
Computer Programming

Recursion. Decision. Characters

Marius Minea
marius@cs.upt.ro

6 October 2015

mailto:marius@cs.upt.ro

Functions with and without result
We solve a (computational) problem by writing a function.

function parameters: the input data, used to compute result
NOT read from input, but given in function call: f(3, 7)

Functions with result
produced with the statement return expression ;
must appear at end of any path (if branch) through function

else the function won’t return a result!
warning: control reaches end of non-void function

CAUTION! in statement f(5); returned value is not used
use it: return f(5); , as parameter printf("%d", f(5)) , etc.

Functions that don’t return a value (e.g., just print)
declare function with return type void

void print_int(int n) { printf("integer %d\n", n); }
returns on reaching closing brace OR return; (NO expression)
use: standalone in an expression statement: print_int(7);

Review: ways to write a function
Computes a value
double discrim(double a, double b, double c)
{

return b*b - 4*a*c;
}

Produces an effect (e.g. prints a message)
void myerr(int code) // void type: returns nothing
{

printf("error code %d\n", code);
}

effect + value (computes + writes: several statements)
int sqr(int x)
{

printf("Computing the square of %d\n", x);
return x * x;

}

Review: structure of a simple program

#include <stdio.h> // if we need to read/write
#include <math.h> // if we use math functions

// function definition: third side of a triangle
double thirdside(unsigned a, unsigned b, double phi)
{

// the expression contains 2 function calls: cos, sqrt
return sqrt(a*a + b*b - 2*a*b*cos(phi));

} // will be called in main --> define before

int main(void)
{

// function call with values for its arguments
printf("third side: %f\n", thirdside(3, 5, atan(1)));
return 0;

}

Program structure: separating concerns

passing an argument is NOT reading from input
computing a value is NOT writing it

A function will typically NOT ask for input.
The smallest functions will receive arguments and return results
This allows them to be composed and used anywhere.

A function will typically NOT print its result, just return it.
(printing is inflexible: may want different format, language, etc.)

We might write wrapper functions that ask for input, then call the
computation function.
We might also write display functions that get a value and print it.

Recursion: power by repeated squaring
Recursion = reduction to a simpler case of the same problem
Base case is simple enough for direct computation

(can / need no longer be reduced)

xn =

1 n = 0
(x2)n/2 n > 0 even
x · (x2)n/2 n > 0 odd

double pow2(double x, unsigned n)
{

return n == 0 ? 1
: n % 2 == 0 ? pow2(x*x, n/2)
: x * pow2(x*x, n/2);

}

Wasteful computation when reaching n == 1 (why?).
Try to rewrite.

Let’s follow the recursive calls

#include <stdio.h>

double pow2(double x, unsigned n)
{

printf("base %f exponent %u\n", x, n);
return n > 1 ?

n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2)
: n == 0 ? 1 : x;

}
int main(void)
{

printf("5 to the 6th = %f\n", pow2(5, 6));
return 0;

}

Each call halves the exponent ⇒ 1 + dlog2 ne calls
pow2(5, 6)→ pow2(25, 3)→ pow2(625, 1)

Elements of a recursive definition

1. Base case: no recursive call
= simplest case, defined directly

e.g. in sequences: initial term x0 of the recurrence
the empty list (for a list of elements)

A missing base case is an ERROR ⇒ recursion never stops!

2. the recurrence relation
defines a notion using a simpler case of the same notion

3. Proof/argument that recursion stops in a finite number of steps
(e.g. a nonnegative measure that decreases on each application

for sequences: the index (smaller in definition body but ≥ 0)
for recursive objects: size (component objects are smaller)

Are the following definition recursive and correct ?

? xn+1 = 2 · xn
? xn = xn+1 − 3
? an = a · a · . . . · a (n times)
? a sentence is a sequence of words
? a sequence is the concatenation of two smaller sequences
? a string is a character followed by a string

A recursive definition must be well formed (conditions 1-3)
something cannot be defined only in terms of itself
one can only use other notions which are already defined
computation has to stop at some point

Recursion in numbers: sequences of digits

A natural number (in base 10) can be defined/viewed recursively:
a number is a single digit
or: last digit preceded by another number (in base 10)

We can find the two parts using integer division (with remainder)
n = 10 · (n/10) + n%10 1457 = 10 · 145 + 7
the last digit of n is n%10 1457%10 = 7
the number remaining in front is n/10 1457/10 = 145

Problems with a simple recursive solution:
sum of a number’s digits
number of digits; largest/smallest digit, etc.

Solution: always follow the structure of the recursive definition
base case: directly give result for single-digit number
recurrence: combine last digit with result for remaining number

(n/10)

How many digits in a number?
1, if number < 10
else, one digit more than the number without its last digit (n/10)
unsigned ndigits(unsigned n)
{

return n < 10 ? 1 : 1 + ndigits(n / 10);
}

Alternative: use an accumulator for the digits already counted
start from 1 (last digit already counted; surely has one)
if the number is single-digit, return the digits already counted
else, n/10 still has (at least) one digit, add 1 to parameter

unsigned ndigs2(unsigned n, unsigned r)
{

return n < 10 ? r : ndigs2(n / 10, r + 1);
}

Need function with only one parameter: wrap auxiliary function
(called with starting value 1: single-digit number)
unsigned ndig(unsigned n) { return ndigs2(n, 1); }

Largest digit in a number

base case: single-digit number (digit is also max)
else, max of last digit and result for the remaining number
unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdigit(unsigned n)
{

return n < 10 ? n : max(n%10, maxdigit(n/10));
}

Variant with accumulator: maximal digit seen so far: md
if 0 (no more digits), return the maximum so far: md
else, continue with maximum of last digit and previous max

unsigned maxdig2(unsigned n, unsigned md)
{

return n == 0 ? md : maxdig2(n/10, max(md, n%10));
}
unsigned maxdig(unsigned n) { return maxdig2(n/10, n%10); }

Two ways of writing recursion

unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }

unsigned maxdig(unsigned n) {
return n < 10 ? n : max(n%10, maxdig(n/10));

} // directly from: number ::= digit | number digit

unsigned maxdig2(unsigned n, unsigned maxd) {
unsigned md1 = max(n%10, maxd);
return n < 10 ? md1 : maxdig2(n/10, md1);

} // keep maxd found so far

unsigned maxdig1(unsigned n) {
return n < 10 ? n : maxdig2(n/10, n%10);

} // 1-arg wrapper for function above

Is recursion efficient?

S0 = 1, Sn = Sn−1 + cos n S1000000 = ?

#include <stdio.h>
#include <math.h>

double s(unsigned n) {
return n == 0 ? 1 : s(n-1) + cos(n);

}

int main(void) {
printf("%f\n", s(1000000));
return 0;

}

./a.out
Segmentation fault

Recursion and the stack

Code executes sequentially (except for branch/call/return)

When calling a function, must remember where to return
(right after call)

Must remember function parameters and locals to keep using them

These are placed on the stack
since nested calls return in opposite order made
must restore values in reverse order of saving (last in, first out)

If recursion is very deep, stack may be insufficient⇒ program crash
even otherwise, save/call/restore may be expensive

Tail recursion

S0 = 1, Sn = Sn−1 + cos n
We know we’ll have to add cos n (but not yet to what)
⇒ can anticipate and accumulate values we need to add
When reaching the base case, add accumulator (partial result)

double s2(double acc, unsigned n)
{

return n == 0 ? acc : s2(acc + cos(n), n-1);
}

double s1(unsigned n) { return s2(1, n); } // call w/ S0=1

Program now works!

Tail recursion is iteration!

A function is tail-recursive if recursive call is last in the function.
no computation done after call (e.g., with result)

result (if any) is returned unchanged between calls

⇒ parameter and local values no longer needed
⇒ no need for stack: replace recursive call with jump,
return value at end (base case)

(Optimizing) compiler converts tail recursion to iteration (loop)
need not worry about efficiency

Recursion can express arbitrary repetition

Base case: are we done? return (result)

Recursive case (not done):
compute new partial result
call recursive function with new partial result

(usually an extra parameter, besides initial input)

Exercise: rewrite Fibonacci
extra parameters: last, previous number
stopping condition: all iterations done

Characters. ASCII code
ASCII = American Standard Code for Information Interchange
Characters are represented as a numeric code = index in this table
e.g. ’0’ == 48, ’A’ == 65, ’a’ == 97, etc.

0 1 2 3 4 5 6 7 8 9 A B C D E F
--
0x0 \0 \a \b \t \n \v \f \r
0x10:
0x20: ! " # $ % & ’ () * + , - . /
0x30: 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
0x40: @ A B C D E F G H I J K L M N O
0x50: P Q R S T U V W X Y Z [\] ˆ _
0x60: ‘ a b c d e f g h i j k l m n o
0x70: p q r s t u v w x y z { | } ˜
Prefix 0x denotes hexazecimal constants (in base 16)
Characters < 0x20 (space): control characters
digits; uppercase letters; lowercase letters: 3 contiguous sequences
ASCII: only up to 0x7f (127); then national chars, multi-byte, etc.

The character type
The standard type char is used to represent characters
char is an integer type, with smaller range than int or unsigned
⇒ can be stored in a byte (CHAR_BIT ≥ 8 bits)
char can be signed char, at least -128 to 127,
or unsigned char, at least 0 to 255. Both are included in int.
character constants are written betweeen (single) quotes ’ ’
They are integer values. In expressions: implicitly converted to int
Digits, lowercase letters and uppercase letters are consecutive ⇒
’7’ == ’0’ + 7 ’5’ - ’0’ == 5 ’E’ - ’A’ == 4 ’f’ == ’a’ + 5

Escape sequences (textual representation) for special chars:
’\0’ null ’\n’ newline
’\a’ alarm ’\r’ carriage return
’\b’ backspace ’\f’ form feed
’\t’ tab ’\’’ single quote
’\v’ vertical tab ’\\’ backslash

Writing a character: putchar

Declaration, in stdio.h : int putchar(int c);
Call (sample use): putchar(’7’)

Writes an unsigned char (given as int); returns its value,
or EOF (constant -1) on error

#include <stdio.h>
int main(void)
{

putchar(’A’); putchar(’:’); // writes A then :
putchar(getchar()); // prints character read
return 0;

}

Chars are just ints (stored in one byte).
’A’ is just another way of writing 65 .

Review: conditional expression
condition ? expr1 : expr2 everything is an expression
expr1 or expr2 may be conditional expression themselves
(if we need more questions to find out the answer)

f (x) =

−6 x < −3

2 · x x ∈ [−3, 3]
6 x > 3

double f(double x)
{

return x < -3 ? -6 // else, we know x >= -3
: x <= 3 ? 2*x : 6;

}

or: x >= -3 ? (x <= 3 ? 2*x : 6) : -6
if x ≥ −3 we still need to ask x ≤ 3 ?

or: x < -3 ? -6 : (x > 3 ? 6 : 2*x)
if x is not < −3 or > 3, it must be x ∈ [−3, 3]

Conditional expression (cont’d)

The conditional expression is an expression
⇒ may be used anywhere an expression is needed

Example: as an expression of type string in puts
(function that prints a string to stdout, followed by a newline)

void printsgn(int n)
{

puts(n == 0 ? "zero"
: n > 0 ? "positive"
: "negative");

}

Note layout for readability: one question per line.

Expressions and statements

Expression: computes a result
arithmetic operations: x + 1
function call: fact(5)

Statement: executes an action
return n + 1;

Any expression followed by ; becomes a statement
n + 3; (computes, but does not use the result)
printf("hello!"); we do not use the result of printf

but are interested in the side effect, printing
printf returns an int: number of chars written (rarely used)

Statements contain expressions. Expressions don’t contain statements.

Sequencing

Statements are written and executed in order (sequentially)
With decision, recursion and sequencing we can write any program

Compound statement: several statements between braces { }
A function body is a compound statement (block).
{

statement
...
statement

}

{
int c = getchar();
printf("let’s print the char: ");
putchar(c);

}
A compound statement is considered a single statement.
May contain declarations: anywhere (C99/C11)/at start (C89).
All other statements are terminated by a semicolon ;

The sequencing operator is the comma: expr1 , expr2
Evaluate expr1, ignore, the value of the expression is that of expr2

The conditional statement (if)
Conditional operator ? : selects from two expressions to evaluate
Conditional statement selects between two statements to execute
Syntax:
if (expression)

statement1
else

statement2

or if (expression)
statement1

Effect:
If the expresson is true (nonzero) statement1 is executed,
else statement2 is executed (or nothing, if the latter is missing)

Each branch has only one statement. If several statements are
needed, these must be grouped in a compound statement { }

The parantheses () around the condition are mandatory.
The else branch always belongs to the closest if :
if (x > 0) if (y > 0) printf("x+, y+"); else printf("x+, y-");

Example with the if statement
Printing roots of a quadratic equation:

void printsol(double a, double b, double c)
{

double delta = b * b - 4 *a * c;
if (delta >= 0) {

printf("root 1: %f\n", (-b-sqrt(delta))/2/a);
printf("root 2: %f\n", (-b+sqrt(delta))/2/a);

} else printf("no solution\n"); // puts("no solution");
}

Can rewrite the conditional operator ? : using the if statement

int abs(int x)
{

return x > 0 ? x : -x;
}

int abs(int x)
{

if (x > 0) return x;
else return -x;

}

Decisions with multiple branches

The branches of an if can be any statements
⇒ also if statements
⇒ can chain decisions one after another

void binop(int a, int b, int op) // op: operator (char)
{

if (c == ’+’) printf("sum: %d\n", a + b);
else if (c == ’-’) printf("diff: %d\n", a - b);
else puts("bad operator");

}

The checks c==’+’ and c==’-’ are not independent. DON’T write
if (c == ’+’) printf("sum: %d\n", a + b);
if (c == ’-’) printf("diff: %d\n", a - b);
It is pointless do the second test if the first was true

(c cannot be both + and -)
The proper code is with chained ifs (or a switch statement)

Decisions with multiple branches
If each branch ends with returning a value, the else is not needed:
we only get to a branch if the previous condition was false
(else the function will have returned):
int binop(int a, int b, int op) // op: operator (char)
{

if (c == ’+’) return a + b;
if (c == ’-’) return a - b; // can’t be here for c == ’+’
puts("bad operator"); return 0; // any other case

}

Often, we first deal with error cases, then do the actual processing:
int check_interval(int n) {

if (n > 100) { puts("number too big"); return -1; }
if (n < 0) { puts("number is negative"); return -1; }
// do something with n here
return 0; // means OK

}

Example with if: printing a number

#include <stdio.h>

void printnat(unsigned n) { // recursive, digit by digit
if (n >= 10) // if it has several digits

printnat(n/10); // write first part
putchar(’0’ + n % 10); // always write last digit

}

int main(void)
{

printnat(312);
return 0;

}

