
Computer Programming

Review

Marius Minea
marius@cs.upt.ro

12 January 2016

mailto:marius@cs.upt.ro

Bit operators
Every value is composed of bits.
Bit operators only apply to ints (char, unsigned, uint32_t, etc.)
Bit operators work on all bits of the integer.
There is no value of e.g., 5 bits. But we can make all others zero.
Logical OR | puts together parts (assuming other bits are zero)
int32_t date = sec | (min << 6) | (hr << 12) | ...;

To extract a part: hr = (date >> 12) & 0x1F;
right-shift to low-order bits, AND with mask of 11..1 (no. of bits):
or hr = (date << 15) >> 27;
shift left to high-order bits, right to low-order bits (makes rest 0)
Use fixed-width integers (stdint.h) if exact width matters
Integer encoding (big-endian/little-endian) depends on processor!

little-endian = least significant byte first
Avoid right-shifting a signed number

if negative, may insert bits of 1 at left (implementation-defined)
usually, we want to insert zeroes ⇒ cast to unsigned

Type casts

(forced-type) expression

For values: if conversion makes sense
double exact_div = (double)1/3; //floating division
(int)3.14 (integer part)

For pointers
to add number of bytes, not number of objects/elements
int a[5], *p = a + 3; //p points 3 integers after a
char *s = (char *)a + 2; //s points two bytes after a

to view memory according to representation of another type:
float f = 5; uint32_t f_bits = *(uint32_t *)&f;
(put bit pattern of f into an int for further processing)

Parameter passing

In C, parameters are passed by value.
Arguments are expressions that are evaluated.

Cannot pass a variable to a function: value of variable is passed.
Function does not know value came from a variable
⇒ cannot change variable. NO EXCEPTIONS!
(even if in function, formal parameter is assigned/changed).

Pointers are no exception: value of pointer is passed.

void upcase(char *s) { for (; *s = toupper(*s); ++s); }
int main(void) {

char t[] = "hello";
upcase(t); // changes contents, not address t
return 0;

}

Array and pointer parameters

Arrays cannot be passed to functions – only address of array
Compiler converts void f(int a[]) to void f(int *a)

Address carries no size information ⇒ must pass array size
as additional parameter (so function knows it).
Ordinary arrays have no terminator value (only strings have 0)

sizeof is NOT strlen
sizeof is a compile-time operator (size of type)
strlen traverses the string at run-time until 0

sizeof on array parameter cannot give size of array!
int a[10], n = sizeof(a); //n is 10 * sizeof(int)

void f(int a[]) { int n=sizeof(a); } // n is sizeof(int *);

because the above is actually void f(int *a) ...

Size in the type: pointers to array
v and &v have distinct values (second is variable’s address)
Exception: the address of an array
int a[10]; a and &a have same value
but type of a is int *, type of &a is int (*)[10]
(address of an array of 10 ints)
If we know function alwas gets an array of fixed size, can state this
in the type: function takes address of an array of that type
int int24(char (*b)[3])

{ return (*b)[0] | (*b)[1] << 8 | (*b)[2] << 16; }
int main(void) {

char b3[] = { 0x3, 0x2, 0x1 }; // 256*256 + 2*256 + 3
char t5[] = "test"; // compiler deduces: 5 bytes
printf("%d\n", int24(&b3));
printf("%d\n", int24(&t5)); // compiler warning
return 0;

}
expected char (*)[3] but argument is of type char (*)[5]

Void pointers

A void *p is a pointer to something unspecified
cannot dereference *p since we don’t know result type
cannot do arithmetic p + 3 (means: 3 objects further)

since we don’t know sizeof for what it points to
thus cannot index p[i] since this means *(p + i)

But void * is compatible with any pointer type
⇒ used for functions that directly manipulate memory (malloc,
memcpy)
⇒ for function types that must accept anything (qsort comparison)
⇒ for pointers to abstract types

