
Computer Programming

Hashing. Randomization. Timing

Marius Minea
marius@cs.upt.ro

9 January 2016

mailto:marius@cs.upt.ro


Looking up values

Lookup or search is a basic, widely encountered problem

1) find whether we have seen a value before
= set: store all values seen so far

2) retrieve information associated to some identifier k (called key)
= function f (k) from key k to value (info)

implemented as map (dictionary, association): (key, value) pair

in some languages, maps are primitive data types
others have libraries



Hashing. Hash Tables

used for maps from arbitrary keys to values
arrays only work when keys are integers (in a given range)

Idea: find a function h with an integer value in a restricted range
(usable as index in an array)
Every object (key) x is stored in array at index h(x)

(usually, h(x) modulo table size)

Objects with different hash value are surely different
Different objects may have same hash value (collision)



Hash functions

need to be fast (easily computed), mixing all bytes of the object
have few collisions (esp. for objects with close/related values)

clearly, collisions cannot be avoided if domain larger than range
Examples for strings:
for (h=len; len--;) h = ((h<<7) ˆ (h<<27)) ˆ *s++; // Knuth
for (h=5381; c=*s++; ) h += (h << 5) + c; // Bernstein
for (h=0; c=*s++; ) h = (h<<6) + (h<<16) - h + c; // SDBM

Hash functions usually return (32-bit) integers

Cryptographic functions need more stringent randomness properties
and have larger bit width (≥ 224 bits currently)



Open and closed hashing

Closed hashing
if a different object is found at index idx=h(x), continue search
using a sequence of indices:

sequential: idx++, linear: idx+=i
with another hash function: idx+=h2(x) until element found

when table fills up, objects must be re-hashed
deleted objects must be marked (6= empty) to stop useless search

Open hashing
entry in hash table is (linked) list of objects with same hash value
⇒ hashing followed by linear search in (hopefully short) list

need dynamic allocation for list elements
hash table size comparable to element count (avoid long lists)



Cuckoo hashing (Pagh & Rodler 2001)

constant-time lookup
amortized constant-time insert

Each key may be found in one of two locations
(use two different hash functions)
On collision, displace existing key to 2nd location;
if that location is full, successively displaced
If a cycle is reached, rebuild (larger) table

Works well up to ∼ 50% fill factor

Arrows in figure show alternate location for a key

Image: http://en.wikipedia.org/wiki/File:Cuckoo.svg

http://en.wikipedia.org/wiki/File:Cuckoo.svg


Date and time (time.h)

time.h contains structures and functions to measure time
clock_t and time_t are real types representing times
struct tm holds a broken-down calendar time (sec, min, ... year)
struct timespec holds time in seconds and nanoseconds

clock_t clock(void);
returns (approximation) of processor time used
divide by CLOCKS_PER_SEC (usually 106) to get time in seconds

int timespec_get(struct timespec *ts, int base);
gives time in s and ns since a reference point base (use TIME_UTC)
struct timespec {

time_t tv_sec;
long tv_nsec;

};



Measuring time

Place the code to be benchmarked in a loop running many times
total time: order of seconds (account for limited clock precision)

Ensure compiler doesn’t optimize away repetition (check assembly)
e.g. computing/assigning the same value many times
may need to use volatile specifier for variables

(forces writing/reading to memory every time, like in source)

Repeat measurements and make an average.

Time may be affected by other running processes, caching, etc.



Pseudo-random numbers (stdlib.h)

Only natural phenomena can be truly random.
Computer uses algorithm to generate numbers ⇒ pseudo-random

period of number generator should be high
all bits should appear to be random

Quality of stdlib random number generator may not be high
(esp. for lower bits)

Need to use special RNG in cryptography applications.

int rand(void);
returns an integer in range 0 to RAND_MAX (at least 215 − 1)
Re-running program will produce the same sequence of numbers!
⇒ need to initialize state of RNG with a seed

void srand(unsigned int seed);
could use calendar time (seconds) as seed – different in each run
e.g. srand((unsigned)time(NULL));


