
Computer Programming

Pointer Arithmetic. Function Pointers. Dynamic Allocation

Marius Minea
marius@cs.upt.ro

18 November 2014

mailto:marius@cs.upt.ro

Arrays and pointers
The name of an array is a constant address

declaring an array allocates a memory block for its elements
the array’s name is the address of that block (of first element)

&a[0] is same as a and a[0] is same as *a

Can declare sometyp a[LEN], *pa; and assign pa = a;

Similar: a and pa have same type: sometyp*
But: pa is a variable ⇒ uses memory; can assign pa = addr

a is a constant (array has fixed address) can’t assign a = addr
aR a[0] a[1] a[2] a[3] a[4] a[5]

6 6 6

address
(hex) 5C0 5D0 5E0

. . .
paR

5C0 int a[6];
int *pa = a;

*a and *pa: indirections with different operations in machine code:
*a references object from constant address (direct addressing)
*pa must first get value of variable pa (an address), loading it from

the constant address &pa) then dereference it (indirect addressing)

Arrays and pointers (cont’d)
In function declarations, these are the same (first becomes second):
size_t strlen(char s[]); becomes size_t strlen(char *s);

As array declarations they are different!
Array: char s[] = "test"; s[0] is ’t’, s[4] is ’\0’ etc.
s is a constant address (char *), not a variable in memory
CANNOT assign s = ... but may assign s[0] = ’f’
sizeof(s) is 5 * sizeof(char) &s is s (but different type)
but with different type, address of 5-char array: char (*)[5]

sizeof (entire array) is not strlen (up to ’\0’)

Pointer: char *p = "test"; p[0] is ’t’, p[4] is ’\0’ (same)
p is a variable of address type (char *), has a memory location
CANNOT assign p[0] = ’f’ ("test" is a string constant)
can do p = s; then p[0] = ’f’; can assign p = "ana";
sizeof(p) is sizeof(char *) &p is NOT p
⇒ WRONG: scanf("%4s", &p); RIGHT: scanf("%4s", p);

(if p is valid address and has room)

Pointer arithmetic
A variable v of a sometype takes up sizeof(sometype) bytes
⇒ &v + 1 is the address after the space allocated to v

numerically larger than &v by sizeof(sometype) bytes
+ on a pointer increments by an object (not a byte)

+ on a street address: advances by one house, not one meter

1. Add/subtract pointer and integer: like address of array element
a + i means &a[i] and *(a + i) means a[i] 3[a] is a[3]
increment ++a, a++: a becomes a + 1 before/after evaluation
// returns pointer to end of s; stops at null character ’\0’
char *endptr(char *s) { while (*s) ++s; return s; }

2. Difference: only for pointers of same type (and in same array!)
= number of objects of type that fit between the two addresses
To get the number of bytes, convert pointers to char * (type cast):

p - q == ((char *)p - (char *)q) / sizeof(type)

No other arithmetic operations between pointers are defined!
May use comparison operators (==, !=, <, etc.)

Pointer arithmetic (cont.)

pointer + int = pointer (of same type)

Pointer arithmetic is only valid within allocated objects
exception: can take address just beyond (at end) of array
int a[LEN], *end = a + LEN;

In standard: a+LEN+1 is not a valid address (beyond legal memory)
In practice: runtime won’t protect from overflow; think carefully!

Arithmetic is not defined on void *. Cast to char * to add int

Pointer arithmetic and operator precedence
++ (and --) have higher precedence than * (indirection)
*p++ ++ applies to p: take value, (post)increment pointer
(*p)++ (post)increments the value at address p

*++p takes value after incrementing pointer
++*p increments value at pointer (expression has that value)

Pointers and indices
same meaning: “to indicate” = “to point to”
To write a[i], need two variables and one addition (base + offset)

and multiplication with size of type (if not 1)

Simpler: directly with pointer to element &a[i] (a+i)
increment pointer rather than index when traversing array

char *strchr_i(const char *s, int c) { // search char in s
for (int i = 0; s[i]; ++i) // traverse string up to ’\0’

if (s[i] == c) return s + i; // found: return address
return NULL; // not found

}

char *strchr_p(const char *s, int c) {
for (;*s; ++s) // use parameter for traversal

if (*s == c) return s; // s points to current char
return NULL; // not found

}

Pointers and indices (cont’d)

char *strcat_i(char *dest, const char *src)
{

int i = 0, j;
while (dest[i]) ++i;
for (j = 0; src[j]; ++j)

dest[i+j] = src[j];
dest[i+j] = ’\0’;
return dest;

}
char *strcat_p(char *dest, const char *src)
{

char *d = dest; // need to save dest for return
while (*d) ++d;
while (*d++ = *src++);
return dest;

}

Pointers and multidimensional arrays
A bidimensional array (matrix) is declared as type a[DIM1][DIM2];
a[i] is address (const type *) of an array (line) of DIM2 elements
a[i][j] is jth element in array a[i] of DIM2 elements
&a[i][j] or a[i]+j is DIM2*i+j elements after address a
⇒ a function with array parameter needs all dimensions except first
⇒ must declare as funtype f(eltype t[][DIM2]);

char t[12][4]={"jan",...,"dec"}; char *p[12]={"jan",...,"dec";}
t is matrix (2-D char array) p is array of pointers

j a n \0
f e b \0

...
d e c \0

0x460 −→ j a n \0
0x5C4 −→ f e b \0

...
0x9FC −→ d e c \0

t uses 12 * 4 bytes p uses 12*sizeof(char *) bytes
(+ 12*4 bytes for the string constants)

t[6] = ... is WRONG p[6]="july" changes an address
t[6] is constant address of line 7 (element 7 from pointer array p)
can do str(n)cpy(t[6], ...)

Indices or pointers: use sensibly
Declare index in for loop header whenever possible (since C99)

enforces scope, visually clear, avoids affecting other loops
Do use indices if more suggestive, though combinations are possible
void matmul_i(unsigned m, unsigned n, unsigned p, double a[][n],

double b[][p], double c[][p]) {
for (int i = 0; i < m; ++i)

for (int j = 0; j < p; ++j) {
c[i][j] = 0;
for (int k = 0; k < n; ++k) c[i][j] += a[i][k]*b[k][j];

}
}
void matmul_p(unsigned m, unsigned n, unsigned p, double a[][n],

double b[][p], double c[][p]) {
double *lastl = a[m];
for (double *lp = a[0], *dp = c[0]; lp < lastl; ++lp)

for (int j = 0; j < p; ++j, ++dp) {
*dp = 0;
for (int k = 0; k < n; ++k) *dp += lp[k]*b[k][j];

}
} // could you use more pointers ? For b perhaps ?

Type casts, void * and typedef

void * is used for addresses of any/unspecified type
⇒ can’t dereference a void * (don’t know what it points to)
but can assign to/from pointer of any other type
any pointer OK as arg/result for function declared with void *

Type cast is a unary operator, written as (type-name)expression
the value of expression is converted to the type type-name

convert int to real (double)sum/cnt //force real division
dereference a void * *(char *)p //char at address p

typedef is a keyword used to define a new name for type
Syntax: typedef declaration the identifier becomes a type name
typedef uint16_t u16; //u16 is synonym for type uint16_t
typedef char line[80]; //line: type for array of 80 chars
line text[100]; //text is array of 100 lines

Function pointers
A function name is its address (a pointer) – like for arrays
We can declare pointers of function type. Compare:
int f(void); declares a function returning int
int (*p)(void); declares pointer to function returning int

declare function: restype fct (type1, . . . , typeN);
declare function pointer: restype (*pfct) (type1, . . . , typeN);
Can assign pfct = fct with the name of an existing function

CAUTION! Need parantheses for (*pointer), otherwise:
int *fct(void); is a function returning pointer to int
Function name is pointer ⇒ can call function using pointer
#include <math.h>
void printvals(double (*f)(double)) { // function parameter

for (int i=0; i<10; ++i) printf("%f\n", f(.1*i));
}
int main(void) { printvals(sin); printvals(cos); return 0; }

Using function pointers
stdlib.h: binary search for key in sorted array; and quicksort
void *bsearch(const void *key, const void *base, size_t nmemb,

size_t size, int (*compar)(const void *, const void *));
void qsort(void *base, size_t num, size_t size,

int (*compar)(const void *, const void *));

address of array to sort, element count and size
address of comparison function, returns int <, = or > 0)

has void * arguments, compatible with pointers of any type
typedef int (*comp_t)(const void *, const void *); // cmp fun
int intcmp(int *p1, int *p2) { return *p1 - *p2; }
int tab[5] = { -6, 3, 2, -4, 0 }; // array to sort
qsort(tab, 5, sizeof(int), (comp_t)intcmp); // sort ascending

Can also declare function with void *, do cast in function
int intcmp(const void *p1, const void *p2)

{ return *(int *)p1 - *(int *)p2; }
qsort(tab, 5, sizeof(int), intcmp); // no cast, has right type

When to use pointers ?

When the language forces us to:
arrays (memory blocks) cannot be passed / returned from functions

only their address (array name is its address)
addresses carry no size information ⇒ must pass size parameter

strings: a string (constant or not) is a char *
need not pass size, since null-terminated

functions: a function name is its address

When a function needs to modify variable passed from outside
pass address of variable

WARNING! Any address passed to a function needs to be valid
(point to allocated memory)

functions use their arguments ⇒ pointers must be valid

