# Computer Programming <br> Internal representation. Bitwise operators 

Marius Minea<br>marius@cs.upt.ro

21 October 2014

## Ideal math and $C$ are not the same!

In mathematics:
integers $\mathbb{Z}$ and reals $\mathbb{R}$ have unbounded values (are infinite) reals are dense (have infinite precision)

In C:
numbers take up finite memory space (a few bytes)
$\Rightarrow$ have finite range; reals have finite precision
To correctly work with numbers, we must understand: their representation and storage in memory their size and precision limitations what overflow and rounding errors may appear

## Memory representation of objects

Any value (parameter, variable, also constant) needs to be represented in memory and takes up some program space bit $=$ unit of data storage that may hold two values (0 or 1 ) need not be individually addressable (usually is not)
byte $=$ addressable unit of data storage that may hold a character
in C: CHAR_BIT $\geq 8$ bits (limits.h)
8 bits in all usual architectures
sizeof operator: size of a type or value in bytes sizeof(type) or sizeof expression
sizeof (char) is 1: a character takes up one byte also unicode and wide character support: uchar.h, wctype.h an integer has sizeof (int) bytes $\Rightarrow$ CHAR_BIT*sizeof(int) bits sizeof is an operator, NOT function; evaluated at compile-time

## Binary representation of numbers

In memory, numbers are represented in binary (base 2)
unsigned integers, with N bits
$c_{N-1} c_{N-2} \ldots c_{1} c_{0}{ }_{(2)}=c_{N-1} \cdot 2^{N-1}+\ldots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}$
$c_{N-1}=$ most significant (higher-order) bit
$c_{0}=$ least significant (lower-order) bit
Range of values: from 0 to $2^{N}-1 \quad$ e.g. 11111111 is 255 $c_{0}=0 \Rightarrow$ even number; $c_{0}=1 \Rightarrow$ odd number
signed integers: allowed representations: i) sign-magnitude
ii) two's complement: sign bit is $-2^{N-1}$
used in practice
iii) one's complement: sign bit is $-\left(2^{N-1}-1\right)$
$\Rightarrow$ Range for two's complement is from $-2^{N-1}$ to $2^{N-1}-1$
$0 c_{k-2} \ldots c_{1} c_{0}{ }_{(2)}=c_{k-2} \cdot 2^{k-2}+\ldots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0} \quad(\geq 0)$
$1 c_{k-2} \ldots c_{1} c_{0}(2)=-2^{k-1}+c_{k-2} \cdot 2^{k-2}+\ldots+c_{0} \cdot 2^{0} \quad(<0)$
Examples (8 bits):
11111111 is $-1 \quad 11111110$ is $-2 \quad 10000000$ is -128

## Integer types

Before the type int one can write specifiers for:
size: short, long, since C99 also long long
sign: signed (implicit, if not present), unsigned
Can be combined; may omit int: e.g. unsigned short
char: signed char $[-128,127]$ or unsigned char $[0,255]$
int, short: $\geq 2$ bytes, at least $\left[-2^{15}(-32768), 2^{15}-1\right]$
long: $\geq 4$ bytes, at least $\left[-2^{31}(-2147483648), 2^{31}-1\right]$
long long: $\geq 8$ bytes, at least $\left[-2^{63}, 2^{63}-1\right.$ ]
Corresponding signed and unsigned types have the same size: sizeof (short) $\leq$ sizeof (int) $\leq$ sizeof (long) $\leq$ sizeof (long long)
limits.h defines names (macros) for limits, e.g.
INT_MIN, INT_MAX, UINT_MAX, likewise for CHAR, SHRT, LONG
since C99: stdint.h: fixed-width integers in two's complement int8_t, int16_t, int32_t, int64_t,
uint8_t, uint16_t, uint32_t, uint64_t

## Use sizeof to write portable programs!

Sizes of types are implementation dependent
(processor, OS, compiler ...)
$\Rightarrow$ use sizeof to find storage taken up by a type/variable
DON'T write programs assuming a given type has $2,4,8, \ldots$ bytes program will run incorrectly on other systems

```
#include <limits.h>
#include <stdio.h>
```

int main(void)
\{ // below, z is printf format modifier for sizeof
printf("Integers have \%zu bytes $\backslash n "$, sizeof(int));
printf("Smallest (negative) int: \%d\n", INT_MIN);
printf("Largers (positive) unsigned: \%u\n", UINT_MAX);
return 0;
\}

## Integer constants

base 10: as usual, e.g., -5
base 8: prefixed by 0 (zero): 0177 ( 127 decimal)
base 16: prefixed by 0 x or 0 X : e.g., 0 x 1 aE ( 430 decimal)
Can't write in any other base. Can't write binary 1101110.
suffixes: u or U for unsigned, e.g., 65535u
1 or L for long e.g., 0177777L, $\quad l l$ or LL for long long
Character constants
printable characters between single quotes: ' 0 ', '!', 'a'

| special characters: | ${ }^{\prime} \backslash 0$ ' | nul | ' \a' | alarm |
| :---: | :---: | :---: | :---: | :---: |
| ' $\ \mathrm{~b}$ ' backspace | '\t' | tab | ' $\backslash \mathrm{n}$ ' | newline |
| ' $\$ V' vert. tab & ' $\backslash \mathrm{f}$ ' | form feed | ' $\backslash \mathrm{r}$, | carriage return |  |
| '\"' double quote | '\', | quote | '\1' | backspace |

characters written in octal (max. 3 digits), e.g., '\14'
characters written in hexadecimal (prefix x), e.g., ' $\backslash x f f$ '
The char type is an integer type (of smaller size)
Char constants are automatically converted to int in expressions.
(this is why you don't see functions with char parameters)

## What use are bitwise operators?

To access the internal representation of data (e.g., numbers) and represent/encode/process some types of data efficiently

A set (of integers): can use a bit for each possible element ( $1=$ is member; $0=$ is not member of set)
$\Rightarrow$ sets of small integers: using an int (uint32_t, uint64_t)
(fixed-width integer types defined in stdint.h)
Set operations:
intersection $=$ bitwise AND
union = bitwise OR
adding an element: setting the corresponding bit
The current date can be represented using bits:
day: 1-31 ( 5 bits); month: 1-12 (4 bits)
year: 7 bits suffice for 1900 to 2027
$\Rightarrow$ need operations to extract day/month/year from a 16 -bit value (e.g. uint16_t)

## Bitwise operators

Can only be used for integer operands!
\& bitwise AND
| bitwise OR

- bitwise XOR
~ bitwise complement (opposite value: $0 \leftrightarrow 1$ )
<< left shift with number of bits in second operand vacated bits are filled with zeros; leftmost bits are lost
>> right shift with number of bits in second operand vacated bits filled with zero if number is unsigned or nonnegative else implementation-dependent (usually repeats sign bit) $\Rightarrow$ for portable code, only right-shift unsigned

All operators work with all bits independently
They don't change operands, just give a result (like + , *, etc.)

## Examples



## Checking individual bits

Use a mask (integer value) with only one bit 1 in desired position 1) shift mask, keep number in place

```
void printbits1(unsigned n) { // ~(~0u>>1) = 1000...0000
    for (unsigned m = ~(~Ou>>1); m; m >>= 1)
        putchar(n & m ? '1' : '0');
}
2) constant mask, shift number
```

```
void printbits2(unsigned n) {
    for (int m = 1; m; m <<= 1, n <<= 1) // m counts bit width
        putchar(n & ~(~0u>>1) ? '1' : '0');
}
```

3) same, but directly check sign bit
```
void printbits3(unsigned n) {
    for (int m = 1; m; m <<= 1, n <<= 1)
        putchar((int)n < 0 ? '1' : '0');
}
```


## Properties of bitwise operators

$\mathrm{n} \ll \mathrm{k}$ has value $n \cdot 2^{k}$ (if no overflow)
$\mathrm{n} \gg \mathrm{k}$ has value $n / 2^{k}$ (integer division) for unsigned/nonnegative
$1 \ll \mathrm{k}$ has 1 only in bit $\mathrm{k} \quad \Rightarrow$ is $2^{k}$ for $\mathrm{k}<8 *$ sizeof (int)
$\Rightarrow$ use this, not pow (which is floating-point!)
~ ( $1 \ll k$ ) has 0 only in bit $k$, rest are 1
0 has all bits $0, \sim 0$ has all bits 1 ( $=-1$, since it's a signed int)
~ preserves signedness, so ${ }^{\sim} 0 u$ is unsigned (UINT_MAX)
\& with 1 preserves a bit, \& with 0 is always 0 n \& ( $1 \ll \mathrm{k}$ ) tests (is nonzero) bit k in n
$\mathrm{n} \&{ }^{\sim}(1 \ll \mathrm{k})$ resets (makes 0$)$ bit k in the result
| with 0 preserves a bit, | with 1 is always 1
$\mathrm{n} \mid(1 \ll \mathrm{k})$ sets (to 1 ) bit k in the result
^ with 0 preserves value, ^ with 1 flips value
n - ( $1 \ll \mathrm{k}$ ) flips bit k in result
Again, none of these have side effects, they just produce results.

## Creating and working with bit patterns (masks)

\& with 1 preserves \& with 0 resets
| with 0 preserves | with 1 sets
Value given by bits $0-3$ of $n$ : AND with $0 \ldots 01111_{(2)} \quad n$ \& $0 x F$
Reset bits 2, 3, 4: AND with ${ }^{\sim} 0 \ldots 011100_{(2)} \quad n \&=\sim 0 x 1 C$
Set bits 1-4: OR with $11110_{(2)}$ n $\quad \mid=0 \times 1 E \quad$ n $\quad \mid=036$
Flip bits $0-2$ of $n: \quad X O R$ with $0 \ldots 0111_{(2)} \quad n \wedge=7$
$\Rightarrow$ choose fitting operator and mask (easier written in hex/octal)
Integer with all bits 1: $\quad \sim 0$ (signed) or ${ }^{\sim} 0 u$ (unsigned)
k rightmost bits 0 , rest 1 : $\sim 0 \ll k$
k rightmost bits 1, rest 0: $\sim(\sim 0 \ll k)$
$\sim(\sim 0 \ll k) \ll p$ has $k$ bits of 1 , starting at bit $p$, rest 0
( $\mathrm{n} \gg \mathrm{p}$ ) \& $\sim(\sim 0 \ll k): n$ shifted $p$ bits, reset all except last $k$
$\mathrm{n} \&(\sim(\sim 0 \ll k) \ll p)$ reset all except $k$ bits starting at bit $p$

## More about identifiers: linkage and static

We have discussed scope (visibility) and lifetime (storage duration) Linkage: how do same names in different scopes/files link?

Identifiers declared with static keyword have internal linkage (are not linked to objects with same name in other files) Storage duration if declared static is lifetime of program.
static in function: local scope but preserves value between calls! initialization done only once, at start of lifetime

```
#include <stdio.h>
int counter(void) {
    static int cnt = 0;
    return cnt++;
}
int main(void) {
    printf("counter is %d\n", counter()); // 0
    printf("counter is %d\n", counter()); // 1
    return 0;
}
```


## Representing real numbers

Similar to scientific representation known from school in base 10: $6.022 \cdot 10^{23}, 1.6 \cdot 10^{-19}$ : leading digit, decimals, exponent of 10 In computer: base 2; sign, exponent and mantissa (significand)

$$
(-1)^{\text {sign }} * 2^{\exp } * 1 . \text { mantissa }_{(2)}
$$

Bit pattern: S EEEEEEE MMMMMMMMMMMMMMMMMMMMMMM IEEE 754 floating point format (used by most implementations): float: 4 bytes: $1+8+23$ bits; double: 8 bytes: $1+11+52$ bits exponent represented in excess of a bias/offset (127 for float): for $0<\mathrm{E}<255$ we have $(-1)^{S} * 2^{E-127} * 1 . M_{(2)}$ for $\mathrm{E}=0$, small (denormalized) numbers: $(-1)^{S} * 2^{-127} * 0 . M_{(2)}$ also: representations for $\pm 0, \pm \infty$, errors ( NaN )

C standard also specifies rounding directions, exceptions/traps, etc.

## Floating point precision

Precision of real numbers is relative to their absolute value (floating point rather than fixed point)
e.g. smallest float $>1$ is $1+2^{-23}$ (last bit of mantissa is 1 )

For larger numbers, absolute imprecision grows
e.g., $2^{24}+1=2^{24} *\left(1+2^{-24}\right)$, last bit does not fit in mantissa $\Rightarrow$ will be rounded: not all integers can be represented as float

```
FLT_EPSILON 1.19209290e-07F // min. with 1+eps > 1
DBL_EPSILON 2.2204460492503131e-16 // min. with 1+eps > 1
```


## Real types

C imposes sign • ( $1+$ mantissa $) \cdot 2^{\text {exp }}$ format and some size / precision limits (need not be IEEE 754)
$\Rightarrow$ value range is symmetric w.r.t. zero
Sample limits from float.h:
float: 4 bytes, ca. $10^{-38}$ to $10^{38}, 6$ significant digits
FLT_MIN $1.17549435 e-38 F \quad$ FLT_MAX $3.40282347 e+38 F$
double: 8 bytes, ca. $10^{-308}$ to $10^{308}, 15$ significant digits
DBL_MIN $2.2250738585072014 \mathrm{e}-308$ DBL_MAX $1.7976931348623157 \mathrm{e}+308$
long double: for higher precision ( 12 bytes)
Floating-point constants: with decimal point, optional sign and exponent (prefix e or E); integer or fractional part may be missing:
2. . 5 1.e-6, . $5 \mathrm{E}+6$

Implicit type: double; sufix f, F: float; l, L: long double
Use double for sufficient precision in computations!
math.h functions: double; variants with suffix: sin, sinf, sinl

## Watch out for overflows and imprecision!

int (even long) may have small range ( 32 bits: $\pm 2$ billion) Not enough for computations with large integers (factorial, etc.) Use double (bigger range) or arbitrary precision libraries (bignum)

Floating point has limited precision: beyond 1E16, double does not distinguish two consecutive integers!

A decimal value may not be precisely represented in base 2 : may be periodic fraction: $\quad 1.2_{(10)}=1 .(0011)_{(2)}$ printf("\%f", 32.1f); writes 32.099998

Due to precision loss in computation, result may be inexact $\Rightarrow$ replace $\mathrm{x}==\mathrm{y}$ test with fabs ( $\mathrm{x}-\mathrm{y}$ ) < small epsilon (depending on the problem)

Differences smaller than precision limit cannot be represented:
$\Rightarrow$ for $\mathrm{x}<$ DBL_EPSILON (ca. $10^{-16}$ ) we have $1+\mathrm{x}==1$

## Usual arithmetic conversions (implicit)

In general, the rules go from larger to smaller types:

1. if an operand is long double, convert the other to long double
2. if any operand is double, the other is converted to double
3. if any operand is float, the other is converted to float
4. perform integer promotions: convert short, char, bool to int
5. if both operands have signed type or both have unsigned type convert smaller type to larger type
6. if unsigned type is larger, convert signed operand to it
7. if signed type can fit all values of unsigned type, convert to it
8. otherwise, convert to unsigned type corresponding to operand with signed type
(negative) int becomes unsigned in operation with unsigned
unsigned u = 5;
if (-3 > u) puts("what?!"); // -3u == UINT_MAX - 2

## Explicit and implicit conversions

Implicit conversions (summary of previous rules)
integer to floating point, smaller type to larger type
integer promotions: short, char, bool to int
when equal size, convert to unsigned
Conversions in assignment: truncated if lvalue not large enough char c; int i; c = i; // loses higher-order bits of i
!!! Right-hand side evaluated independently of left-hand side!!! unsigned eur_rol $=43000$, usd_rol $=31000 / /$ currency double eur_usd = eur_rol / usd_rol; // result is 1 !!! (integer division happens before assignment to double)
Floating point is truncated towards zero when assigned to int (fractional part disappears)

Explicit conversion (type cast): ( typename ) expression converts expression as if assigned to a value of the given type eur_usd = (double)eur_rol / usd_rol // int to double

## Watch out for sign and overflows!

WARNING char may be signed or unsigned (implementation dependent, check CHAR_MIN, is either 0 or SCHAR_MIN)
$\Rightarrow$ different values in conversion to int if bit 7 is 1 getchar/putchar work with unsigned char converted to int WARNING: most any arithmetic operation can cause overflow printf("\%d\n", $1222000333+1222000333)$; // -1850966630 (if 32 -bit, result has higher-order bit 1 , and is considered negative) printf("\%u\n", 2154000111u + 2154000111u); // truncated: 4032926 CAREFUL when comparing / converting signed and unsigned if ( -5 > 4333222111u) printf("-5 > 4333222111 !!! $n "$ ); because -5 converted to unsigned has higher value
Correct comparison between int $i$ and unsigned $u$ :

$$
\text { if (i<0 \| i < u) or if (i >= } 0 \text { \&\& i >= u) }
$$

(compares $i$ and $u$ only if $i$ is nonnegative)
Check for overflow on integer sum int $z=x+y$ :
if ( $x>0 \& \& y>0 \& \& z<0| | x<0 \& \& y<0 \& \& z>=0$ )

## ERRORS with bitwise operators

DON'T right-shift a negative int!
int $\mathrm{n}=\ldots$ for ( $; \mathrm{n} ; \mathrm{n} \gg=1$ ) ...
May loop forever if $n$ negative; the topmost bit inserted is usually the sign bit (implementation-defined). Use unsigned (inserts a 0 ).

DON'T shift with more than bit width (behavior undefined)

