s); ++i)

If needed, precompute upper bound:
for (int i = 0, len = strlen(s); i < len; ++i)
(if lucky, compiler may optimize for you, but not always)

Example: rewrite, starting every word with uppercase

#include <ctype.h>
#include <stdio.h>
int main(void) {

int c;
while((c = getchar()) != EOF) {
if (!isspace(c)) { // first letter
putchar (toupper(c)); // print uppercase
while ((c = getchar()) != EOF) { // still word?
putchar(c); // print even if space
if (isspace(c)) break; // but then exit
}
} else putchar(c);
}
return O;

¥

The continue statement
jumps to the end of the loop body in a while, do or for loop
i.e. to the test, in while and do loops
and to the update expression in a for loop

void printfact(unsigned n) { // print prime factors of n

for (unsigned d = 2; d*d <=n; d +=1 +d % 2) {
if (n % d !'= 0) continue; // not divisible; next d
unsigned exp = 1;
while ((n /= d) % d == 0) ++exp;
printf ("Ju", d); // write current factor
if (exp > 1) printf("“%u", exp); // write exponent
if (n > 1) putchar(’*’); else return;

}

printf("%u", n); // 0, 1 or remaining prime

3

Use sparingly.
can make code clearer, if decision to skip is early, and loop is long
otherwise, a simple if may be cleaner/clearer.

The switch statement: example

#include <stdio.h>
int main(void)
{
int a =3, b =4, c, r;
switch (c = getchar()) {
case ’+’: r = a + b; break; // end switch

case ’-’: r = a - b; break;
case ’x’: ¢ = ’%’; // continue onto next branch
case ’*’: r = a *x b; break;

case ’/’: r = a / b; break;
default: fputs("Unknown operator\n", stderr);

return 1;
}
printf ("Result: %d %c %d = %d\n", a, c, b, r);
return O;

¥

The switch statement

Used for multiple branches depending on an integer value
can be clearer/more efficient than multiple if ... else

Syntax: switch (integer-expression) statement
statement is a block with multiple statements, some /labeled:
case value: statement

The integer expression is evaluated.

If the statement has a case label with that value, jump to it
Otherwise, if there is a default, label, jump to it

Else, do nothing (goes on to next statement after switch)

A statement may have several labels (flow jumps to same code)
case vall: case val2: statement

Normal statement sequencing applies: flow does does not stop at
the next case label (it's just a label)
= to exit switch statement, use break; statement (don't forget!)

switch vs. if ... else

A multiple if ... else statement will do multiple tests
(until one succeeds)

A switch statement may be implemented using a jump table:

the expression is evaluated and used as index in a table of addresses
= can be more efficient if range of possible values is limited
(also: compiler may limit range of values to 1023, cf. standard)

More importantly: a switch may be easier to read

But: be careful not to forget break where needed!

Writing and testing loops

We should consider:
what variable changes in each iteration 7
what is the loop continuation/stopping condition ?

Don't forget update of variable that controls loop
(otherwise will loop forever)

What do we know on exiting the loop ? The loop condition is false.
we consider this as we reason further about the program

We inspect/check/test the program:
mentally, running it “pencil and paper” on simple cases
then with increasingly complex tests, including corner cases

