
Computer Programming

Internal representation. Bitwise operators

Marius Minea
marius@cs.upt.ro

21 October 2014

mailto:marius@cs.upt.ro

Ideal math and C are not the same!

In mathematics:
integers Z and reals R have unbounded values (are infinite)
reals are dense (have infinite precision)

In C:
numbers take up finite memory space (a few bytes)
⇒ have finite range; reals have finite precision

To correctly work with numbers, we must understand:
their representation and storage in memory
their size and precision limitations
what overflow and rounding errors may appear

Memory representation of objects

Any value (parameter, variable, also constant) needs to be
represented in memory and takes up some program space
bit = unit of data storage that may hold two values (0 or 1)

need not be individually addressable (usually is not)
byte = addressable unit of data storage that may hold a character

in C: CHAR_BIT ≥ 8 bits (limits.h)
8 bits in all usual architectures

sizeof operator: size of a type or value in bytes
sizeof(type) or sizeof expression

sizeof(char) is 1: a character takes up one byte
also unicode and wide character support: uchar.h, wctype.h

an integer has sizeof(int) bytes ⇒ CHAR_BIT*sizeof(int) bits

sizeof is an operator, NOT function; evaluated at compile-time

Binary representation of numbers
In memory, numbers are represented in binary (base 2)

unsigned integers, with N bits
cN−1cN−2 . . . c1c0 (2) = cN−1 · 2N−1 + . . . + c1 · 21 + c0 · 20

cN−1 = most significant (higher-order) bit
c0 = least significant (lower-order) bit
Range of values: from 0 to 2N − 1 e.g. 11111111 is 255

c0 = 0 ⇒ even number; c0 = 1 ⇒ odd number

signed integers: allowed representations: i) sign-magnitude
ii) two’s complement: sign bit is −2N−1 used in practice
iii) one’s complement: sign bit is −(2N−1 − 1)

⇒ Range for two’s complement is from −2N−1 to 2N−1 − 1
0ck−2 . . . c1c0 (2) = ck−2 · 2k−2 + . . . + c1 · 21 + c0 · 20 (≥ 0)
1ck−2 . . . c1c0 (2) = −2k−1 + ck−2 · 2k−2 + . . . + c0 · 20 (< 0)

Examples (8 bits):
11111111 is -1 11111110 is -2 10000000 is -128

Integer types
Before the type int one can write specifiers for:

size: short, long, since C99 also long long
sign: signed (implicit, if not present), unsigned

Can be combined; may omit int: e.g. unsigned short

char: signed char [-128, 127] or unsigned char [0, 255]
int, short: ≥ 2 bytes, at least [−215 (-32768), 215 − 1]
long: ≥ 4 bytes, at least [−231 (-2147483648) , 231 − 1]
long long: ≥ 8 bytes, at least [−263, 263 − 1]

Corresponding signed and unsigned types have the same size:
sizeof(short)≤sizeof(int)≤sizeof(long)≤sizeof(long long)

limits.h defines names (macros) for limits, e.g.
INT_MIN, INT_MAX, UINT_MAX, likewise for CHAR, SHRT, LONG

since C99: stdint.h: fixed-width integers in two’s complement
int8_t, int16_t, int32_t, int64_t,
uint8_t, uint16_t, uint32_t, uint64_t

Use sizeof to write portable programs!
Sizes of types are implementation dependent

(processor, OS, compiler ...)
⇒ use sizeof to find storage taken up by a type/variable

DON’T write programs assuming a given type has 2, 4, 8, ... bytes
program will run incorrectly on other systems

#include <limits.h>
#include <stdio.h>

int main(void)
{ // below, z is printf format modifier for sizeof

printf("Integers have %zu bytes\n", sizeof(int));
printf("Smallest (negative) int: %d\n", INT_MIN);
printf("Largers (positive) unsigned: %u\n", UINT_MAX);
return 0;

}

Integer constants
base 10: as usual, e.g., -5
base 8: prefixed by 0 (zero): 0177 (127 decimal)
base 16: prefixed by 0x or 0X: e.g., 0x1aE (430 decimal)

Can’t write in any other base. Can’t write binary 1101110.
suffixes: u or U for unsigned, e.g., 65535u
l or L for long e.g., 0177777L, ll or LL for long long
Character constants
printable characters between single quotes: ’0’, ’!’, ’a’

special characters: ’\0’ nul ’\a’ alarm
’\b’ backspace ’\t’ tab ’\n’ newline
’\v’ vert. tab ’\f’ form feed ’\r’ carriage return
’\"’ double quote ’\’’ quote ’\\’ backspace

characters written in octal (max. 3 digits), e.g., ’\14’
characters written in hexadecimal (prefix x), e.g., ’\xff’

The char type is an integer type (of smaller size)
Char constants are automatically converted to int in expressions.

(this is why you don’t see functions with char parameters)

What use are bitwise operators ?
To access the internal representation of data (e.g., numbers)
and represent/encode/process some types of data efficiently

A set (of integers): can use a bit for each possible element
(1 = is member; 0 = is not member of set)
⇒ sets of small integers: using an int (uint32_t, uint64_t)

(fixed-width integer types defined in stdint.h)

Set operations:
intersection = bitwise AND
union = bitwise OR
adding an element: setting the corresponding bit

The current date can be represented using bits:
day: 1-31 (5 bits); month: 1-12 (4 bits)
year: 7 bits suffice for 1900 to 2027
⇒ need operations to extract day/month/year from a 16-bit value
(e.g. uint16_t)

Bitwise operators

Can only be used for integer operands!
& bitwise AND (1 only if both bits are 1)
| bitwise OR (1 if at least one of the bits is 1)
ˆ bitwise XOR (1 if exactly one of the bits is 1)
˜ bitwise complement (opposite value: 0 ↔ 1)
<< left shift with number of bits in second operand

vacated bits are filled with zeros; leftmost bits are lost
>> right shift with number of bits in second operand

vacated bits filled with zero if number is unsigned or nonnegative
else implementation-dependent (usually repeats sign bit)
⇒ for portable code, only right-shift unsigned

All operators work with all bits independently
They don’t change operands, just give a result (like +, *, etc.)

Examples

01101010
& 10101101

00101000

01101010
| 10101001

11101011

01101010
ˆ 10101101

11000111

˜ 01101010
10010101

11101010u >> 2
00111010u

11101010 << 2
10101000

only right-shift unsigned

Checking individual bits
Use a mask (integer value) with only one bit 1 in desired position
1) shift mask, keep number in place
void printbits1(unsigned n) { // ˜(˜0u>>1) = 1000...0000

for (unsigned m = ˜(˜0u>>1); m; m >>= 1)
putchar(n & m ? ’1’ : ’0’);

}

2) constant mask, shift number
void printbits2(unsigned n) {

for (int m = 1; m; m <<= 1, n <<= 1) // m counts bit width
putchar(n & ˜(˜0u>>1) ? ’1’ : ’0’);

}

3) same, but directly check sign bit
void printbits3(unsigned n) {

for (int m = 1; m; m <<= 1, n <<= 1)
putchar((int)n < 0 ? ’1’ : ’0’);

}

Properties of bitwise operators
n << k has value n · 2k (if no overflow)
n >> k has value n/2k (integer division) for unsigned/nonnegative
1 << k has 1 only in bit k ⇒ is 2k for k < 8*sizeof(int)

⇒ use this, not pow (which is floating-point!)
˜(1 << k) has 0 only in bit k, rest are 1
0 has all bits 0, ˜0 has all bits 1 (= -1, since it’s a signed int)
˜ preserves signedness, so ˜0u is unsigned (UINT_MAX)
& with 1 preserves a bit, & with 0 is always 0

n & (1 << k) tests (is nonzero) bit k in n
n & ˜(1 << k) resets (makes 0) bit k in the result

| with 0 preserves a bit, | with 1 is always 1
n | (1 << k) sets (to 1) bit k in the result

ˆ with 0 preserves value, ˆ with 1 flips value
n ˆ (1 << k) flips bit k in result

Again, none of these have side effects, they just produce results.

Creating and working with bit patterns (masks)

& with 1 preserves & with 0 resets
| with 0 preserves | with 1 sets

Value given by bits 0-3 of n: AND with 0 . . . 01111(2) n & 0xF
Reset bits 2, 3, 4: AND with ˜0 . . . 011100(2) n &= ˜0x1C
Set bits 1-4: OR with 11110(2) n |= 0x1E n |= 036
Flip bits 0-2 of n: XOR with 0 . . . 0111(2) n ˆ= 7
⇒ choose fitting operator and mask (easier written in hex/octal)

Integer with all bits 1: ˜0 (signed) or ˜0u (unsigned)
k rightmost bits 0, rest 1: ˜0 << k
k rightmost bits 1, rest 0: ˜(˜0 << k)
˜(˜0 << k) << p has k bits of 1, starting at bit p, rest 0
(n >> p) & ˜(˜0 << k): n shifted p bits, reset all except last k
n & (˜(˜0 << k) << p): reset all except k bits starting at bit p

More about identifiers: linkage and static
We have discussed scope (visibility) and lifetime (storage duration)
Linkage: how do same names in different scopes/files link ?

Identifiers declared with static keyword have internal linkage
(are not linked to objects with same name in other files)

Storage duration if declared static is lifetime of program.
static in function: local scope but preserves value between calls!

initialization done only once, at start of lifetime
#include <stdio.h>
int counter(void) {

static int cnt = 0;
return cnt++;

}
int main(void) {

printf("counter is %d\n", counter()); // 0
printf("counter is %d\n", counter()); // 1
return 0;

}

Representing real numbers

Similar to scientific representation known from school in base 10:
6.022 · 1023, 1.6 · 10−19: leading digit, decimals, exponent of 10

In computer: base 2; sign, exponent and mantissa (significand)
(−1)sign ∗ 2exp ∗ 1.mantissa(2)

Bit pattern: S EEEEEEEE MMMMMMMMMMMMMMMMMMMMMMM
IEEE 754 floating point format (used by most implementations):
float: 4 bytes: 1+8+23 bits; double: 8 bytes: 1+11+52 bits
exponent represented in excess of a bias/offset (127 for float):
for 0 < E < 255 we have (−1)S ∗ 2E−127 ∗ 1.M(2)
for E = 0, small (denormalized) numbers: (−1)S ∗ 2−127 ∗ 0.M(2)
also: representations for ±0, ±∞, errors (NaN)

C standard also specifies rounding directions, exceptions/traps, etc.

Floating point precision

Precision of real numbers is relative to their absolute value
(floating point rather than fixed point)

e.g. smallest float > 1 is 1 + 2−23 (last bit of mantissa is 1)
For larger numbers, absolute imprecision grows
e.g., 224 + 1 = 224 ∗ (1 + 2−24), last bit does not fit in mantissa
⇒ will be rounded: not all integers can be represented as float

FLT_EPSILON 1.19209290e-07F // min. with 1+eps > 1
DBL_EPSILON 2.2204460492503131e-16 // min. with 1+eps > 1

Real types
C imposes sign · (1 + mantissa) · 2exp format and some size /
precision limits (need not be IEEE 754)
⇒ value range is symmetric w.r.t. zero

Sample limits from float.h:
float: 4 bytes, ca. 10−38 to 1038, 6 significant digits
FLT_MIN 1.17549435e-38F FLT_MAX 3.40282347e+38F
double: 8 bytes, ca. 10−308 to 10308, 15 significant digits
DBL_MIN 2.2250738585072014e-308 DBL_MAX 1.7976931348623157e+308
long double: for higher precision (12 bytes)

Floating-point constants: with decimal point, optional sign and
exponent (prefix e or E); integer or fractional part may be missing:

2. .5 1.e-6, .5E+6
Implicit type: double; sufix f, F: float; l, L: long double

Use double for sufficient precision in computations!
math.h functions: double; variants with suffix: sin, sinf, sinl

Watch out for overflows and imprecision!

int (even long) may have small range (32 bits: ± 2 billion)
Not enough for computations with large integers (factorial, etc.)
Use double (bigger range) or arbitrary precision libraries (bignum)

Floating point has limited precision: beyond 1E16, double does
not distinguish two consecutive integers!

A decimal value may not be precisely represented in base 2:
may be periodic fraction: 1.2(10) = 1.(0011)(2)
printf("%f", 32.1f); writes 32.099998

Due to precision loss in computation, result may be inexact
⇒ replace x==y test with fabs(x - y) < small epsilon

(depending on the problem)

Differences smaller than precision limit cannot be represented:
⇒ for x < DBL_EPSILON (ca. 10−16) we have 1 + x == 1

Usual arithmetic conversions (implicit)

In general, the rules go from larger to smaller types:
1. if an operand is long double, convert the other to long double
2. if any operand is double, the other is converted to double
3. if any operand is float, the other is converted to float
4. perform integer promotions: convert short, char, bool to int
5. if both operands have signed type or both have unsigned type

convert smaller type to larger type
6. if unsigned type is larger, convert signed operand to it
7. if signed type can fit all values of unsigned type, convert to it
8. otherwise, convert to unsigned type corresponding to operand
with signed type
(negative) int becomes unsigned in operation with unsigned

unsigned u = 5;
if (-3 > u) puts("what?!"); // -3u == UINT_MAX - 2

Explicit and implicit conversions

Implicit conversions (summary of previous rules)
integer to floating point, smaller type to larger type
integer promotions: short, char, bool to int
when equal size, convert to unsigned

Conversions in assignment: truncated if lvalue not large enough
char c; int i; c = i; // loses higher-order bits of i
!!! Right-hand side evaluated independently of left-hand side!!!
unsigned eur_rol = 43000, usd_rol = 31000 // currency
double eur_usd = eur_rol / usd_rol; // result is 1 !!!
(integer division happens before assignment to double)
Floating point is truncated towards zero when assigned to int
(fractional part disappears)

Explicit conversion (type cast): (typename)expression
converts expression as if assigned to a value of the given type
eur_usd = (double)eur_rol / usd_rol // int to double

Watch out for sign and overflows!
WARNING char may be signed or unsigned (implementation
dependent, check CHAR_MIN, is either 0 or SCHAR_MIN)
⇒ different values in conversion to int if bit 7 is 1
getchar/putchar work with unsigned char converted to int

WARNING: most any arithmetic operation can cause overflow
printf("%d\n", 1222000333 + 1222000333); // -1850966630
(if 32-bit, result has higher-order bit 1, and is considered negative)
printf("%u\n", 2154000111u + 2154000111u); // truncated: 4032926
CAREFUL when comparing / converting signed and unsigned
if (-5 > 4333222111u) printf("-5 > 4333222111 !!!\n");
because -5 converted to unsigned has higher value

Correct comparison between int i and unsigned u:
if (i < 0 || i < u) or if (i >= 0 && i >= u)
(compares i and u only if i is nonnegative)
Check for overflow on integer sum int z = x + y:
if (x > 0 && y > 0 && z < 0 || x < 0 && y < 0 && z >= 0)

ERRORS with bitwise operators

DON’T right-shift a negative int!
int n = ...; for (; n; n >>= 1) ...
May loop forever if n negative; the topmost bit inserted is usually
the sign bit (implementation-defined). Use unsigned (inserts a 0).

DON’T shift with more than bit width (behavior undefined)

