
Computer Programming

Pointers

Marius Minea
marius@cs.upt.ro

11 November 2014

mailto:marius@cs.upt.ro

Pointers are addresses
Any lvalue (variable x, array element, structure field) of type T
has an address &x of type T * where its value is stored.

An array name is its address
A string is represented by its address, it is a char *

An address is a numeric value, but is not an int or unsigned .
It may be printed with format specifier "%p" in printf

Valid addresses are non-null. NULL indicates an invalid address
NULL is (void *)0 0 cast to type void *

We need to know how to
1. declare a variabile of pointer (address) type
2. obtain a pointer (address) value
3. use a pointer (address) value
To use pointers correctly, need to (like for all variables/values):
1. be aware of their type
2. initialize them correctly
3. use the right operators / functions

Declaring, initializing and assigning pointers
Declaring pointers: type *ptrvar;

⇒ the variable ptrvar may contain the address of a value of type

Examples: char *s; int *p;

When declaring several pointers, need * for each of them:
int *p, *q; two integer pointers
int *p, q; one pointer p and one integer q

Obtaining pointers
An array name is a pointer: int tab[10], *a = tab;
same as: int tab[10]; int *a; a = tab;

Declaring T tab[10]; array name tab has type T *

The address operator & yields a pointer: int n, *p = &n;
or: int n; int *p; p = &n;

A string constant has type pointer: char *s = "test";
same as: char *s; s = "test";

Dereferencing a pointer
The dereferencing (indirection) operator * prefix operator

operand: pointer; result: object (variable) indicated by pointer

*p is an lvalue (can be assigned, like a variable)
can also be used in an expression, like any value of that type

Declaration syntax suggests types!
T *p; says T * is type of p T is type of *p

The operator * is the inverse of &

*&x is the object at address &x, that is, x

&*p is the address of the value at address p, that is, p

int x, y, *p = &x; y = *p; /* y = x */ *p = y; //x = y

& and * have opposite effect on types
x has type T ⇒ &x has type T *

p has type T * ⇒ *p has type T

We can have pointers at any level

Any variable has an address ⇒ a pointer variable too
Any expression has a type ⇒ the address of a pointer too
The address of a variable of type T has type T *

Declaring int *p; can take &p, its type is int **
⇒ can declare int **p2 and initialize/assign it with &p

declaration T * p; may be read:
T * p; p has type T *

T *p; *p has type T
char **s; address of char addr
char *t[8]; array of 8 char addr

Variable Value Address
int x = 5; 5 0x408

...
int *p=&x; 0x408 0x51C

...
int **p2=&p; 0x51C 0x9D0

Initialization and assignment are different!

WARNING: A declaration with initializer is NOT an assignment !

The * in declarations is NOT an indirection operator!
* is written next to the declared variable, but belongs to the type!

When declaring int *p; this suggests that *p is an int
but the variable declared is p, NOT *p (not an identifier)
even though the * is repeated for each var: int *p, *q;

The variable initialized is p, NOT *p (which is NOT a variable)
⇒ must initialize it with a value of the right type
int t[2] = { 3, 5 }; initializes t. WRONG: t[2] = { 3, 5 };

int x, *p = &x; is like int x; int *p; p = &x;
(p is initialized/assigned, NOT *p). *p = &x is a type error!
char *p = "sir"; is char *p; p = "sir"; WRONG: *p = ”sir”;

Pointers hold only addresses, not data!
Programs process data (ints, reals, chars). Need to store this data.

must declare variables or arrays of these types
just pointers are not enough (except with dynamic allocation)

Understand what your program means!

Declaring int x; means
I want to have an integer. I have no value for it yet.

⇒ Better: int min = a[0];

Declaring char *p; means
I want to work with a character (or character array)
I DON’T HAVE characters, NOR WHERE TO STORE THEM
The pointer is uninitialized, I don’t know where it points to.

Need:
char *p = buf; p points to array char buf[10]; declared before
char *p = "ana are mere"; p points to a string constant
char *p = strchr(buf, ’<’); returned by function, could be NULL

ERROR: no initialization

It’s an ERROR to use any uninitialized variable
int sum; for (i=0; i++ < 10;) sum += a[i]; // initially??
⇒ program behavior is undefined (best case: random initial value)

Pointers must be initialized before use, like any variables
with the address of a variable (or another initialized pointer)
with a dynamically allocated address (later)

ERROR: int *p; *p = 0; ERROR: char *p; scanf("%20s", p);
p is uninitialized (best case NULL, if global variable)

⇒ value will be written to unknown memory address
⇒ memory corruption, security vulnerability; program crash is
luckiest case!

WARNING: a pointer is not an int. WRONG: int *p = 640; !
Address space is determined by system, not user
⇒ CANNOT choose an arbitrary address we want

Using pointer parameters: assignment in functions
A function CANNOT change a variable passed as parameter

because the value is passed, not the variable itself
void nochange(int x) { ++x; printf("%d\n", x); }
void try(void) {

int a = 5; nochange(a); // will print 6
printf("%d\n", a); // still prints 5 !

}

But, with a variable’s address p, we may use its value: ...= *p;
assign it: *p =...;

Having a variable’s address, a function may write to it (e.g. scanf).
void swap (int *pa, int *pb) { // swaps values at 2 addresses

int tmp; // keeps first changed value
tmp = *pa; *pa = *pb; *pb = tmp; // integer assignments

}
...
int x = 3, y = 5; swap(&x, &y); // now x = 5, y = 3}

Pointers as function parameters

We use addresses as function parameters:
to pass arrays (can’t pass array contents in C)
to return several values (return allows only one)
e.g. min and max of an array; result and error code

Arrays as function parameters
When passing an array to a function, the address is passed

The name of the array represents its address

in T tab[LEN]; the array name tab has type T *

restype f(eltype a[]) is same as restype f(eltype *a)

Conversions from strings
Variants of printf/scanf with strings as source/destination
int sprintf(char *s, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

sprintf has no limitation ⇒ may overflow buffer. Use instead:
int snprintf(char *str, size_t size, const char *format, ...);
writing is limited to size chars including \0 ⇒ safe option

Converting strings to numbers
int n; char s[] = " -102 56 42";
if (sscanf(s, "%d", &n) == 1) ... //number OK

(but we don’t know where processing of string stopped)
long int strtol(const char *nptr, char **endptr, int base);

assigns to *endptr the address of first unprocessed char
char *end; long n = strtol(s, &end, 10); base 10 or other
also strtoul for unsigned long, strtod for base 10 double
int n = atoi(s); returns 0 on error, but also for "0"

use only when string known to be good

Command line arguments
command line: program name with arguments (options, files, etc.)
gcc -Wall -o prog prog.c ls directory cp file1 file2

main can access command line if declared with 2 args (only these):
int argc number of words in command line (arguments + 1)
char *argv[] array of argument addresses (strings)
#include <stdio.h>
int main(int argc, char *argv[]) { // or char **argv (same)

printf("Program name: %s\n", argv[0]);
if (argc == 1) puts("Program called with no arguments");
else for (int i = 1; i < argc; i++)

printf("Argument %d: %s\n", i, argv[i]);
return 0;

}
argv[0] (first word) is program name, thus argc >= 1
array argv[] ends with a NULL element, argv[argc]

Run a command from program: int system(const char *cmdline)
returns -1 if can’t run, or exit code of program

