
Computer Programming

Recursion. Assignment. Iteration

Marius Minea
marius@cs.upt.ro

12 October 2015

mailto:marius@cs.upt.ro

Write functions to reuse code!

Copy-paste is bad! Any later change must be done twice.
Code used multiple times should be put in a function

Example: median of three numbers.
After comparing two numbers, we know smaller and larger one:
⇒ need same computation, with switched numbers ⇒ function!
double min(double x, doubly y) { return x < y ? x : y; }

// know hi <= lo, nothing about c
double med_aux(double lo, double hi, double c) {

return c < lo ? lo : min(c, hi);
}

double med(double a, double b, double c) {
return a < b ? med_aux(a, b, c) : med_aux(b, a, c);

}

Compiler will optimize and inline function calls if needed.

Recursion: reformulating problem

Anything that a function needs becomes a parameter!
Fibonacci sequence: F0 = 0,F1 = 1,Fn = Fn−1 + Fn−2, n > 1.
Naive translation is inefficient, recomputes same terms.
⇒ notice last and next-to-last terms are needed ⇒ parameters
// on each call, last = Fn, prev = F_n-1
unsigned fib3(unsigned n, unsigned last, unsigned prev) {

return n > 0 ? fib3(n - 1, last + prev, last) : last;
}

// initial call: last = 0, prev = 1 (as if index = -1)
unsigned fib(unsigned n) { return fib3(n, 0, 1); }

// or: special case for 0 and 1, then n - 1 additions
unsigned fibo(unsigned n) {

return n < 1 ? n : fib3(n - 1, 1, 0);
}

Recursion: reverse digits in number

Often, problem restated with explicit partial result (accumulator)

n r
1465 empty(0)

146 5
14 56

1 564
empty(0) 5641

What is the result of reverting
given that
the end has already been reverted
the resulting number is r
and remaining part is n?

unsigned rev2(unsigned n, unsigned r) {
return n == 0 ? r : rev2(n/10, 10*r + n % 10);

}
// initial reversed part is zero
unsigned rev(unsigned n) { return rev2(n, 0); }

Careful: return in base case must use accumulator
(else computation is thrown away!)

Recursion can express arbitrary repetition

Base case: are we done? return (result)

Recursive case (not done):
compute new partial result
call recursive function with new partial result

(usually an extra parameter, besides initial input)

Recursion for computing approximations: square root

Babylonian method: a0 = 1, an+1 = 1
2(an + x

an
)

recurrent sequence of approximations ⇒ recursive solution
given (parameters): x and the current approximation
result = a satisfactory approximation (precision ε)

Re-state problem: compute
√

x given current approximation an
In recursion, partial result is usually carried as parameter

Computation:
if precision good |an+1−an|<ε return current approximation an

(base case)
else, return value computed starting from new approximation an+1

(recursive call)
We no longer need an index n, and the base case is not n = 0
(but it’s still the case when nothing left to compute)

Can prove: error to
√

x is less than distance between last two terms

Square root by approximation
#include <math.h>
// needed for double fabs(double x); (abs. value for reals)

// root of x with error < 1e-6 given approximation an
double root2(double x, double an)
{

return fabs(an - x/an) < 2e-6 ? an
: root2(x, (an + x/an)/2);

}
double root(double x) { return x < 0 ? -1 : root2(x, 1); }

Two functions:
auxiliary root2 needs two parameters (also approximation)
for user: root defined as required: only one parameter

returns -1 for negative numbers (error code)

Recall: this form is tail recursion: recursive call is last computation.
Compiler can convert this to iteration (efficient).

Reading a character: getchar()

Declaration, in stdio.h : int getchar(void);
Call (use): getchar() without parameters, but with ()

Returns an unsigned char converted to int,
or the value EOF (negative int, usually -1) if no char could be read
(e.g. at end-of-file)

The character read is consumed from input (no longer available);
next call to getchar() returns next character (not the same!)

getchar() needs to return int, not char to also include EOF
(negative, different from any unsigned char)
When typing, characters are echoed, and placed in a buffer.
They are available to getchar() only after typing Enter.

WARNING! We have NO CONTROL over input data!
⇒ program must validate (check) them, and handle errors

Side effects

Pure computation has no other effect: this program prints nothing!
int sqr(int x) { return x * x; }
int main(void) { return sqr(2); }

Repeatedly calling the same function (in mathematics, or examples
sqr, pwr, etc.) with the same parameters gives the same result.
Output (printf) produces a visible (and irreversible) effect.
Input (with getchar()) returns a different character on each call;
the character is consumed.

A change in the state of the execution environment is called
a side effect (e.g., reading, writing, assignment).

Combining functions that have side effects requires a lot of care,
since they also interact through these effects.
⇒ write side-effect free functions whenever possible!

Reading a natural number

The number is read as string of digits; base case: last digit
Consider c1c2 . . . cm, and the partial sequences c1, c1c2, c1c2c3, . . .
We have: r0 = 0, rk = 10 · rk−1 + ck , (k > 0).

Redefine the problem: Define a function that computes the number
from the already read part r and the current digit c:
– when the char read is not a digit, return accumulated number r
– else, recursive call with 10 · r + c, reading next character

WARNING! getchar() returns the character code (e.g. ASCII),
NOT the value of the digit

when typing 6, getchar() does NOT return 6, but ’6’
⇒ we adjust with -’0’: 6 == ’6’ - ’0’

Reading a natural number (cont.)
ctype.h has declarations of functions for classifying characters:
isalpha, isalnum, isdigit, isspace, islower, isupper, etc.
They take a character as parameter and return true (nonzero) or
false (zero) (the character is of the stated type, or not)
Redefined problem: Define a function that computes the number
from the already read part r and the current digit c:
#include <ctype.h>
#include <stdio.h>
unsigned readnat_rc(unsigned r, int c) {

return isdigit(c) ? readnat_rc(10*r+(c-’0’), getchar()) : r;
}

The new char read is passed as argument to the next recursive call.

Initially, we start from number 0 and the first character read:
unsigned readnat(void) { return readnat_rc(0, getchar()); }
Note: no error checking; consumes first character that is not a digit

From parameters to variables

So far, we’ve written functions that work with their parameters
Parameters are bound at call time to the values of the arguments.

Sometimes, we repeatedly need to work with values that are
obtained within a function ⇒ need to also bind these to a name.

We declare a (local) variable and initialize it with a value.
This is not assignment, we still don’t need to change the value!

readnat can read the char c rather than get it as parameter:
unsigned readnat_r(unsigned r)
{

int c = getchar();
return isdigit(c) ? readnat_r(10*r + (c-’0’)) : r;

}
unsigned readnat(void) { return readnat_r(0); }

Dealing with the extra character
Reading a number stops at the first non-digit (or EOF).
That char is not part of the number and should not be consumed.

int ungetc(int c, FILE *stream); puts a character c back
into a given input stream (file).
For now, we use standard input: ungetc(c, stdin)

unsigned readnat_r(unsigned r) {
int c = getchar();
if (isdigit(c)) return readnat_r(10*r + (c-’0’));
else { ungetc(c, stdin); return r; }

}
unsigned readnat(void) { return readnat_r(0); }

We could also use comma as sequencing operator for expressions:
return isdigit(c) ? readnat_r(10*r + (c-’0’))

: (ungetc(c, stdin), r);

The expression before the comma is evaluated, its value is ignored,
the value of the entire expression is that of the second part.

Reading an integer

We now read an integer, with an optional sign
int readint(void)
{

int c = getchar();
return c == ’-’ ? - readnat()

: c == ’+’ ? readnat() : (ungetc(c, stdin), readnat());
}

If c is not a sign, it may be the first digit of the number
ungetc(c, stdin) puts c back into standard input
it will be returned again on the next read, e.g. with getchar()

Declaring variables
A variable is an obiect with a name and a type.
It stores values (other than function arguments) needed later

parameters: for values given to the function (by the caller)
variables: for (auxiliary) values computed in the function

Variable declaration: for one or more variables of the same type:
double x;
int a = 1, b, c;

a is initialized with 1, the other variables are not

WARNING! Variables declared locally in a block (function) are
NOT initialized by default!

When we declare a variable, we should know why we need it
⇒ good practice to initialize it immediately with the needed value

A function body { } is a sequence of declarations and statements
since C99, declarations and statements can appear in any order
(in previous standards: first all declarations, then statements)

Variables: scope and lifetime

The scope of an identifier (e.g., variable) is the program region
where it is visible (can be used)
Function parameters and variables declared in functions have the
function body as scope ⇒ are not visible outside the function
Thus, parameter names for different functions do not conflict
like in mathematics, we can have f (x) = . . . and g(x) = . . .
same for local variables

The storage duration or lifetime of an object (e.g., variable) is the
part of program execution during which storage is reserved for it.
Local variables have automatic storage duration:
they are automatically created on each call and destroyed on return
(they do not exist between calls, thus do not preserve their value)

Logical expressions in C

The condition in the if statement or the ? : operator is usually a
relational expression, with a logical value: x != 0, n < 5, etc.
The C language was conceived without a special boolean type
since C99, stdbool.h has type bool, false (0) and true (1)

A value is considered true when nonzero and false when zero
(when used as a condition in ? : , if , while etc.)
⇒ condition must have scalar type (integer, floating point, enum)
Comparison operators (== != < etc.)
return the integer values 1 (for true) or 0 (for false)
⇒ suitable for direct use as conditions

Library functions often return zero or nonzero (NOT zero or one!)
only compare if (isdigit(c)) (nonzero), don’t compare to 1 !

Logical operators

With logical operators, we can write complex decisions:

expr ! expr
0 1
6= 0 0
negation ! NOT

e1

e2
e1 && e2 0 6= 0

0 0 0
6= 0 0 1

conjunction && AND

e1

e2
e1 || e2 0 6= 0

0 0 1
6= 0 1 1

disjunction || OR

Reminder: logical operators produce 1 for true, 0 for false
An integer is interpreted as true if nonzero, and as false if 0

Example: leap year

Years divisible by 4 are leap years
except those divisible by 100 which are not
except those divisibile by 400 which still are

Can’t directly translate like this
(can’t write exception case after normal case already handled)
⇒ need to reverse order:

int isleap(unsigned yr)
{

if (yr % 400 == 0) return 1;
if (yr % 100 == 0) return 0;
return yr % 4 == 0;

}

Example: leap year

A year is a leap year if

it is divisible by 4 and
it is not divisible by 100 or it is divisible by 400

int isleap(unsigned yr) // 1: leap year, 0: not
{

return yr % 4 == 0 && (!(yr % 100 == 0) || yr % 400 == 0);
}

!(yr % 100 == 0) is equivalent with (yr % 100 != 0)

Precedence of logical operators

The unary logical operator ! (logical negation): highest precedence
if (!found) same as if (found == 0) (zero is false)
if (found) same as if (found != 0) (nonzero is true)

Relational operators: lower precedence than arithmetic ones
⇒ we can naturally write x < y + 1 for x < (y + 1)

Precedence: > >= < <= , then == !=

Binary logic operators: && (AND) evaluated before || (OR)
have lower precedence than relational operators
⇒ can naturally write x < y + z && y < z + x

Short-circuit evaluation
Logical expressions are evaluated left to right
(in general, for other operators, evaluation order is unspecified)
Evaluation stops (short-circuit) when the result is known:

for &&, when the left argument is false (right is not evaluated)
for ||, when the left argument is true

if (p != 0 && n % p == 0)
printf("p divides n");

if (p != 0) // only if nonzero
if (n % p == 0) // test the remainder

printf("p divides n");

⇒ Be careful when writing compound tests!
⇒ Avoid side-effects in compound tests (or place them first)

Precedence and evaluation order are different notions!
2 * f(x) + g(x) : multiplication before addition (precedence)
Unspecified which part of sum is evaluated first (f or g)

Assignment

In recursive functions we don’t need to change variable values
a programming style typical for (pure) functional languages

Recursive calls create new parameter instances with new values.
In imperative programming, we use:
variables to represent objects used in solving the problem

(current character; partial result; number left to process)
assignment, to give a new value to a variable

(to express a computation step in the program)

Syntax: variable = expression
Everything is an assignment expression.
Effect: 1. The expression is evaluated
2. the value is assigned to the variable and becomes the value of
the entire expression.
Example: c = getchar() n = n-1 r = r * n

Assignment (cont’d)

May appear in other expressions:
if ((c = getchar()) != EOF) . . .

May be chained: a = b = x+3 a and b get the same value

Any expression (function call, assignment) with ; is a statement
printf("hello"); c = getchar(); x = x + 1;

A variable changes value only by assignment!
NOT in other expressions, or by passing as parameter!
n + 1 sqr(x) toupper(c) compute, DON’T change!
n = n + 1 x = sqr(x) c = toupper(c) change

WARNING! = assignment == comparison.

From recursion to iteration

Recall: reversing a number

rev(n , r)
rev(465 , empty(0))
rev(46 , 5)
rev(4 , 56)
rev(0 , 564)

We have done repeated processing through recursion
on each call, new values for parameters

n/10, 10*r+n%10
condition controls repetition (call) or termination (base case)

n == 0
one function for each repetitive computation

Iteration. The while loop (initial test)

Expresses the repetition of a statement, guarded by a condition:

Syntax:
while (expression)

statement

!!! Expression must be
between parantheses ()

?

H
HH���HHH��
�expression

?true

-
false

?

statement

?�

6
-

Semantics: evaluate expression. If it is true (nonzero):
(1) execute statement (loop body)
(2) go back to start of while (evaluate expression)

Else (if condition is false/zero), don’t execute anything.
⇒ body executes repeatedly, as long as (while) condition is true

Iteration and recursion

We can define iteration (the while loop) recursively:

while (expression)
statement

is the same as

if (expression) {
statement
while (expression)

statement
}

Recursion is fundamental. It can express any iteration.

Rewriting recursion as iteration

unsigned fact_r(unsigned n,
unsigned r) {

return n > 0
? fact_r(n - 1, r * n)
: r;

}
// called with fact_r(n, 1)

unsigned fact_it(unsigned n) {
unsigned r = 1;
while (n > 0) {

r = r * n;
n = n - 1;

}
return r;

}

int pow_r(int x, unsigned n,
int r) {

return n > 0
? pow_r(x, n-1, x*r)
: r;

}
// called with pow_r(x, n, 1)

int pow_it(int x, unsigned n) {
int r = 1;
while (n > 0) {

r = x * r;
n = n - 1;

}
return r;

}

Rewriting recursion as iteration

Easier if function is written by accumulating a partial result
(tail recursion)
Stop test and initial result value are the same as in recursion
Recursion creates new instances of parameters for each recursive
call, with new values dependent on the old ones:

ex. n * r, n - 1, x * r, etc.
Iteration updates (assigns) values to variables in each iteration,
using the same rules/expressions

Ex. r = n * r, n = n - 1, r = x * r

Both variants return the accumulated result

Caution! Recursion and iteration both repeat a processing step
⇒ in a problem we use one or the other, rarely both

Reading a number iteratively, digit by digit

#include <ctype.h> // for isdigit()
#include <stdio.h> // for getchar(), ungetc(), stdin
unsigned readnat(void)
{

unsigned r = 0; // accumulates result
int c; // character read
while (isdigit(c = getchar())) // while digit

r = 10*r + c - ’0’; // build number
ungetc(c, stdin); // put back char != digit
return r;

}
int main(void) {

printf("number read: %u\n", readnat());
return 0;

}

Basic text processing: reading all text

Reading all input, doing nothing
(body of while is empty, ; is the empty statement)

Caution! Do not write ; after while unintentionally!

#include <stdio.h>

int main(void) {
int c;
while ((c = getchar()) != EOF);
return 0;

}

Reading and printing all input:

int c;
while ((c = getchar()) != EOF)

putchar(c);

Basic text processing: finding a char
int c;
while ((c = getchar()) != EOF)

if (c == ’.’) puts("Found period!");

Often, we search for more text of some sort after that character.
looking for the first word:

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF)

if (c == ’.’) { // found period
while (isspace(c = getchar())); // skip whitespace
// print next word made of letters
while (isalpha(c = getchar())) putchar(c);

}
return 0;

}

Reading character by character: filters

Function that reads and prints up to a specified character
returns that character or EOF if reached before that char
int printto(int stopchar) // up to what char ?
{

int c;
while ((c = getchar()) != EOF && c != stopchar)

putchar(c);
return c;

}
DON’t forget () (c=getchar())!=EOF (assign, then compare)

int skipto(int stopchar) // ignore up to stopchar
{

int c;
while ((c = getchar()) != EOF && c != stopchar);
return c;

}
; after while means an empty loop body. Don’t use by mistake!

ERRORS with characters and loops

NO! char c = getchar(); YES: int c = getchar();
If char is unsigned char, c will never compare equal to EOF (-1)
⇒ will never leave a while (c != EOF) loop

If char is signed char, reading byte 255 becomes -1 (EOF)
⇒ a valid char (code 255) will be taken as EOF (early stop)

NO! while (!EOF) EOF is a nonzero constant (-1)
thus the condition is always false, the loop is never entered!
YES: while ((c = getchar()) != EOF) and careful with the () !
NO! while (c = getchar() != EOF)
!= has higher precedence, its result (0 or 1) is assigned to c

NO! int c = getchar(); if (c < 5) puts("failed exam");
c is ASCII code, not value of a one-digit number. Need c-’0’

NO! while ((c = getchar()) != ’\n’) may loop forever!
YES: while ((c = getchar()) != ’\n’ && c != EOF) will exit!

Text processing: pattern starting with given char

If we search for text starting with a given char,
continue checking for text in the if () that has found that char:
e.g. ignore \ if followed by letters, print rest
#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF) {

if (c == ’\\’) // found backslash
if (isalpha(c = getchar())) // if letter

while (isalpha(c = getchar())); // skip more letters
else putchar(’\\’);

putchar(c); // print, also after cases above
}
return 0;

}

This has a slight problem, do you notice ?

Text processing: pattern starting with given char
If string of letters ends with EOF, will also try to print EOF

-1 converted to code 255 (strange character, ÿ)

When searching for a given char, must also test for EOF
When using a char (e.g. after a loop), must check it’s not EOF

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF) {

if (c == ’\\’) { // found backslash
if (isalpha(c = getchar())) // skip any letters

while (isalpha(c = getchar()));
else putchar(’\\’); // no letters
if (c != EOF) putchar(c); // last char read

} else putchar(c); // not backslash
}
return 0;

}

Finding repeated patterns

Ex: ignore \ followed by repeated text between braces
\{text1}{text2}...

#include <stdio.h>
int main(void) {

int c;
while ((c = getchar()) != EOF)

if (c == ’\\’) { // found backslash
while ((c = getchar()) == ’{’)

while ((c = getchar()) != ’}’)
if (c == EOF) return 1; // incomplete

if (c != EOF) putchar(c); // char after pattern
} else putchar(c); // anything else

return 0;
}

Often, it is useful two write functions for parts of the pattern
(makes code more manageable)

The do-while loop (final test)

do
statement

while (expression);

?
statement

?

HH
H���

HHH��
�expression

true
false

�

?

6
-

Sometimes we know that a cycle needs to be executed at least once
(we read at least one character, a number has at least one digit)
Like the while loop, executes statement as long as the expression
evaluates to true (nonzero)
Expression is (re)evaluated after every iteration

Equivalent with:
statement
while (expression)

statement

Writing and testing loops

We should consider:
what variable changes in each iteration ?
what is the loop continuation/stopping condition ?

Don’t forget update of variable that controls loop
(otherwise will loop forever)

What do we know on exiting the loop ? The loop condition is false.
we consider this as we reason further about the program

We inspect/check/test the program:
mentally, running it “pencil and paper” on simple cases
then with increasingly complex tests, including corner cases

