
Computer Programming

Implementing an abstract datatype.
Linked lists and queues

Marius Minea
marius@cs.upt.ro

4 January 2016

mailto:marius@cs.upt.ro

Libraries and abstract datatypes

Use of (standard) library so far:
we know a function prototype (declaration), e.g.

FILE *fopen(const char *fname, const char *mode);
declaration is included from header file #include <stdio.h>
we do not know or need the source code for fopen

only the object (binary) code which is part of the library
last compile stage links program with the library

Program is independent of underlying details
(Unix/Windows? file system type?)

implementation of library function can change
(new compiler version, bug fix, new file system)

as long as interface (function prototype) stays the same

Abstract datatypes

An abstract datatype is a mathematical model for datastructures
defined by the operations applicable to them (functions)
and the constraints among them (axioms)

without exposing details about the implementation.

ADTs separate interface from implementation
the interface provides the abstraction
the implementation is encapsulated (hidden)

ADTs allow changeable and interchangeable implementations
client program relies only on interface, is not affected

FILE is an abstract datatype in the standard C library
don’t know implementation detail
can only access with given functions (fopen, fgets, fread, etc.)

Lists as abstract data types

An ADT list L with elementtype E is usually defined by:
nil : ()→ L empty list constructor

can also be constant rather than function
isempty : L→ Bool is empty ?
cons : E × L→ L list constructor
head : L→ E head of list
tail : L→ L tail of list

and the axioms
head(cons(e, l)) = e and tail(cons(e, l)) = l

Example ADT for integer list

#ifndef _INTLIST_H
#define _INTLIST_H

typedef struct ilst *intlist_t;

intlist_t empty(void);
int isempty(intlist_t lst);
int head(intlist_t lst);
intlist_t tail(intlist_t lst);
intlist_t cons(int el, intlist_t tl);

// for freeing memory only: splits first element from tail, returns tail
// if elp non-NULL, store value of head there
intlist_t decons(intlist_t lst, int *elp);

#endif

Hiding / exposing the representation

Implementation is hidden if only a pointer to the data is exposed:
incomplete structure type: typedef struct ilst *intlist_t
or even a void * (only implementation knows what it points to)

Declaration of structure should be hidden in .c file
not exposed in .h file (which is included by all clients)
struct ilst {

intlist_t nxt;
int el;

};

If library client has this structure, can use internal representation
(no longer an ADT)

Implementing the list ADT

#include <stdlib.h> // for NULL and malloc
#include "intlist.h" // ensures .h and .c consistent

struct ilst {
intlist_t nxt;
int el;

};

intlist_t empty(void) { return NULL; }

int isempty(intlist_t lst) { return lst == NULL; }

int head(intlist_t lst) { return lst->el; }

intlist_t tail(intlist_t lst) { return lst->nxt; }

Implementing the list ADT (cont’d)
intlist_t cons(int el, intlist_t tl)
{

intlist_t p = malloc(sizeof(struct ilst));
if (!p) return NULL; // could report some error
p->el = el;
p->nxt = tl;
return p;

}

// returns tail, assignes *elp with head, deletes cell
intlist_t decons(intlist_t lst, int *elp)
{

if (elp) *elp = lst->el;
intlist_t tl = lst->nxt;
free(lst); // just first cell, keeps rest
return tl;

}

Can we do lists of arbitrary types?

C does not have polymorphism or parametric types
⇒ cannot declare, e.g., list of arbitrary type

Could do: typedef int elemtype; (or even a #define)
and have everything else use elemtype

But need to recompile everything when changing elemtype
binary code differs even for assignment/parameter passing
due to varying element size; even more so for addition, etc.)

If instead of values we store pointers to values,
we can have just one implementation (list of void *)

must separately allocate memory for elements
program logic must know element type (info not in the list)

Example: list reversal in-place

Assume: we know declaration
struct ilst {

intlist_t nxt;
int el;

};

Two pointers, splitting list:
one to part of list already reversed (initially NULL)
one to rest of list to be reversed (initially full list)

intlist_t rev2(intlist_t rest, intlist_t done) {
if (isempty(rest)) return done;
intlist_t nxt = rest->nxt; // rest to be reversed
rest->nxt = done; // link first cell to done part
return rev2(nxt, rest); // tail-recursive, becomes loop

}
intlist_t rev(intlist_t lst) { return rev2(lst, empty()); }

Traversing linked list with address of pointer

When inserting/deleting into a linked list (e.g. ordered list),
must change link in cell prior to the one inserted/deleted

keep address of pointer to be changed (address of link field)
better than with address of previous element (may not exist)

In picture, top row denotes addresses of individual fields

3 0x478C0 4 0x487D8 7 NULL
0x49000 0x49008 0x478C0 0x478C8 0x487D8 0x487E0

0x49000hd
0x47400

0x47400adr

intlist_t hd = cons(3, cons(4, cons(7, NULL)));
intlist_t *adr = &hd;
adr = &(*adr)->nxt; // advance to next element

Implementing a queue ADT

Queue: first-in, first-out (FIFO): insert/remove at different ends

#ifndef _QUEUE_H
#define _QUEUE_H

typedef struct q *queue_t;

queue_t q_new(void);
int q_isempty(queue_t q);
int q_get(queue_t q);
queue_t q_put(queue_t q, int el);
void q_del(queue_t q);
void q_print(queue_t q);

#endif

Implementing a queue
To uniformly handle case when queue becomes empty/grows again
we use a dummy cell (flag); actual first cell is after the dummy cell
typedef struct e { // cell for element, with pointer to next

struct e *nxt;
int el;

} elem_t;

struct q {
elem_t *hd; // dummy; actual first cell is next
elem_t *last; // last cell (or dummy if empty)

};

queue_t q_new(void) {
queue_t q = malloc(sizeof(struct q));
elem_t *p = malloc(sizeof(elem_t)); // dummy cell
p->nxt = NULL; // no actual element
q->hd = q->last = p; // initially both dummy cell
return q;

}

// has no cell except dummy cell
int q_isempty(queue_t q) { return q->hd == q->last; }

