
Computer Programming

Introduction. Recursion

Marius Minea
marius@cs.upt.ro

http://cs.upt.ro/˜marius/curs/cp/

28 September 2015

mailto:marius@cs.upt.ro
http://cs.upt.ro/~marius/curs/cp/

The C programming language

developed in 1972 at AT&T Bell Laboratories by Dennis Ritchie
together with the UNIX operating system and its tools

(C first developed under UNIX, then UNIX was rewritten in C)
Brian Kernighan, Dennis Ritchie: The C Programming Language (1978)

Mature language, but still evolving
ANSI C standard, 1989 (American National Standards Institute)
then ISO 9899 standard (versions: C90, C99, C11 - current)

Why use C?
versatile: direct access to data representation, freedom in

working with memory, good hardware interface
mature, large code base (libraries for many purposes)
efficient: good compilers that generate compact, fast code

WARNING: very easy to make errors !

The C programming language

developed in 1972 at AT&T Bell Laboratories by Dennis Ritchie
together with the UNIX operating system and its tools

(C first developed under UNIX, then UNIX was rewritten in C)
Brian Kernighan, Dennis Ritchie: The C Programming Language (1978)

Mature language, but still evolving
ANSI C standard, 1989 (American National Standards Institute)
then ISO 9899 standard (versions: C90, C99, C11 - current)

Why use C?
versatile: direct access to data representation, freedom in

working with memory, good hardware interface
mature, large code base (libraries for many purposes)
efficient: good compilers that generate compact, fast code

WARNING: very easy to make errors !

Computations, functions, and programs

A program
reads input data
processes them (through (mathematical) computations)
writes (produces) results

In mathematics, computations are expressed by functions:
we know predefined functions (sin, cos, etc.)
we define new functions (for the given problem)
we combine functions into more complex computations

In programming, we use functions in a similar way.

Computations, functions, and programs

A program
reads input data
processes them (through (mathematical) computations)
writes (produces) results

In mathematics, computations are expressed by functions:
we know predefined functions (sin, cos, etc.)
we define new functions (for the given problem)
we combine functions into more complex computations

In programming, we use functions in a similar way.

Functions are the core of programming

Programs are structured into functions (methods, procedures)

Splitting into functions helps manage complexity !

Functions can be reused, making development efficient.

Functions are core to defining what is computable
(recursive functions, lambda calculus, functional programming)

Functions in mathematics and C

Squaring for integers:

sqr : Z→ Z

sqr(x) = x · x

function
type

function
name

parameter
type and name

int sqr(int x)
{

return x * x;
}

A function definition contains:
the function header, specifying: the type (range) of function

values (int), function name (sqr) and parameters (the integer x)
the function body, within { }: here, the return statement,

with an expression that gives the function value from its parameters
There are precise rules for writing in the language (the syntax):

language elements are written in a given order;
separators are used to precisely delimit them: () ; { }

Functions in mathematics and C

Squaring for integers:

sqr : Z→ Z

sqr(x) = x · x

function
type

function
name

parameter
type and name

int sqr(int x)
{

return x * x;
}

A function definition contains:
the function header, specifying: the type (range) of function

values (int), function name (sqr) and parameters (the integer x)
the function body, within { }: here, the return statement,

with an expression that gives the function value from its parameters
There are precise rules for writing in the language (the syntax):

language elements are written in a given order;
separators are used to precisely delimit them: () ; { }

Another function
Squaring for reals:

sqrf : R→ R

sqrf (x) = x · x

float sqrf(float x)
{

return x * x;
}

Another function domain and range (reals) ⇒ a different function
even the * operator is now defined on a different set (type)

To distinguish it from sqr in the same program, it needs a
different name.

int and float denote types.
A type is a set of values together with a set of operations allowed
for these values.
For reals, it is preferable to use the type double (double precision)

(used by library functions: sin, cos, exp, etc.)

Another function
Squaring for reals:

sqrf : R→ R

sqrf (x) = x · x

float sqrf(float x)
{

return x * x;
}

Another function domain and range (reals) ⇒ a different function
even the * operator is now defined on a different set (type)

To distinguish it from sqr in the same program, it needs a
different name.

int and float denote types.
A type is a set of values together with a set of operations allowed
for these values.
For reals, it is preferable to use the type double (double precision)

(used by library functions: sin, cos, exp, etc.)

Integers and reals

Numeric types differ in C and mathematics.
In mathematics: Z ⊂ R, both are infinite, R is uncountable.
In C: int, float, double are finite (have limited range);
reals have finite precision.

Important to remember this! (overflows, precision loss)

The type of numeric constants depends on their writing
2 is an integer, 2.0 is a real
scientific notation for reals: 1.0e-3 instead of 0.001
writing 1.0 or 1. is equivalent, same for 0.1 and .1

Mathematical operators
+ - * /

Multiplication is written explicitly !
we can’t write 2x , but 2 * x (or x * 2)

Some operators have different meanings (and results!) for integers
and reals:
Integer division has an integer result !!! (division with remainder)
7 / 2 is 3, but 7.0 / 2.0 is 3.5

-7 / 2 is -3, likewise -(7 / 2)
(integer division truncates towards zero)

The modulo operator % is only defined for integers.
9 / 5 = 1 9 % 5 = 4 9 / -5 = -1 9 % -5 = 4

-9 / 5 = -1 -9 % 5 = -4 -9 / -5 = 1 -9 % -5 = -4

The sign of the remainder is the same as the sign of the dividend.

Rule for integer division: a = a / b * b + a % b

Mathematical operators
+ - * /

Multiplication is written explicitly !
we can’t write 2x , but 2 * x (or x * 2)

Some operators have different meanings (and results!) for integers
and reals:
Integer division has an integer result !!! (division with remainder)
7 / 2 is 3, but 7.0 / 2.0 is 3.5

-7 / 2 is -3, likewise -(7 / 2)
(integer division truncates towards zero)

The modulo operator % is only defined for integers.
9 / 5 = 1 9 % 5 = 4 9 / -5 = -1 9 % -5 = 4

-9 / 5 = -1 -9 % 5 = -4 -9 / -5 = 1 -9 % -5 = -4

The sign of the remainder is the same as the sign of the dividend.

Rule for integer division: a = a / b * b + a % b

Some terminology

Keywords: have a predefined meaning (cannot be changed)
Examples: statements (return), types (int, float, double)

Identifiers (e.g. sqr, x) chosen by the programmer to name
functions, parameters, variables, etc.
An identifier is a sequence of characters comprised of letters
(upper and lower case), underscore _ and digits which does not
start with a digit and is not a keyword.
Examples: x3, a12_34, _exit, main, printf, int16_t

Constants
integer: -2; floating point: 3.14; character: ’a’, string: "a"

Punctuation signs, with various meanings:
* is an operator
; terminates a statement
parantheses () around an expression or function parameters
braces { } group declarations or statements

Some terminology

Keywords: have a predefined meaning (cannot be changed)
Examples: statements (return), types (int, float, double)
Identifiers (e.g. sqr, x) chosen by the programmer to name
functions, parameters, variables, etc.
An identifier is a sequence of characters comprised of letters
(upper and lower case), underscore _ and digits which does not
start with a digit and is not a keyword.
Examples: x3, a12_34, _exit, main, printf, int16_t

Constants
integer: -2; floating point: 3.14; character: ’a’, string: "a"

Punctuation signs, with various meanings:
* is an operator
; terminates a statement
parantheses () around an expression or function parameters
braces { } group declarations or statements

Some terminology

Keywords: have a predefined meaning (cannot be changed)
Examples: statements (return), types (int, float, double)
Identifiers (e.g. sqr, x) chosen by the programmer to name
functions, parameters, variables, etc.
An identifier is a sequence of characters comprised of letters
(upper and lower case), underscore _ and digits which does not
start with a digit and is not a keyword.
Examples: x3, a12_34, _exit, main, printf, int16_t

Constants
integer: -2; floating point: 3.14; character: ’a’, string: "a"

Punctuation signs, with various meanings:
* is an operator
; terminates a statement
parantheses () around an expression or function parameters
braces { } group declarations or statements

Some terminology

Keywords: have a predefined meaning (cannot be changed)
Examples: statements (return), types (int, float, double)
Identifiers (e.g. sqr, x) chosen by the programmer to name
functions, parameters, variables, etc.
An identifier is a sequence of characters comprised of letters
(upper and lower case), underscore _ and digits which does not
start with a digit and is not a keyword.
Examples: x3, a12_34, _exit, main, printf, int16_t

Constants
integer: -2; floating point: 3.14; character: ’a’, string: "a"

Punctuation signs, with various meanings:
* is an operator
; terminates a statement
parantheses () around an expression or function parameters
braces { } group declarations or statements

Functions with several parameters

Example: the discriminant of a quadratic equation:
a · x2 + b · x + c = 0

float discrim(float a, float b, float c)
{

return b * b - 4 * a * c;
}

Between the parantheses () of the function header there can be
arbitrary comma-separated parameters, each with its own type.

Function call (function evaluation)

So far, we have only defined functions, without using them.
The value of a function can be used in an expression.
Syntax: like in mathematics: function(param, param, · · · , param)
Example: in the discriminant, we could use the sqrf function:

return sqrf(b) - 4 * a * c;

Or, using the previously defined sqr function we can define:
int cube(int x)
{

return x * sqr(x);
}

IMPORTANT: In C, any identifier must be declared before use
(we must know what it represents, including its type)
⇒ The above examples assume that sqrf and sqr are defined
before discrim and cube respectively in the program.

Function call (function evaluation)

So far, we have only defined functions, without using them.
The value of a function can be used in an expression.
Syntax: like in mathematics: function(param, param, · · · , param)
Example: in the discriminant, we could use the sqrf function:

return sqrf(b) - 4 * a * c;

Or, using the previously defined sqr function we can define:
int cube(int x)
{

return x * sqr(x);
}

IMPORTANT: In C, any identifier must be declared before use
(we must know what it represents, including its type)
⇒ The above examples assume that sqrf and sqr are defined
before discrim and cube respectively in the program.

Function call (function evaluation)

So far, we have only defined functions, without using them.
The value of a function can be used in an expression.
Syntax: like in mathematics: function(param, param, · · · , param)
Example: in the discriminant, we could use the sqrf function:

return sqrf(b) - 4 * a * c;

Or, using the previously defined sqr function we can define:
int cube(int x)
{

return x * sqr(x);
}

IMPORTANT: In C, any identifier must be declared before use
(we must know what it represents, including its type)
⇒ The above examples assume that sqrf and sqr are defined
before discrim and cube respectively in the program.

A first C program

int main(void)
{

return 0;
}

The smallest program: it does not do anything!
Any program contains the main function and is executed by calling
it at program start. In main, other functions may be called.

Here, main does not have any parameters (void)
void is a keyword for the empty type (without any element)

main returns an integer, interpreted as exit status by the operating
system:
0 = successful termination, 6= 0 is an error code

A commented program

/* This is a comment */
int main(void) // comment to end of line
{

/* This is a comment spanning several lines
usually, the program code would be here */

return 0;
}
Programs may contain comments, placed between /* and */
or starting with // until (and excluding) the end of the line
Comments are stripped by the preprocessor.
They have no effect on code generation or program execution.

Programs should be commented
so a reader can understand (including the writer, at a later time)
as documentation (may specify functionality, restrictions, etc.)
explain function parameters, result, local variables
specify preconditions, postconditions, error behavior

A commented program

/* This is a comment */
int main(void) // comment to end of line
{

/* This is a comment spanning several lines
usually, the program code would be here */

return 0;
}
Programs may contain comments, placed between /* and */
or starting with // until (and excluding) the end of the line
Comments are stripped by the preprocessor.
They have no effect on code generation or program execution.

Programs should be commented
so a reader can understand (including the writer, at a later time)
as documentation (may specify functionality, restrictions, etc.)
explain function parameters, result, local variables
specify preconditions, postconditions, error behavior

Printing (writing)
#include <stdio.h>
int main(void)
{

printf("hello, world!\n"); // prints a text
return 0;

}
printf (from ”print formatted”): a standard library function

is NOT a statement or a keyword
is called here with one string parameter
string constants are written with double quotes " "

\n denotes the newline character

The first line is a preprocessing directive, it includes the stdio.h
header file which contains the declarations of the standard
input/output functions
Declaration = type, name, parameters: needed to use the function
Implementation (compiled object code): in a library which is linked
at compile-time, loaded at execution time

Printing (writing)
#include <stdio.h>
int main(void)
{

printf("hello, world!\n"); // prints a text
return 0;

}
printf (from ”print formatted”): a standard library function

is NOT a statement or a keyword
is called here with one string parameter
string constants are written with double quotes " "

\n denotes the newline character
The first line is a preprocessing directive, it includes the stdio.h
header file which contains the declarations of the standard
input/output functions
Declaration = type, name, parameters: needed to use the function
Implementation (compiled object code): in a library which is linked
at compile-time, loaded at execution time

Printing numbers

#include <math.h>
#include <stdio.h>
int main(void)
{

printf("cos(0) = ");
printf("%f", cos(0));
return 0;

}

#include <stdio.h>
int sqr (int x) { return x * x; }
int main(void)
{

printf("2 times -3 squared is ");
printf("%d", 2 * sqr(-3));
return 0;

}

To print the value of an expression, printf takes two arguments:
– a character string (format specifier):

%d or %i (decimal integer), %f (floating point)
– the expression; type must be compatible with the specified one

(programmer must check! compiler may warn or not)
Sequencing: in function, statements are executed in textual order
But: return statement ends function execution (no further
statement is executed)

Printing

We cannot print a number like this: printf(5)

We can write printf("5") but this means printing a string
(although the effect is the same: one character printed)

The first argument of printf must always be a string
with or without format specifiers (special characters)

Understanding how functions work

Two distinct things:
function definition: int sqr(int x) { ... }

function call: sqr(2), sqr(a), etc.

Function definitions use names (of parameters, variables, etc.)

Function calls work with values (2, the value of a, etc.)
(they do not compute with symbolic expressions)

Understanding the function call
This program computes 26 = (2 · 22)2

#include <stdio.h>
int sqr(int x)
{

printf("the square of %d is %d\n", x, x*x);
return x * x;

}
int main(void)
{

printf("2 to the 6th is %d\n", sqr(2 * sqr(2)));
return 0;

}

What is the order of printed statements ?

the square of 2 is 4
the square of 8 is 64
2 to the 6th is 64

C uses call by value

In C, function arguments are passed by value.
all function arguments are evaluated (their value is computed)
values are assigned to the formal parameters (names from the
function header)
then, function is called and executes with these values

This type of argument passing is named call by value.

The program starts executing main. The first statement:
printf("2 to the 6th is %d\n", sqr(2 * sqr(2)));

Before doing the call, printf needs the values of its arguments
first argument: the value is known (a string constant)
second argument: need to call sqr(2 * sqr(2))

BUT: the outer sqr also needs the value of its argument
2 * sqr(2) ⇒ need to call sqr(2) first

⇒ call order: first sqr(2), then sqr(8), then printf

C uses call by value

In C, function arguments are passed by value.
all function arguments are evaluated (their value is computed)
values are assigned to the formal parameters (names from the
function header)
then, function is called and executes with these values

This type of argument passing is named call by value.

The program starts executing main. The first statement:
printf("2 to the 6th is %d\n", sqr(2 * sqr(2)));

Before doing the call, printf needs the values of its arguments
first argument: the value is known (a string constant)
second argument: need to call sqr(2 * sqr(2))

BUT: the outer sqr also needs the value of its argument
2 * sqr(2) ⇒ need to call sqr(2) first

⇒ call order: first sqr(2), then sqr(8), then printf

Errors in understanding function evaluation

C does NOT do the following (other languages might...)

Functions do NOT start execution without computer arguments
printf would print 2 to the 6th is , then need the value
it would call the outer sqr that writes the square of,

then would need x
it would call sqr(2), write the square of 2 is 4, return 4,

etc.

Function parameters are NOT substituted with expressions
printf would call the outer sqr with the expression 2 * sqr(2)
sqr(2) would be called twice for (2*sqr(2))*(2*sqr(2))

⇒ in C, a function computes with values, never with expressions

Errors in understanding function evaluation

C does NOT do the following (other languages might...)

Functions do NOT start execution without computer arguments
printf would print 2 to the 6th is , then need the value
it would call the outer sqr that writes the square of,

then would need x
it would call sqr(2), write the square of 2 is 4, return 4,

etc.

Function parameters are NOT substituted with expressions
printf would call the outer sqr with the expression 2 * sqr(2)
sqr(2) would be called twice for (2*sqr(2))*(2*sqr(2))

⇒ in C, a function computes with values, never with expressions

Functions defined by cases

abs : Z→ Z abs(x) =
{

x x ≥ 0
−x otherwise (x < 0)

The function value is not given by a single expression, but by one
of two different expressions (x or -x), depending on a condition
(x ≥ 0)
⇒ need a language construct that to decide which expression to
evaluate, based on a condition (true/false)

The conditional operator ? :

Syntax of conditional expression: condition ? expr1 : expr2
– if the condition is true, only expr1 is evaluated, its value
becomes the result of the entire expression
– if the condition is false, only expr2 is evaluated and its value
becomes the value of the expression

int abs(int x)
{

return x >= 0 ? x : -x; // unary minus operator
}
Comparison operators: == (equality), != (different), <, <=, >, >=

IMPORTANT! The equality test in C is == and not simple = !!!
Note: abs exists as standard function, declared in stdlib.h

Functions defined by several cases

sgn : Z→ {−1, 0, 1} sgn(x) =


−1 x < 0

0 x = 0
1 x > 0

The conditional operator has only one condition, and two branches
But: either of the expressions can be arbitrarily complex
⇒ must decompose the decision based on the value of x
⇒ decompose into smaller subproblems: key in problem solving

We rewrite the function with a single decision at any given point:

sgn(x) =


if x < 0 −1

else (x ≥ 0)
{

if x = 0 0
else (x > 0) 1

Writing the case-based function in C

sgn(x) =


if x < 0 −1

else (x ≥ 0)
{

if x = 0 0
else (x > 0) 1

int sgn (int x)
{

return x < 0 ? -1
: x == 0 ? 0 : 1;

}

We can group arbitrarily many conditional operators ? :
expr1 and expr2 can be in turn conditional expressions
A correctly written expression has a : for any ?
(think of : as linking a pair of answers)

Decomposing into simpler problems
The minimum of two numbers is easily written:
double min2(double x, double y)
{

return x < y ? x : y;
}

For the minimum of three numbers, the comparisons multiply:

min3(x , y , z) =


if x < y

{
if x < z x
else (x ≥ z) z

else (x ≥ y)
{

if y < z y
else (y ≥ z) z

We notice the structure of min2 is repeated ⇒ can do it simpler:
The result is the minimum between the minimum of the first two
numbers and the third. ⇒ just apply min2 twice!
double min3(double x, double y, double z)
{

return min2(min2(x, y), z); // or min2(x, min2(y,z))
}

Decomposing into simpler problems
The minimum of two numbers is easily written:
double min2(double x, double y)
{

return x < y ? x : y;
}

For the minimum of three numbers, the comparisons multiply:

min3(x , y , z) =


if x < y

{
if x < z x
else (x ≥ z) z

else (x ≥ y)
{

if y < z y
else (y ≥ z) z

We notice the structure of min2 is repeated ⇒ can do it simpler:
The result is the minimum between the minimum of the first two
numbers and the third. ⇒ just apply min2 twice!
double min3(double x, double y, double z)
{

return min2(min2(x, y), z); // or min2(x, min2(y,z))
}

Recursion

Recursion: definition, examples

From mathematics, we know recurrence relations for sequences:

arithmetic sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 + r for n > 0

Example: 1, 4, 7, 10, 13, . . . (b = 1, r = 3)

geometric sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 · r for n > 0

Example: 3, 6, 12, 24, 48, . . . (b = 3, r = 2)

xn is not computed directly, but step by step, using xn−1.

A notion is recursive if it is used in its own definition.

Exercise: write recurrences for: Ck
n , Fibonacci sequence, . . .

Recursion: definition, examples

From mathematics, we know recurrence relations for sequences:

arithmetic sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 + r for n > 0

Example: 1, 4, 7, 10, 13, . . . (b = 1, r = 3)

geometric sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 · r for n > 0

Example: 3, 6, 12, 24, 48, . . . (b = 3, r = 2)

xn is not computed directly, but step by step, using xn−1.

A notion is recursive if it is used in its own definition.

Exercise: write recurrences for: Ck
n , Fibonacci sequence, . . .

Recursion: definition, examples

From mathematics, we know recurrence relations for sequences:

arithmetic sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 + r for n > 0

Example: 1, 4, 7, 10, 13, . . . (b = 1, r = 3)

geometric sequence:
{

x0 = b (i.e.: xn = b for n = 0)
xn = xn−1 · r for n > 0

Example: 3, 6, 12, 24, 48, . . . (b = 3, r = 2)

xn is not computed directly, but step by step, using xn−1.

A notion is recursive if it is used in its own definition.

Exercise: write recurrences for: Ck
n , Fibonacci sequence, . . .

Recursion: definition, examples
Recursion is fundamental in computer science:
it reduces a problem to a simpler case of the same problem

objects: a sequence is{
a single element © sequence
an element followed by a sequence ©

︷ ︸︸ ︷
©©©

e.g. word (sequence of letters); number (sequence of digits)

actions: a path is{
a step −→ path
a path followed by a step ︷ ︸︸ ︷−→−→−→ −→

e.g. traversing a path in a graph

An expression:
number (7)
identifier (x)
expression + expression
expression - expression
(expression), etc

Recursion: definition, examples
Recursion is fundamental in computer science:
it reduces a problem to a simpler case of the same problem

objects: a sequence is{
a single element © sequence
an element followed by a sequence ©

︷ ︸︸ ︷
©©©

e.g. word (sequence of letters); number (sequence of digits)

actions: a path is{
a step −→ path
a path followed by a step ︷ ︸︸ ︷−→−→−→ −→

e.g. traversing a path in a graph

An expression:
number (7)
identifier (x)
expression + expression
expression - expression
(expression), etc

Recursion: definition, examples
Recursion is fundamental in computer science:
it reduces a problem to a simpler case of the same problem

objects: a sequence is{
a single element © sequence
an element followed by a sequence ©

︷ ︸︸ ︷
©©©

e.g. word (sequence of letters); number (sequence of digits)

actions: a path is{
a step −→ path
a path followed by a step ︷ ︸︸ ︷−→−→−→ −→

e.g. traversing a path in a graph

An expression:
number (7)
identifier (x)
expression + expression
expression - expression
(expression), etc

Example: power function
xn =

{
1 n = 0
x · xn−1 otherwise (n > 0)

#include <stdio.h>
double pwr(double x, unsigned n)
{
return n==0 ? 1 : x * pwr(x, n-1);

}
int main(void)
{

printf("-2 raised to 3 = %f\n", pwr(-2.0, 3));
return 0;

}

unsigned: type of nonnegative integers (natural numbers)
The header of pwr is a declaration of the function
so it can be used in its own function body (recursive call)
Even if we write pwr(-2, 3), -2 (int) will be converted to float
(the type declared for each parameter is known)

Example: power function
xn =

{
1 n = 0
x · xn−1 otherwise (n > 0)

#include <stdio.h>
double pwr(double x, unsigned n)
{
return n==0 ? 1 : x * pwr(x, n-1);

}
int main(void)
{

printf("-2 raised to 3 = %f\n", pwr(-2.0, 3));
return 0;

}

unsigned: type of nonnegative integers (natural numbers)
The header of pwr is a declaration of the function
so it can be used in its own function body (recursive call)
Even if we write pwr(-2, 3), -2 (int) will be converted to float
(the type declared for each parameter is known)

The mechanism of a recursive call

The pwr function does two computations:
– a test (n == 0 ? base case ?) if so, return 1
– else, a multiply; the right operand requires a new recursive call

pwr(5, 3)
call↓ ↑125

5 * pwr(5, 2)
call↓ ↑25

5 * pwr(5, 1)
call↓ ↑5

5 * pwr(5, 0)
call↓ ↑1

1

The mechanism of a recursive call

In the recursive computation of the power function:

Every call makes a new call, until the base case it reached

Every call executes the same code, but with other data
(own values for parameters)

When reaching the base case, all started calls are still unfinished
(each has to perform the multiplication with the result of the call)

Returning is done in opposite order of the calls
(call with exponent 0 returns, then the one with exponent 1, etc.)

Recursion: power by repeated squaring

Recursion = reduction to a simpler case of the same problem
Base case is simple enough for direct computation

(can / need no longer be reduced)

xn =


1 n = 0
(x2)n/2 n > 0 even
x · (x2)n/2 n > 0 odd

double pow2(double x, unsigned n)
{

return n == 0 ? 1
: n % 2 == 0 ? pow2(x*x, n/2)
: x * pow2(x*x, n/2);

}

Let’s follow the recursive calls

#include <stdio.h>

double pow2(double x, unsigned n)
{

printf("base %f exponent %u\n", x, n);
return n == 0 ? 1

: n % 2 == 0 ? pow2(x*x, n/2)
: x * pow2(x*x, n/2);

}
int main(void)
{

printf("5 to the 6th = %f\n", pow2(5, 6));
return 0;

}

Each call halves the exponent ⇒ 1 + dlog2 ne calls
pow2(5, 6)→ pow2(25, 3)→ pow2(625, 1)

How to use recursion

Recursion solves a problem by reducing it to a simpler case
of the same problem.

To use recursion, we must express the problem as a function
things given/known to the function are parameters

(index of recursive sequence; problem size; etc.)
the answer to the problem is the function result

Sometimes, the problem asks to produce an effect (print)
rather than compute a result.

Block statements and sequencing

A function body may have several statements in sequence
{

printf("This is a line\n");
printf("Line 2: ");
printf("cos(0)=%f\n", cos(0));
return 0;

}

{
statement
...
statement

}

Function returns on reaching closing brace OR return statement.

More generally, a block (compound statement) can appear in place
of any statement.

This is an example of recursion in the definition of statements:
statement ::= return expressionoptional ;

expressionoptional ; (incl. function call)
{ statement ... statement }

The if statement

Conditional operator ? : selects from two expressions to evaluate
Conditional statement selects between two statements to execute
Syntax:
if (expression)

statement1
else

statement2

or if (expression)
statement1

Effect:
If the expression is true (nonzero) statement1 is executed,
else statement2 is executed (or nothing, if the latter is missing)

Each branch has only one statement. If several statements are
needed, these must be grouped in a compound statement { }

The parantheses () around the condition are mandatory.

Example with the if statement
Printing roots of a quadratic equation:

void printsol(double a, double b, double c)
{

double delta = b * b - 4 *a * c;
if (delta >= 0) {

printf("root 1: %f\n", (-b-sqrt(delta))/2/a);
printf("root 2: %f\n", (-b+sqrt(delta))/2/a);

} else printf("no solution\n"); // puts("no solution");
}

Can rewrite the conditional operator ? : using the if statement

int abs(int x)
{

return x > 0 ? x : -x;
}

int abs(int x)
{

if (x > 0) return x;
else return -x;

}

Recursion: Fibonacci words

Fibonacci sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 1
inefficient to do direct recursion (exercise: how many calls?)

Can define Fibonacci words (strings):
S0 = 0, S1 = 01, Sn = Sn−1Sn−2

(formed by string concatenation)

Write a function that prints Sn
problem = function; effect = print; concatenation = ???

More recursion: fractals

Fractals are self-similar figures
(a part of the figure looks like the whole figure = recursion!)

Box fractal:

What is the base case?
What defines a part of the figure?

http://mathworld.wolfram.com/BoxFractal.html

http://mathworld.wolfram.com/BoxFractal.html

More recursion: fractals

Fractals are self-similar figures
(a part of the figure looks like the whole figure = recursion!)

Box fractal:

What is the base case?
What defines a part of the figure?

http://mathworld.wolfram.com/BoxFractal.html

http://mathworld.wolfram.com/BoxFractal.html

