Programming language design and analysis

Constraint Logic Programming

Marius Minea

7 December 2015

Declarative programming

specify what the program should do, now how
in particular, avoid state (exposes internal implementation details) or side effects (expose/observe computation flow)

Main exponents:
functional programming
still directly expresses formulas by which computations are done
logic programming
problem domain expressed as logic rules/implications
constraint programming
properties of solutions expressed as constraints over a given theory

Foundations of Prolog

developed ca. 1970 by Alain Colmerauer et al. in Marseille
A (pure) Prolog program is a list of Horn clauses.
a rule: Head :- Body . where Body is a conjunction Predicate , ... , Predicate a fact: Predicate. equivalent to Predicate :- true.
:- means implication \leftarrow the head of a rule is the conclusion the predicates in the body are hypotheses (premises)

Executing a program means trying to satisfy a query (goal)
i.e., determining if the goal follows as conclusion from the rules.

Prolog programs essentially encode predicate logic

Syntax of predicate logic: terms and formulas

Terms

variables v
$f\left(t_{1}, \cdots, t_{n}\right) \quad$ where f is an n-ary function and t_{1}, \cdots, t_{n} are terms.
constants can be viewed as 0 -ary functions (no arguments)
Formulas (well-formed formulas)

```
P(t, , , , trn) with P an n-ary predicate, t},\mp@code{,
```

$\neg \alpha \quad$ where α is a formula
$\alpha \rightarrow \beta \quad$ where α, β are formulas
$\forall v \alpha \quad$ with v variable, α formula: universal quantification
Other usual connectors:
$\alpha \wedge \beta \stackrel{\text { def }}{=} \neg(\alpha \rightarrow \neg \beta) \quad(\mathrm{AND}) \quad \alpha \vee \beta \stackrel{\text { def }}{=} \neg \alpha \rightarrow \beta \quad$ (OR)
existential quantifier: $\exists x \varphi \stackrel{\text { def }}{=} \neg \forall x(\neg \varphi)$
Compared to propositional logic: instead of propositions, predicates over terms

Prolog examples and logic meaning

```
desc(X, Y) :- child(X, Y).
desc(X, Z) :- child(X, Y), desc(Y, Z).
child(anna, jon).
child(jon, peter).
child(eve, jon).
child(peter, mary).
```

Variables in clause head are universally quantified.
Rest of variables in clause body are existentially quantified.
$\forall X \forall Y$ child (X, Y)
$\forall X \forall Z . \exists Y(\operatorname{child}(X, Y) \wedge \operatorname{desc}(Y, Z)) \rightarrow \operatorname{desc}(X, Z)$

Resolution (in propositional logic)

Resolution is an inference rule that produces a new clause from two clauses with complementary literals (p and $\neg p$).

$$
\frac{p \vee \alpha \quad \neg p \vee \beta}{\alpha \vee \beta}
$$

resolution
The new clause $=$ resolvent of the two clauses w.r.t. p
Example: $\quad r e z_{p}(p \vee q \vee \neg r, \neg p \vee s)=q \vee \neg r \vee s$
Modus ponens may be seen as a special case of resolution:

$$
\frac{p \vee \text { false } \quad \neg p \vee q}{\text { false } \vee q}
$$

Resolution is a valid inference rule:

$$
\{p \vee \alpha, \neg p \vee \beta\} \models \alpha \vee \beta
$$

(for any truth assignment where premises are true, conclusion is true) Corollary: if $\alpha \vee \beta$ is a contradition, so is $(p \vee \alpha) \wedge(\neg p \vee \beta)$.

We use resolution to show that a formula is a contradiction. resolution is a method for proof by refutation

Why substitution and term unification ?

We have two formuas where a predicate may appear positive and negated:

$$
\forall x . \forall y . P(x, g(y)) \quad \text { and } \quad \forall z . \neg P(z, a)
$$

or

$$
\forall x . \forall y . P(x, g(y)) \quad \text { and } \quad \forall z . \neg P(a, z)
$$

Are these contradictory ?
We may substitute a universally quantified variable with any term \Rightarrow in the second case, we may substitute $x \mapsto a, z \mapsto g(y)$
\Rightarrow we obtain $P(a, g(y))$ and $\neg P(a, g(y))$, contradiction
In the first case, we may not substitute y and obtain a from $g(y)$ interpretation: we may not assume that the arbitrary function g must also take the constant value a.

This is precisely defined by substitution and unification

Term substitutions

A substitution is a function that associates terms to variables:

$$
\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}
$$

For example, $f(x, g(y, z), a, t)\{x \mapsto g(y), y \mapsto f(b), t \mapsto u\}$ $=f(g(y), g(f(b), z), a, u)$
Obs: other encountered notations: x_{i} / t_{i}, or t_{i} / x_{i}
Usually postfix notation $T \sigma$ is used for substitutions σ applied to term T
The composition of two substitutions is a substitution

Term unification

Two terms t_{1} and t_{2} may be unified if there is a substitution σ that makes them equal: $t_{1} \sigma=t_{2} \sigma$.
Such a substitution is called unifier.
Example: $f(x, g(y))\{x \mapsto a\}=f(a, g(y))=f(a, z)\{z \mapsto g(y)\}$ i.e., the substitution $\{x \mapsto a, z \mapsto g(y)\}$ is a unifier.

More generally: applied to a set of pairs of terms.
The most general unifier is that from which any other unifier may be obtained by using another substitution.

In resolution: having the clauses $P\left(l_{1}, l_{2}, \ldots I_{n}\right)$ and $\neg P\left(r_{1}, r_{2}, \ldots r_{n}\right)$ if we find a unifier for $\left(l_{1}, r_{1}\right), \ldots$ we have a contradiction.

Unification rules

A variable x may be unified with any term t if x does not occur in t not: x with $f(g(y), h(x, z))$ (substitution would lead to an infinite term)

Two functional terms may be unified only if they have identical functions, and the term arguments may be pairwise unified.
in particular: only identical constants may be unified

Prolog and resolution

Prolog execution can be seen in two ways:
Match goal with head of rule or fact, until no more subgoals.
Apply resolution with negation of goal, until empty clause.

Prolog and resolution

Consider as goal: desc(X, peter).
A solution $=$ a value for X that makes the predicate true A formula is satisfiable if its negation is a contradiction. We derive a contradiction using resolution.

Prolog and resolution

Consider as goal: desc(X, peter).
A solution $=$ a value for X that makes the predicate true A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.
Write the negated goal: $\neg \operatorname{desc}(\mathrm{X}$, peter).
i.e., desc (X, peter) is false for any X.

Prolog and resolution

Consider as goal: desc (X, peter).
A solution $=$ a value for X that makes the predicate true A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.
Write the negated goal: $\neg \operatorname{desc}(\mathrm{X}$, peter).
i.e., desc (X, peter) is false for any X.

Choose the first rule for unification (use fresh variables): desc (X1, Y1) $V \neg \operatorname{child}(X 1, Y 1)$.
We get as resolvent $\neg \operatorname{child}(X$, peter $) . \quad X 1=X, Y 1=$ peter

Prolog and resolution

Consider as goal: desc (X, peter).
A solution $=$ a value for X that makes the predicate true A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.
Write the negated goal: $\neg \operatorname{desc}(\mathrm{X}$, peter).
i.e., desc (X, peter) is false for any X.

Choose the first rule for unification (use fresh variables): desc (X1, Y1) $V \neg \operatorname{child}(X 1, Y 1)$.
We get as resolvent $\neg \operatorname{child}(\mathrm{X}$, peter $) . \quad \mathrm{X} 1=\mathrm{X}, \mathrm{Y} 1=$ peter
Choose for unification the fact child(jon, peter) (nr. 3). We get as resolvent the empty clause (contradiction)

Prolog and resolution

Consider as goal: desc (X, peter).
A solution $=$ a value for X that makes the predicate true A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.
Write the negated goal: $\neg \operatorname{desc}(\mathrm{X}$, peter).
i.e., desc (X, peter) is false for any X .

Choose the first rule for unification (use fresh variables): desc(X1, Y1) $V \neg$ child (X1, Y1).
We get as resolvent $\neg \operatorname{child}(\mathrm{X}$, peter $) . \quad \mathrm{X} 1=\mathrm{X}, \mathrm{Y} 1=$ peter
Choose for unification the fact child(jon, peter) (nr. 3).
We get as resolvent the empty clause (contradiction)
$X=j o n$
Thus desc (X, peter) is NOT false for any X . desc(jon, peter) is true. $\mathrm{X}=\mathrm{jon}$ is a solution

Prolog and resolution

Consider as goal: desc (X, peter).
A solution $=$ a value for X that makes the predicate true A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.
Write the negated goal: $\neg \operatorname{desc}(\mathrm{X}$, peter).
i.e., desc (X, peter) is false for any X .

Choose the first rule for unification (use fresh variables): desc(X1, Y1) $V \neg$ child (X1, Y1).
We get as resolvent $\neg \operatorname{child}(\mathrm{X}$, peter $) . \quad \mathrm{X} 1=\mathrm{X}, \mathrm{Y} 1=$ peter
Choose for unification the fact child(jon, peter) (nr. 3).
We get as resolvent the empty clause (contradiction) $\quad \mathrm{X}=\mathrm{jon}$
Thus desc (X, peter) is NOT false for any X . desc (jon, peter) is true. $\mathrm{X}=\mathrm{jon}$ is a solution

Continue for other solutions....

Prolog example (cont.)

We restart with the negated goal: \neg desc (X, peter).

Prolog example (cont.)

We restart with the negated goal: \neg desc (X, peter).
We unify with rule 2 (renaming variables again): $\operatorname{desc}(X 2, Z 2) \vee \neg \operatorname{child}(X 2, Y 2) \vee \neg \operatorname{desc}(Y 2, Z 2)$
We get: $\neg \operatorname{child}(X, Y 2) \vee \neg \operatorname{desc}(Y 2$, peter) $X 2=X, Z 2=$ peter

Prolog example (cont.)

We restart with the negated goal: \neg desc (X, peter).
We unify with rule 2 (renaming variables again): $\operatorname{desc}(X 2, Z 2) \vee \neg \operatorname{child}(X 2, Y 2) \vee \neg \operatorname{desc}(Y 2, Z 2)$
We get: $\neg \operatorname{child}(X, Y 2) \vee \neg \operatorname{desc}(Y 2$, peter) $X 2=X, Z 2=$ peter
We unify with child (anna, jon) (nr. 3)
$\mathrm{X}=$ anna, $\mathrm{Y} 2=\mathrm{jon}$
We get as resolvent \neg desc (jon, peter).

Prolog example (cont.)

We restart with the negated goal: \neg desc (X, peter).
We unify with rule 2 (renaming variables again): $\operatorname{desc}(X 2, Z 2) \vee \neg \operatorname{child}(X 2, Y 2) \vee \neg \operatorname{desc}(Y 2, Z 2)$
We get: $\neg \operatorname{child}(X, Y 2) \vee \neg \operatorname{desc}(Y 2$, peter) $X 2=X, Z 2=$ peter
We unify with child(anna, jon) (nr. 3)
$\mathrm{X}=$ anna, $\mathrm{Y} 2=\mathrm{jon}$
We get as resolvent $\neg \operatorname{desc}(j o n$, peter).
We've already seen desc (petre, vasile) \Rightarrow leads to empty clause.
$\Rightarrow \mathrm{X}=$ anna is another solution for initial question

Prolog example (cont.)

We restart with the negated goal: \neg desc (X, peter).
We unify with rule 2 (renaming variables again): $\operatorname{desc}(X 2, Z 2) \vee \neg \operatorname{child}(X 2, Y 2) \vee \neg \operatorname{desc}(Y 2, Z 2)$
We get: $\neg \operatorname{child}(X, Y 2) \vee \neg \operatorname{desc}(Y 2$, peter) $X 2=X, Z 2=$ peter
We unify with child(anna, jon) (nr. 3)
$\mathrm{X}=$ anna, $\mathrm{Y} 2=\mathrm{jon}$
We get as resolvent $\neg \operatorname{desc}(j o n$, peter).
We've already seen desc (petre, vasile) \Rightarrow leads to empty clause.
$\Rightarrow \mathrm{X}=$ anna is another solution for initial question
If goal has variables, Prolog searches for all unifications/substitutions.
With no variables, determines if predicate is true.

Example with terms: list reversal

Use constant nil and binary function c (cons) to model lists.
Model n-ary function with $n+1$-ary relation (between args and result)
Model tail-recursive call using same variable in the result position.

```
rev3(nil, R, R).
rev3(c(H, T), Ac, R) :- rev3(T, c(H, Ac), R).
rev(L, R) :- rev3(L, nil, R)
With goal rev(c(1, c(2, c(3,nil)))),X) we get X=c(3, c(2,c(1,nil))).
Derivation: rev(c(1,c(2, c(3,nil))),X) L1=c(1,c(2,c(3,nil))), R1=X
\leftarrowrev3(c(1,c(2,c(3,nil))),nil,X)
    H1=1,T1=c(2,c(3,nil)), Ac1=nil
    \leftarrowrev3(c(2, c(3,nil)),c(1,nil),X) H2=2, T2=c(3,nil),Ac2=c(1,nil)
\leftarrowrev3(c(3,nil),c(2, c(1,nil)),X) H3=3, T3=nil, Ac3=c(2,c(1,nil))
\leftarrow \operatorname { r e v 3 ( n i l , c ( 3 , c ( 2 , c ( 1 , n i l ) ) ) , X ) }
\[
\mathrm{X}=\mathrm{c}(3, \mathrm{c}(2, \mathrm{c}(1, \mathrm{nil})))
\]
```

