
Computer Programming

Pointers

Marius Minea
marius@cs.upt.ro

20 November 2017

mailto:marius@cs.upt.ro

Pointers are addresses

Any lvalue (variable x, array element, structure field) of type T
has an address &x of type T * where its value is stored.

An array name is its address
A string is represented by its address, it is a char *

Valid addresses are non-null. NULL indicates an invalid address
NULL is (void *)0 i.e., 0 cast to type void *

An address is a numeric value, but not of type int or unsigned .
It may be printed with format specifier "%p" in printf.

For low-level systems programming:
Types intptr_t and uintptr_t (from stdint.h)
are the right size to hold a void *.

Pointers are used like everything else

We need to know how to
1. declare a variabile of pointer (address) type
2. obtain a pointer (address) value
3. use a pointer (address) value

To use pointers correctly, need to (like for all variables/values):
1. be aware of their type
2. initialize them correctly
3. use the right operators / functions

Declaring pointers

Declaring pointers: type *ptrvar;
⇒ the variable ptrvar may contain the address of a value of type

Examples: char *s; int *p;

When declaring several pointers, need * for each of them:
int *p, *q; two integer pointers
int *p, q; one pointer p and one integer q

Initialize pointers in declarations wherever possible
like with any variable: don’t risk using uninitialized values

Initialization and assignment

Obtaining pointer values:
From an array name (a pointer):

int tab[10], *a = tab;
same as: int tab[10]; int *a; a = tab;

Declaring T tab[N]; array name tab has type T *

Taking the address & of a variable: int n, *p = &n;
same as: int n; int *p; p = &n;

A string constant is a pointer to the contents (to first char):
char *s = "test"; same as: char *s; s = "test";

Dereferencing a pointer

The dereferencing (indirection) operator * prefix operator
*p gives the object located at address p

operand: pointer (address); result: object (variable) indicated by pointer

*p is an lvalue (can be assigned, like a variable)
can also be used in an expression, like any value of that type

Declaration syntax suggests types!
T *p; says T * is the type of p and T is the type of *p

Address and dereference operators are opposites

The operator * is the inverse of &

*&x is the object at the address of x, that is, x

&*p is the address of the object at address p, that is, p

int x, y, *p = &x; y = *p; /*y = x */*p = y; //x = y

Always check the types!
x has type T ⇒ &x has type T *

p has type T * ⇒ *p has type T

We can have pointers to pointers to pointers ...

Any variable has an address ⇒ pointer variables have addresses
Any expression has a type:
The address of a variable of type T has type T *
The address of a variable of type T* has type T ** etc.

Having declared int *p; the type of &p is int **
⇒ we can declare int **p2 and initialize/assign it with &p

declaration T * p; may be read:
T * p; p has type T *

T *p; *p has type T
char **s; address of char addr
char *t[8]; array of 8 char addr

Variable Value Address
int x = 5; 5 0x408

...
int *p=&x; 0x408 0x51C

...
int **p2=&p; 0x51C 0x9D0

Initialization and assignment are different!

WARNING: A declaration with initializer is NOT an assignment !

The * in a declaration is NOT an indirection operator!
* is written next to the declared variable, but belongs to the type!

Declaration int *p; suggests that *p is an int
but the variable declared is p, NOT *p (*p is not an identifier)
so the initializer is for p, NOT for *p.

int t[2] = { 3, 5 }; initializes t. WRONG: t[2] = { 3, 5 };

int x, *p = &x; is like int x; int *p; p = &x;
(p is initialized/assigned, NOT *p). *p = &x is a type error!

char *p = "str"; is char *p; p = "str"; WRONG: *p = "str";

Pointers hold only addresses, not data!

Programs can’t have just pointers. These must point to something
(useful data: need variables to store it in).
Understand what each declaration means!

Declaring int x; means
I want to have an integer. What for? What value does it have?

⇒ Better: int min = a[0]; //start with first element

Declaring char *p; only means
I want to use the address of a char

DON’T KNOW WHAT ADDRESS. VARIABLE p UNINITIALIZED.
NO CHARS DECLARED YET. NO ROOM TO STORE THEM.

Need:
char *p = buf; p points to array char buf[10]; declared before
char *p = "ana are mere"; p points to a string constant
char *p = strchr(buf, ’<’); returned by function, could be NULL

ERROR: no initialization

It’s an ERROR to use any uninitialized variable
int sum; for (i=0; i++ < 10;) sum += a[i]; // initially??
⇒ program behavior is undefined (best case: random initial value)

Pointers must be initialized before use, like any variables
with a valid address (of a variable), or an initialized pointer
with a dynamically allocated address (later)

ERROR: int *p; *p = 0; ERROR: char *p; scanf("%20s", p);
p is uninitialized (best case NULL, if global variable)

⇒ value will be written to unknown memory address
⇒ memory corruption, security vulnerability;
program crash is luckiest case!

WARNING: a pointer is not an int. WRONG: int *p = 640; !
Address space is determined by system, not user
⇒ CANNOT choose an arbitrary address we want

Using pointer parameters: assignment in functions
A function CANNOT change a variable passed as parameter

because the value is passed, not the variable itself
void nochange(int x) { ++x; printf("%d\n", x); }
void try(void) {

int a = 5; nochange(a); // nochange prints 6
printf("%d\n", a); // main still prints 5 !

}

But, with a variable’s address p, we may use its value: ...= *p;
assign it: *p =...;

Having a variable’s address, a function may write to it (e.g. scanf).
void swap (int *pa, int *pb) { // swaps values at 2 addresses

int tmp; // keeps first changed value
tmp = *pa; *pa = *pb; *pb = tmp; // integer assignments

}
...
int x = 3, y = 5; swap(&x, &y); // now x = 5, y = 3}

Pointers as function parameters

We use addresses as function parameters:
to pass arrays (can’t pass array contents in C)
to return several values (return allows only one)
e.g. min and max of an array; result and error code

Arrays as function parameters
When passing an array to a function, the address is passed

The name of the array represents its address

in T tab[LEN]; the array name tab has type T *

int f(int a[]) is same as int f(int *a)

Formatted processing/printing of strings

Variants of printf/scanf with strings as source/destination
int sprintf(char *s, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

sprintf has no limitation ⇒ may overflow buffer. Use instead:
int snprintf(char *str, size_t size, const char *format, ...);
writing is limited to size chars including \0 ⇒ safe option

Converting strings to numbers

int n; char s[] = "-102 56 42";
if (sscanf(s, "%d", &n) == 1) ... //number OK

(but we don’t know where processing of string stopped)

long int strtol(const char *s, char **endptr, int base);
assigns to *endptr the address of first unprocessed char

(if not needed, pass 2nd arg. NULL)
if base is 0, accepts octal/decimal/hex (as in C, like %i in scanf)
char *end; long n = strtol(s, &end, 10); //upto base 36

also strtoul for unsigned long, strtod for base 10 double

int n = atoi(s); returns 0 on error, but also for "0"
use only when string known to be good

Command line arguments

command line: program name with arguments (options, files, etc.)
Examples: gcc -Wall prog.c or ls directory or cp file1 file2

main can access command line if declared with 2 args (only these):
int argc count of words in command line (1 + arguments)
char *argv[] arguments: array of strings, ends with NULL

#include <stdio.h>
int main(int argc, char *argv[]) { // same as char **argv

printf("Program name: %s\n", argv[0]);
if (argc == 1) puts("Program called with no arguments");
else for (int i = 1; i < argc; i++)

printf("Argument %d: %s\n", i, argv[i]);
return 0;

} // run: ./a.out somestring anotherstring thirdstring etc

Run a command from program:
int system(const char *cmdline);

Pointer do’s and dont’s (recap)

*p is NOT a pointer! unless p is char **, int **, etc.
p is the pointer. *p is the object/value at address p

Programs work with data.
Pointers are addresses, they only point to data.
Don’t declare a pointer unless you have what it should point to.

except: dynamic allocation (provides pointer and data space)

char *p = &s[i]; if array char s[40]; declared before
char *p = "test"; data is constant string
char *p = argv[0]; data put there by runtime system

Declare data and pass address for function to fill in data:
int n; if (scanf("%d", &n) == 1) ...
char *end; double d = strtod(s, &end);
int x, y; swap(&x, &y);

Arrays and pointers

Declaring an array allocates a memory block for its elements
The array’s name is the address of that block (of first element)

&a[0] is same as a and a[0] is same as *a

Can declare T a[LEN], *pa; and assign pa = a;

Similar: a and pa have same type: T*
But: pa is a variable ⇒ uses memory; can assign pa = addr

a is a constant (array has fixed address) can’t assign a = addr
a
R a[0] a[1] a[2] a[3] a[4] a[5]

6 6 6

address
(hex) 5C0 5D0 5E0

. . . pa
R

5C0 int a[6];
int *pa = a;

*a and *pa: indirections with different operations in machine code:
*a references object from constant address (direct addressing)
*pa must first get value of variable pa, loading it from &pa, then

dereference it (indirect addressing)

Arrays and pointers (cont’d)

Array: char s[] = "test"; s[0] is ’t’, s[4] is ’\0’ etc.
s is a constant address (char *), not a variable in memory
CANNOT assign s = ... but may assign s[0] = ’f’
sizeof(s) is 5 * sizeof(char)
&s is s but type is address of 5-char array: char (*)[5]

sizeof (entire array) is not strlen (up to ’\0’)

Pointer: char *p = "test"; p[0] is ’t’, p[4] is ’\0’ (same)
p is a variable of address type (char *), has a memory location
CANNOT assign p[0] = ’f’ ("test" is a string constant)
can assign p = s; then p[0] = ’f’; can assign p = "ana";
sizeof(p) is sizeof(char *) &p is NOT p
⇒ WRONG: scanf("%4s", &p); RIGHT: scanf("%4s", p);

(if p is valid address and has room)

Pointer arithmetic

pointer + int = pointer (of same type)

A variable v of type T uses sizeof(T) bytes

⇒ &v + 1 is the address after v’s space (next object)

&v + 1 is value of &v plus sizeof(T) bytes

+ on a pointer increments by object size (not one byte)

Pointer arithmetic: add

1. Add/subtract pointer and integer: like address of array element

a + i means &a[i]

*(a + i) means a[i] 3[a] is a[3]

a + i means i elements past a, NOT i bytes past a

for char *a 1 element = 1 byte ⇒ number also means bytes

increment ++a, a++: a becomes a+1 before/after evaluation

Pointer arithmetic is only valid within the same array/object
exception: can take address just beyond (at end) of array
int a[LEN], *end = a + LEN;
a+LEN+1 is not a valid address (beyond legal memory access)

WARNING! C has no overflow checks! Careful with indices!

Pointer arithmetic: difference

2. Difference: only for pointers of same type (and in same array!)
= number of objects of type T between the two addresses

&a[j] - &a[i] == j - i

To get the number of bytes, (cast) pointers to char *
p - q == ((char *)p - (char *)q) / sizeof(T)

No other arithmetic operations between pointers are defined!

May use comparison operators: ==, !=, <, etc.
comparing order <, <= etc. only allowed within same structure
(relative memory placement of different objects is irrelevant)

No pointer arithmetic with void *

void * = pointer of unspecified type
don’t know type of object ⇒ can’t dereference, can’t do arithmetic

But: void * are assignment-compatible with any pointer
Useful for writing functions that accept any pointer

Cast void * to char * to do arithmetic:
void setzero(void *a, unsigned cnt, unsigned size) {

for (char *p = (char *)a + cnt * size; --p >= a;) *p = ’\0’;
}

Pointer arithmetic and operator precedence

++ (and --) have higher precedence than * (indirection)

Increment pointer
*p++ ++ applies to p: take value, (post)increment pointer

value is object at original pointer value

*++p increments pointer, then dereferences
value is next object after original pointer value

Increment value at pointer
(*p)++ (post)increments the value at address p

expression has the value before increment

++*p (pre)increments value at address p
expression has the value after increment

Pointers and indices
same meaning: “to indicate” = “to point to”
To write a[i], need two variables and one addition (base + offset)

and multiplication with size of type (if not char, of size 1)

Simpler: directly with pointer to element &a[i] (a+i)
increment pointer rather than index when traversing array

char *strchr_i(const char *s, int c) { // search char in s
for (int i = 0; s[i]; ++i) // traverse string up to ’\0’

if (s[i] == c) return s + i; // found: return address
return NULL; // not found

}

char *strchr_p(const char *s, int c) {
for (;*s; ++s) // use parameter for traversal

if (*s == c) return s; // s points to current char
return NULL; // not found

}

Pointers and indices (cont’d)

char *strcat_i(char *dest, const char *src)
{

int i = 0, j;
while (dest[i]) ++i;
for (j = 0; src[j]; ++j)

dest[i+j] = src[j];
dest[i+j] = ’\0’;
return dest;

}
char *strcat_p(char *dest, const char *src)
{

char *d = dest; // need to save dest for return
while (*d) ++d;
while (*d++ = *src++); // string copy
return dest;

}

Pointers and multidimensional arrays

A bidimensional array (matrix) is declared as type a[DIM1][DIM2];
for instance int a[DIM1][DIM2];

a[i] is constant address (int *) of an array of DIM2 elements
(line of the matrix)

a[i][j] is jth element in array a[i] of DIM2 elements

&a[i][j] or a[i]+j is DIM2*i+j elements after address a

⇒ function with array parameter needs all dimensions except first

⇒ must declare as sometype f(int t[][DIM2]);

a[i] which is *(a+i) means i lines (×DIM2 elements) after a[0]

⇒ a has type int (*)[DIM2] (pointer to array of DIM2 ints)

Matrix vs. array of pointers

char t[12][4]={"jan",...,"dec"}; char *p[12]={"jan",...,"dec";}
t is matrix (2-D char array) p is array of pointers

j a n \0
f e b \0

...
d e c \0

0x460 −→ j a n \0
0x5C4 −→ f e b \0

...
0x9FC −→ d e c \0

t uses 12 * 4 bytes p uses 12*sizeof(char *) bytes
(+ 12*4 bytes for the string constants)

t[6] = ... is WRONG p[6]="july" changes an address
t[6] is constant address of line 7 (element 7 from pointer array p)
can do strcpy(t[6], ...) or strncpy

Indices or pointers: use sensibly
Declare in for loop header whenever possible (since C99)

enforces scope, visually clear, avoids affecting other loops
Use whatever results in simpler, understandable code
void matmul_i(unsigned m, unsigned n, unsigned p, double a[m][n],

double b[n][p], double c[m][p]) {
for (int i = 0; i < m; ++i)

for (int j = 0; j < p; ++j) {
c[i][j] = 0;
for (int k = 0; k < n; ++k) c[i][j] += a[i][k]*b[k][j];

}
}
void matmul_p(unsigned m, unsigned n, unsigned p, double a[m][n],

double b[n][p], double c[m][p]) {
for (double *lp = a[0], *dp=c[0], *end = a[m]; lp<end; lp+=n)

for (int j = 0; j < p; ++j, ++dp) {
*dp = 0;
for (int k = 0; k < n; ++k) *dp += lp[k]*b[k][j];

}
}

Type casts and typedef

Type cast is a unary operator, written as (type-name)expression
the value of expression is converted to the type type-name

convert int to real (double)sum/cnt //force real division

dereference a void * *(char *)p //char at address p

read bits of float as an int: *(uint32_t *)&f

typedef is a keyword used to define a new name for a type
Syntax: typedef declaration
the identifier that would have been a variable in the declaration
becomes a type name

typedef uint16_t u16; // u16 is synonym for type uint16_t
// with just: uint16_t u16; it would be a variable
typedef char line[80]; //line: type for array of 80 chars
// with just: char line[80]; it would be an array
line text[100]; //text is array of 100 lines

Function pointers
A function name is its address (a pointer) – like for arrays
We can declare pointers of function type. Compare:
int f(void); declares a function returning int
int (*p)(void); declares pointer to function returning int

declare function: restype fct (type1, . . . , typeN);
declare function pointer: restype (*pfct) (type1, . . . , typeN);
Can assign pfct = fct with the name of an existing function

CAUTION! Need parantheses for (*pointer), otherwise:
int *fct(void); declares a function returning pointer to int
Function name is pointer ⇒ can call function using pointer
#include <math.h> // Example: f is a function parameter
void printvals(double (*f)(double)) { // arg.of f not named

for (int i=0; i<10; ++i) printf("%f\n", f(.1*i));
}
int main(void) { printvals(sin); printvals(cos); return 0; }

Using function pointers
stdlib.h: binary search for key in sorted array; and quicksort
void *bsearch(const void *key, const void *base, size_t nmemb,

size_t size, int (*compar)(const void *, const void *));
void qsort(void *base, size_t num, size_t size,

int (*compar)(const void *, const void *));

address of array to sort, element count and size
address of comparison function, returns int <, = or > 0)

has void * arguments, compatible with pointers of any type
typedef int (*comp_t)(const void *, const void *); // cmp fun
int intcmp(int *p1, int *p2) { return *p1 - *p2; }
int tab[5] = { -6, 3, 2, -4, 0 }; // array to sort
qsort(tab, 5, sizeof(int), (comp_t)intcmp); // sort ascending

Can also declare function with void *, do cast in function
int intcmp(const void *p1, const void *p2)

{ return *(int *)p1 - *(int *)p2; }
qsort(tab, 5, sizeof(int), intcmp); // no cast, has right type

When to use pointers ?

When the language forces us to:
arrays (memory blocks) cannot be passed / returned from functions

only their address (array name is its address)
addresses carry no size information ⇒ must pass size parameter

strings: a string (constant or not) is a char *
need not pass size, since null-terminated

functions: a function name is its address

When a function needs to modify variable passed from outside
pass address of variable

WARNING! Any address passed to a function needs to be valid
(point to allocated memory)

functions use their arguments ⇒ pointers must be valid

