Recursivitate

Mediul de lucru: compilarea și rularea

Pentru exemple simple, e convenabil să folosim interpretorul: le putem rula direct, și ne prezintă rezultatul, fără a fi nevoie să mai folosim funcții de tipărire.

Pentru a scrie programe care pot fi utilizate independent (cum e desenarea de fractali scrisă la curs), vom folosi compilatorul.
În primul rând, trebuie să ne structurăm programul în mod corespunzător:

Compilarea și rularea programului

Compilăm programul din terminal cu comanda
ocamlc program.ml
Compilatorul va produce un fișier executabil cu numele implicit a.out . Putem să specificăm și un alt nume dorit: ocamlc -o nume program.ml.

Programul executabil poate fi rulat din terminal, specificând numele lui, precedat de ./ (explicitând numele complet, inclusiv catalogul curent). Rulăm deci:

./a.out
dacă am compilat cu numele implicit, sau ./nume dacă am specificat alt nume pentru executabil.

Șiruri recurente

Având ca exemplu progresia aritmetică discutată la curs, scrieți pentru progresia geometrică:
  1. o funcție recursivă, folosind valori constante pentru primul termen și rație
  2. o funcție care are ca parametri și aceste două valori
  3. definiți o funcție pentru progresia de la punctul 1 dând parametri funcției scrise la punctul 2

Expresii numerice

Folosind definiția tipului expresie de la curs, scrieți în ML reprezentarea pentru expresiile: 2 * (3 - 8) + 4 și 2 + 4 - 5 * 3 .

Cel mai mare divizor comun

Știind că cmmdc(a, b) = cmmdc(b, a mod b) dacă b ≠ 0, scrieți o funcție recursivă pentru cel mai mare divizor comun. Care e cazul de bază ?

Aplicarea repetată a unei funcții

în laboratorul trecut am scris funcții de ordin superior (funcționale) care aplicau o funcție de 2, 3, 4 ori. Definiți (recursiv) o funcție care ia ca parametru un întreg n și o funcție, și returnează funcția compusă cu ea însăși de n ori.

Lucrul cu cifrele unui număr

Un număr e reprezentat uzual în scris ca un șir de cifre în baza 10.
Un șir e o noțiune recursivă (un element, sau un șir urmat de un element).
Putem spune atunci că un număr n e fie o singură cifră, fie ultima cifră (n mod 10) precedată de alt număr (n / 10).
Folosind această definiție scrieți funcții recursive care calculează: suma cifrelor unui număr, numărul de cifre, produsul lor, cifra maximă / minimă, etc.

Resturi modulo p

Am amintit că mulțimea resturilor nenule modulo un număr prim p formează un grup multiplicativ. Scrieți o funcție care ia ca parametru un număr întreg a și calculează ordinul lui în acest grup (adică cea mai mică putere n pentru care an ≡ 1 mod p
Marius Minea
Last modified: Tue Oct 1 15:30:00 EEST 2013