
Programming language design and analysis

Constraint Logic Programming

Marius Minea

8 December 2014



Declarative programming

specify what the program should do, now how

in particular, avoid state (exposes internal implementation details)
or side effects (expose/observe computation flow)

Main exponents:
functional programming

still directly expresses formulas by which computations are done

logic programming
problem domain expressed as logic rules/implications

constraint programming
properties of solutions expressed as constraints over a given theory



Foundations of Prolog

developed ca. 1970 by Alain Colmerauer et al. in Marseille

A (pure) Prolog program is a list of Horn clauses.
a rule: Head :- Body .

where Body is a conjunction Predicate , ... , Predicate
a fact: Predicate .

equivalent to Predicate :- true .

:- means implication ←
the head of a rule is the conclusion
the predicates in the body are hypotheses (premises)

Executing a program means trying to satisfy a query (goal)
i.e., determining if the goal follows as conclusion from the rules.

Prolog programs essentially encode predicate logic



Syntax of predicate logic: terms and formulas

Terms
variables v
f (t1, · · · , tn) where f is an n-ary function and t1, · · · , tn are terms.

constants can be viewed as 0-ary functions (no arguments)

Formulas (well-formed formulas)
P(t1, · · · , tn) with P an n-ary predicate, t1, · · · , tn terms
¬α where α is a formula
α→ β where α, β are formulas
∀v α with v variable, α formula: universal quantification

Other usual connectors:
α ∧ β def= ¬(α→ ¬β) (AND) α ∨ β def= ¬α→ β (OR)

existential quantifier: ∃xϕ def= ¬∀x(¬ϕ)

Compared to propositional logic: instead of propositions, predicates over terms



Prolog examples and logic meaning

desc(X, Y) :- child(X, Y).
desc(X, Z) :- child(X, Y), desc(Y, Z).
child(jon, peter).
child(anna, jon).
child(eve, jon).
child(peter, mary).

Variables in clause head are universally quantified.
Rest of variables in clause body are existentially quantified.

∀X∀Y child(X ,Y )
∀X∀Z .∃Y (child(X ,Y ) ∧ desc(Y ,Z ))→ desc(X ,Z )



Example with terms: list reversal

Use constant nil and binary function cons to model lists.

Model n-ary function with n + 1-ary relation (between args and result)

Model tail-recursive call using same variable in the result position.

rev3(nil, R, R).
rev3(cons(H, T), Ac, R) :- rev3(T, cons(H, Ac), R).
rev(L, R) :- rev3(L, nil, R)



Resolution (in propositional logic)
Resolution is an inference rule that produces a new clause
from two clauses with complementary literals (p and ¬p).

p ∨ α ¬p ∨ β
α ∨ β resolution

The new clause = resolvent of the two clauses w.r.t. p
Example: rezp(p ∨ q ∨ ¬r ,¬p ∨ s) = q ∨ ¬r ∨ s

Modus ponens may be seen as a special case of resolution:
p ∨ false ¬p ∨ q

false ∨ q

Resolution is a valid inference rule:
{p ∨ α,¬p ∨ β} |= α ∨ β

(for any truth assignment where premises are true, conclusion is true)
Corollary: if α ∨ β is a contradition, so is (p ∨ α) ∧ (¬p ∨ β).

We use resolution to show that a formula is a contradiction.
resolution is a method for proof by refutation



Why substitution and term unification ?

We have two formuas where a predicate may appear positive and
negated:
∀x .∀y .P(x , g(y)) and ∀z .¬P(z , a).

or
∀x .∀y .P(x , g(y)) and ∀z .¬P(a, z)

Are these contradictory ?

We may substitute a universally quantified variable with any term
⇒ in the second case, we may substitute x 7→ a, z 7→ g(y)
⇒ we obtain P(a, g(y)) s, i ¬P(a, g(y)), contradiction

In the first case, we may not substitute y and obtain a from g(y)
interpretation: we may not assume that the arbitrary function g
must also take the constant value a.

This is precisely defined by substitution and unification



Term substitutions

A substitution is a function that associates terms to variables:
{x1 7→ t1, . . . , xn 7→ tn}

For example, f (x , g(y , z), a, t){x 7→ g(y), y 7→ f (b), t 7→ u}
= f (g(y), g(f (b), z), a, u)

Obs: other encountered notations: xi/ti , or ti/xi

Usually postfix notation Tσ is used for substitutions σ applied to term T

The composition of two substitutions is a substitution



Term unification

Two terms t1 and t2 may be unified if there is a substitution σ
that makes them equal: t1σ = t2σ .
Such a substitution is called unifier.

Example: f (x , g(y)){x 7→ a} = f (a, g(y)) = f (a, z){z 7→ g(y)}
i.e., the substitution {x 7→ a, z 7→ g(y)} is a unifier .

More generally: applied to a set of pairs of terms.

The most general unifier is that from which any other unifier may be
obtained by using another substitution.

In resolution: having the clauses P(l1, l2, . . . ln) and ¬P(r1, r2, . . . rn)
if we find a unifier for (l1, r1), ... we have a contradiction.



Unification rules

A variable x may be unified with any term t
if x does not occur in t not: x with f (g(y), h(x , z))
(substitution would lead to an infinite term)

Two functional terms may be unified only if they have identical functions,
and the term arguments may be pairwise unified.

in particular: only identical constants may be unified



Prolog and resolution

Prolog execution can be seen in two ways:

Match goal with head of rule or fact, until no more subgoals.

Apply resolution with negation of goal, until empty clause.


