Computer Programming Recursion. Decision.

Marius Minea marius@cs.upt.ro

2 October 2017

```
Review: ways to write a function
   Computes a value
   double discrim(double a, double b, double c)
   {
     return b*b - 4*a*c:
   }
   Produces an effect (e.g. prints a message)
   void myerr(int code) // void type: returns nothing
   ſ
     printf("error code %d\n", code);
   }
   Has effect + value (computes + writes: several statements)
   int sqrprint(int x)
   ł
     printf("Computing the square of %d\n", x);
     return x * x;
   }
```

Review: structure of a simple program

#include <stdio.h> // if we need to read/write
#include <math.h> // if we use math functions

// function definition: third side of a triangle
double thirdside(unsigned a, unsigned b, double phi)
{

// the expression contains 2 function calls: cos, sqrt
return sqrt(a*a + b*b - 2*a*b*cos(phi));
} // define before main, call in main

```
int main(void)
```

```
{
```

}

// function call with values for its arguments
printf("third side: %f\n", thirdside(3, 5, atan(1)));
return 0;

Program structure: separating concerns

passing an argument is NOT *reading* from input *computing* a value is NOT *writing* it

A function will typically NOT ask for input. The smallest functions will *receive arguments* and *return results*

This allows them to be composed and used anywhere.

A function will typically NOT print its result, just return it. (printing is inflexible: may want different format, language, etc.)

We might write "wrapper" functions that ask for input, then call the computation function.

We might also write display functions that get a value and print it.

Functions with and without result

(Computational) problems are solved by writing *functions*. *data*: usually given as arguments: f(3, 7), *NOT* read from input

Functions with result

produced with the statement return expression ;
 must appear at end of any path (if branch) through function
 else the function won't return a result!
warning: control reaches end of non-void function
 CAUTION! in statement f(5); returned value is not used
 use it: return f(5); , as parameter printf("%d", f(5)), etc.

Functions that don't return a value: return type void void print_int(int n) { printf("integer %d\n", n); } returns on reaching closing brace OR return; (NO expression) use: standalone in an expression statement: print_int(7);

Recursion

any solvable complex problem can be solved using recursion

 \Rightarrow recursion is *fundamental in computer science*

Computing arithmetic expressions

Take some expression using integer arithmetic: (2+3) * (4+2*3) - 5 * 6/(7-2) + (4+3-2)/(7-3)

Can we compute it?

YES, once we realize the *expression* is the *sum* of two *expressions*

$$(2+3)*(4+2*3)-5*6/(7-2)$$

+ $(4+3-2)/(7-3)$

We then compute the simpler expressions decomposing similarly:

$$(2+3)*(4+2*3) - 5*6/(7-2) = 44$$

 $(4+3-2) / (7-3) = 1$
 $44 + 1 = 45$

Problem-solving steps

What was essential to compute the expression ?

- Recognizing the recursive structure expression is sum of two simpler expressions
- Expressing the simplest computation steps we can add, divide, etc. two numbers
- Deciding when to stop

if expression is a number, need to do nothing

Recursion: definition, examples

From mathematics, we know recurrence relations for sequences:

arithmetic sequence: $\begin{cases} x_0 = b & (i.e.: x_n = b \text{ for } n = 0) \\ x_n = x_{n-1} + r & \text{ for } n > 0 \end{cases}$ Example: 1,4,7,10,13,... (b = 1, r = 3)

geometric sequence: $\begin{cases} x_0 = b & (i.e.: x_n = b \text{ for } n = 0) \\ x_n = x_{n-1} \cdot r & \text{ for } n > 0 \end{cases}$ Example: 3, 6, 12, 24, 48, ... (b = 3, r = 2)

 x_n is not computed *directly*, but *step by step*, using x_{n-1} .

A notion is *recursive* if it is *used in its own definition*.

Exercise: write recurrences for: C_n^k , Fibonacci sequence, ...

Recursion: definition, examples

Recursion is fundamental in computer science: it reduces a problem to a simpler case of the *same* problem

Example: power function

$$x^{n} = \begin{cases} 1 & n = 0\\ x \cdot x^{n-1} & \text{otherwise } (n > 0) \end{cases}$$

```
#include <stdio.h>
double pwr(double x, unsigned n)
{
    return n==0 ? 1 : x * pwr(x, n-1);
}
int main(void)
{
    printf("-2 raised to 3 = %f\n", pwr(-2.0, 3));
    return 0;
}
```

unsigned: type of nonnegative integers (natural numbers)

The *header* of pwr is a *declaration* of the function so it can be used in its own function body (*recursive call*) Even if we write pwr(-2, 3), -2 (int) will be *converted* to float

(the type declared for each parameter is known)

The mechanism of a recursive call

Same code executed many times with different values.

```
The pwr function does two computations:
- a test (n == 0 ? base case ?) if so, return 1
- else, a multiply; the right operand requires a new recursive call
          pwr(5, 3)
                 call↓ ↑125
                    5 * pwr(5, 2)
                           call↓ ↑25
                              5 * pwr(5, 1)
                                     call↓ ↑5
                                        5 * pwr(5, 0)
                                               call↓↑1
                                                  1
```

The mechanism of a recursive call

In the recursive computation of the power function:

Every call makes a new call, until the base case it reached

Every call executes *the same code*, but with *other data* (own values for parameters)

When reaching the base case, all started calls are still *unfinished* (each has to perform the multiplication with the result of the call)

Returning is done *in opposite order* of the calls (call with exponent 0 returns, then the one with exponent 1, etc.)

Recursion: power by repeated squaring

Recursion = reduction to a *simpler* case of the *same* problem *Base case* is simple enough for direct computation (can / need no longer be reduced)

$$x^n = \left\{ egin{array}{ccc} 1 & n = 0 \ (x^2)^{n/2} & n > 0 ext{ even} \ x \cdot (x^2)^{n/2} & n > 0 ext{ odd} \end{array}
ight.$$

```
double pow2(double x, unsigned n)
{
   return n == 0 ? 1
      : n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);
}
```

Recursion: power by repeated squaring (v. 2)

What happens for n = 1 ? needless computation of $(x^2)^0$ (which is 1) \Rightarrow rewrite:

$$x^{n} = \begin{cases} 1 & n = 0 \\ x & n = 1 \\ (x^{2})^{n/2} & n > 1 \text{ ever} \\ x \cdot (x^{2})^{n/2} & n > 1 \text{ odd} \end{cases}$$

```
double pow2(double x, unsigned n)
{
  return n < 2 ? n == 0 ? 1 : x
      : n % 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);
}</pre>
```

Let's follow the recursive calls

```
#include <stdio.h>
double pow2(double x, unsigned n)
ſ
 printf("base %f exponent %u\n", x, n);
 return n < 2? n == 0? 1 : x
    : n \% 2 == 0 ? pow2(x*x, n/2) : x * pow2(x*x, n/2);
}
int main(void)
ł
 printf("5 to the 6th = f^{n}, pow2(5, 6));
 return 0;
}
```

```
Each call halves the exponent \Rightarrow \lceil \log_2(n+1) \rceil calls pow2(5, 6) \rightarrow pow2(25, 3) \rightarrow pow2(625, 1)
```

Recursion solves a problem by reducing it to a simpler case of the same problem.

To use recursion, we must express the problem as a *function* things given/known to the function are *parameters* (index of recursive sequence; problem size; etc.) the answer to the problem is the function *result*

Sometimes, the problem asks to *produce an effect* (print) rather than compute a result.

Block statements and sequencing

A function body may have several statements in sequence

```
{
    printf("This is a line\n");
    printf("Line 2: ");
    printf("cos(0)=%f\n", cos(0));
    return 0;
}
```

Function returns on reaching closing brace OR return statement.

More generally, a *block* (compound statement) can appear in place of any statement.

This is an example of *recursion* in the *definition of statements*: *statement* ::= return *expression*_{optional}; *expression*_{optional}; (incl. function call) { *statement* ... *statement* }

The if statement

Conditional operator ? : selects from two expressions to evaluate Conditional statement selects between two statements to execute Syntax: if (expression) or if (expression) statement1 statement1 else statement2

Effect: If the expression is *true* (nonzero) *statement1* is executed, else *statement2* is executed (or nothing, if the latter is missing)

Each branch has only *one* statement. If several statements are needed, these must be grouped in a *compound statement* { }

An else belongs to the closest if: if1 (exp1) if2 (exp2) stmt_then else2 stmt_else The parantheses () around the condition are mandatory.

Example with the if statement

```
Printing roots of a quadratic equation:
void printsol(double a, double b, double c)
{
    double delta = b * b - 4 *a * c;
    if (delta >= 0) {
        printf("root 1: %f\n", (-b-sqrt(delta))/2/a);
        printf("root 2: %f\n", (-b+sqrt(delta))/2/a);
    } else printf("no solution\n"); // puts("no solution");
}
```

Can rewrite the *conditional operator* ? : using the if *statement*

Recursion: Fibonacci words

Fibonacci sequence: $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$ for n > 1 inefficient to do direct recursion (exercise: how many calls?)

Can define Fibonacci words (strings): $S_0 = 0, S_1 = 01, S_n = S_{n-1}S_{n-2}$ (formed by string *concatenation*)

Write a function that prints S_n problem = function; effect = print; concatenation = sequencing

More recursion: fractals

Fractals are *self-similar* figures (a part of the figure looks like the whole figure = recursion!)

What is the base case? What defines a part of the figure?

http://mathworld.wolfram.com/BoxFractal.html

Elements of a recursive definition

- 1. Base case: no recursive call
- = simplest case, defined directly

e.g. in sequences: initial term x_0 of the recurrence the empty list (for a list of elements)

- A missing base case is an *ERROR* \Rightarrow recursion never stops!
- 2. Recurrence relation

defines a notion using a simpler case of the same notion

3. *Proof* (argument) that recursion stops in finite number of steps (e.g. a nonnegative measure that decreases on each application for sequences: the index (smaller in definition body but ≥ 0) for recursive objects: size (component objects are smaller)

Are the following definition recursive and correct ?

?
$$x_{n+1} = 2 \cdot x_n$$

? $x_n = x_{n+1} - 3$
? $a^n = a \cdot a \cdot \ldots \cdot a (n \text{ times})$
? a sentence is a sequence of words
? a sequence is the concatenation of two smaller sequences

- $?\,$ a string is a character followed by a string
- A recursive definition must be *well formed* (conditions 1-3) something cannot be defined only in terms of itself one can only use other notions which are already defined computation has to stop at some point

Recursion in numbers: sequences of digits

- A natural number (in base 10) can be defined/viewed recursively: a number is a *single digit*
 - or: last digit preceded by another number (in base 10)
- We can find the two parts using integer division (with remainder) $n = 10 \cdot (n/10) + n\%10$ 1457 = 10 · 145 + 7 the last digit of *n* is n%10 1457%10 = 7 the number remaining in front is n/10 1457/10 = 145
- Exercises with a simple recursive solution: sum of a number's digits number of digits; largest/smallest digit, etc.
- Solution: always *follow the structure of the recursive definition* base case: *directly give result* for single-digit number recurrence: *combine* last digit with result for *remaining number* (n/10)

How many digits in a number?

```
1, if number < 10
else, one digit more than the number without its last digit (n/10)
unsigned ndigits(unsigned n)
{
   return n < 10 ? 1 : 1 + ndigits(n / 10);
}</pre>
```

Alternative: use an *accumulator* for the digits already counted start from 1 (last digit already counted; surely has one) if the number is single-digit, return the digits already counted else, n/10 still has (at least) one digit, add 1 to parameter

```
unsigned ndigs2(unsigned n, unsigned r)
{
  return n < 10 ? r : ndigs2(n / 10, r + 1);
}</pre>
```

Need function with only one parameter: wrap auxiliary function (called with starting value 1: single-digit number)

unsigned ndig(unsigned n) { return ndigs2(n, 1); }

Largest digit in a number

base case: single-digit number (digit is also max) else, max of last digit and result for the remaining number

```
unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdigit(unsigned n)
{
  return n < 10 ? n : max(n%10, maxdigit(n/10));
}</pre>
```

Variant with accumulator: maximal digit seen so far: md if 0 (no more digits), return the maximum so far: md else, continue with maximum of last digit and previous max

```
unsigned maxdig2(unsigned n, unsigned md)
{
  return n == 0 ? md : maxdig2(n/10, max(md, n%10));
}
unsigned maxdig(unsigned n) { return maxdig2(n/10, n%10); }
```

Two ways of writing recursion

unsigned max(unsigned a, unsigned b) { return a > b ? a : b; }
unsigned maxdig(unsigned n) {
 return n < 10 ? n : max(n%10, maxdig(n/10));
} // directly from: number ::= digit | number digit</pre>

unsigned maxdig2(unsigned n, unsigned maxd) {
 unsigned md1 = max(n%10, maxd);
 return n < 10 ? md1 : maxdig2(n/10, md1);
} // keep maxd found so far</pre>

```
unsigned maxdig1(unsigned n) {
  return n < 10 ? n : maxdig2(n/10, n%10);
} // 1-arg wrapper for function above</pre>
```

Is recursion efficient?

```
S_0 = 1, S_n = S_{n-1} + \cos n S_{1000000} = ?
#include <stdio.h>
#include <math.h>
double s(unsigned n) {
  return n == 0 ? 1 : s(n-1) + cos(n);
}
int main(void) {
 printf("%f\n", s(1000000));
  return 0;
}
./a.out
Segmentation fault
```

Recursion and the stack

Code executes sequentially (except for branch/call/return) On function call, must remember *where to return* after call Must store *function parameters and locals* to keep using them

These are placed on the *stack*

Each function activation has its *stack frame*: arguments, return address, local vars

Nested calls return in opposite order made \Rightarrow stack frames popped in reverse order of saving (last in, first out)

For deep recursion, stack may be insufficient \Rightarrow program crash

locals of f(0)retaddr: to f(1) args to f: n=0locals of f(1)retaddr: to f(2) args to f: n=1locals of f(2)retaddr: to main args to f: n=2locals: main

Tail recursion

 $S_0 = 1$, $S_n = S_{n-1} + \cos n$ We know we'll have to add $\cos n$ (but not yet to what) \Rightarrow can anticipate and accumulate values we need to add When reaching the base case, add accumulator (partial result) double s2(double acc, unsigned n)

```
{
    return n == 0 ? acc : s2(acc + cos(n), n-1);
}
```

double s1(unsigned n) { return s2(1, n); } // call w/ S0=1
Program now works!

Tail recursion is iteration!

- A function is *tail-recursive* if recursive call is *last* in the function. no computation done after call (e.g., with result) result (if any) is returned unchanged between calls
- \Rightarrow parameter and local values no longer needed \Rightarrow *no need for stack*: replace *recursive* call with jump, return value at end (base case)

(Optimizing) compiler converts tail recursion to iteration (loop) need not worry about efficiency

Recursion can express arbitrary repetition

Base case: are we done? return (result)

Recursive case (not done): compute new partial result call recursive function with new partial result (usually an extra parameter, besides initial input)

Exercise: rewrite Fibonacci extra parameters: last, previous number stopping condition: all iterations done

Recursion: reverse digits in number

Often, problem restated with explicit partial result (accumulator)

M/hat is the	r	n
given that the end has the resulting and remaini	empty(0)	146 <mark>5</mark>
	5	14 <mark>6</mark>
	5 <mark>6</mark>	14
	564	1
	5641	empty(0)
	5011	······································

What is the result of reverting given that the end has already been reverted the resulting number is r and remaining part is n?

```
unsigned rev2(unsigned n, unsigned r) {
  return n == 0 ? r : rev2(n/10, 10*r + n % 10);
}
// initial reversed part is zero
unsigned rev(unsigned n) { return rev2(n, 0); }
```

Careful: return in base case *must use accumulator* (else computation is thrown away!)

Recursion for computing approximations: square root

Babylonian method:
$$a_0 = 1$$
, $a_{n+1} = \frac{1}{2}(a_n + \frac{x}{a_n})$

recurrent sequence of approximations \Rightarrow recursive solution given (parameters): x and the current approximation result = a satisfactory approximation (precision ϵ)

Re-state problem: compute \sqrt{x} given current approximation a_n In recursion, partial result is usually carried as parameter

Computation:

if precision good $|a_{n+1}-a_n| < \epsilon$ return *current approximation* a_n (base case)

else, return value computed starting from *new approximation* a_{n+1} (recursive call)

We no longer need an index n, and the base case is not n = 0 (but it's still the case when nothing left to compute)

Can prove: error to \sqrt{x} is less than distance between last two terms

Square root by approximation

```
#include <math.h>
// needed for double fabs(double x); (abs. value for reals)
// root of x with error < 1e-6 given approximation a n</pre>
double root2(double x, double an)
Ł
  return fabs(a n - x/a n) < 2e-6 ? a n
    : root2(x, (a n + x/a n)/2);
}
double root(double x) { return x < 0 ? -1 : root2(x, 1); }
Two functions:
auxiliary root2 needs two parameters (also approximation)
for user: root defined as required: only one parameter
  returns -1 for negative numbers (error code)
```

Recall: this form is *tail recursion*: recursive call is *last* computation. Compiler can convert this to *iteration* (efficient).

Review: conditional expression

condition ? expr1 : expr2 everything is an expression
expr1 or expr2 may be conditional expression themselves
(if we need more questions to find out the answer)

$$f(x) = \begin{cases} -6 & x < -3 \\ 2 \cdot x & x \in [-3, 3] \\ 6 & x > 3 \end{cases}$$

double f(double x)
{
return x < -3 ? -6 // else, we know x >= -3
: x <= 3 ?
$$2*x$$
 : 6;
}
or: x >= -3 ? (x <= 3 ? $2*x$: 6) : -6
if $x \ge -3$ we still need to ask $x \le 3$?
or: x < -3 ? -6 : (x > 3 ? 6 : $2*x$)
if x is not < -3 or > 3, it must be $x \in [-3,3]$

Conditional expression (cont'd)

The conditional expression is an expression

```
\Rightarrow may be used anywhere an expression is needed
```

Example: as an expression of type string

puts: function that prints a string to stdout, followed by a newline

Note layout for readability: one question per line.

Expressions and statements

```
Expression: computes a result
arithmetic operations: x + 1
function call: fact(5)
```

```
Statement: executes an action
  return n + 1;
```

Any expression followed by ; becomes a statement
n + 3; (computes, but does not use the result)
printf("hello!"); we do not use the result of printf
but are interested in the side effect, printing
printf returns an int: number of chars written (rarely used)

Statements contain expressions. Expressions don't contain statements.

Sequencing for statements and expressions

Statements are written and executed in order (*sequentially*) With *decision*, *recursion* and *sequencing* we can write any program

```
Compound statement: several statements between braces { } A function body is a compound statement (block).
```

```
{
    {
        statement
        statement
        ...
        statement
    }
    }
        double pi = acos(-1);
    printf("pi = %f\n", pi);
        double diff = sqrt(.5) - sin(pi/4);
    printf("difference: %f\n", diff);
    }
}
```

A compound statement is considered a single statement. May contain declarations: anywhere (C99/C11)/at start (C89). All other statements are *terminated* by a semicolon;

The sequencing operator is the comma: expr1, expr2evaluate expr1, ignore; evaluate $expr2 \Rightarrow$ value of whole expression

Decisions with multiple branches

```
The branches of an if can be any statements
```

```
\Rightarrow also if statements
```

 \Rightarrow can chain decisions one after another

```
void binop(int op, int a, int b) // op: operator (char)
{
    if (op == '+') printf("sum: %d\n", a + b);
    else if (op == '-') printf("diff: %d\n", a - b);
    else puts("bad operator");
}
```

```
Checks op=='+' and op=='-' are not independent. DON'T write
if (op == '+') printf("sum: %d\n", a + b);
if (op == '-') printf("diff: %d\n", a - b);
It is pointless do the second test if the first was true
 (op cannot be both + and - at the same time)
The proper code is with chained ifs (or a switch statement)
```

Decisions with multiple branches

If each branch ends with returning a value, the else is not needed: we only get to a branch if the previous condition was false (else the function will have returned):

```
int binop(int op, int a, int b) // op: operator (char)
{
    if (op == '+') return a + b;
    if (op == '-') return a - b; // can't be here for op == '+'
    puts("bad operator"); return 0; // any other case
}
```

Often, we first deal with error cases, then do the actual processing:

```
int check_interval(int n) {
    if (n > 100) { puts("number too big"); return -1; }
    if (n < 0) { puts("number is negative"); return -1; }
    // do something with n here
    return 0; // means OK
}</pre>
```