Programming language design and analysis

Logic Programming

Marius Minea

11 December 2017
Declarative programming

specify *what* the program should do, now *how*

in particular, *avoid state* (exposes internal implementation details)
or *side effects* (expose/observe computation flow)

Main exponents:

functional programming
 still directly expresses formulas by which computations are done

logic programming
 problem domain expressed as logic rules/implications

constraint programming
 properties of solutions expressed as constraints over a given *theory*
Foundations of Prolog

developed ca. 1970 by Alain Colmerauer et al. in Marseille

A (pure) Prolog program is a list of *Horn clauses*.

- a **rule**: $Head :\neg Body$.
 - where $Body$ is a conjunction $Predicate, \ldots, Predicate$

- a **fact**: $Predicate$.
 - equivalent to $Predicate :\neg true$.

$:\neg$ means implication \leftarrow

- the *head* of a rule is the *conclusion*
- the predicates in the *body* are *hypotheses* (premises)

Executing a program means trying to satisfy a *query* (*goal*)

- i.e., determining if the goal follows as conclusion from the rules.

Prolog programs essentially encode *predicate logic*
Syntax of predicate logic: terms and formulas

Terms
variables \(v \)

\[f(t_1, \cdots, t_n) \]
where \(f \) is an \(n \)-ary function and \(t_1, \cdots, t_n \) are terms.
constants can be viewed as 0-ary functions (no arguments)

Formulas (well-formed formulas)

\[P(t_1, \cdots, t_n) \]
with \(P \) an \(n \)-ary predicate, \(t_1, \cdots, t_n \) terms
\[\neg \alpha \]
where \(\alpha \) is a formula
\[\alpha \rightarrow \beta \]
where \(\alpha, \beta \) are formulas
\[\forall v \alpha \]
with \(v \) variable, \(\alpha \) formula: *universal quantification*

Other usual connectors:

\[\alpha \land \beta \overset{\text{def}}{=} \neg (\alpha \rightarrow \neg \beta) \quad \text{(AND)} \]
\[\alpha \lor \beta \overset{\text{def}}{=} \neg \alpha \rightarrow \beta \quad \text{(OR)} \]

existential quantifier: \[\exists x \varphi \overset{\text{def}}{=} \neg \forall x (\neg \varphi) \]

Compared to propositional logic: instead of propositions, *predicates* over *terms*
Prolog examples and logic meaning

desc(X, Y) :- child(X, Y).
desc(X, Z) :- child(X, Y), desc(Y, Z).
child(anna, jon).
child(jon, peter).
child(eve, jon).
child(peter, mary).

Variables in clause head are *universally* quantified.
Rest of variables in clause body are *existentially* quantified.

\[
\forall X \forall Y \; \text{child}(X, Y) \rightarrow \text{desc}(X, Y)
\]

\[
\forall X \forall Z . \exists Y (\text{child}(X, Y) \land \text{desc}(Y, Z)) \rightarrow \text{desc}(X, Z)
\]
Resolution (in propositional logic)

Resolution is an *inference rule* that produces a new clause from two clauses with complementary literals (p and ¬p).

\[
p \lor \alpha \quad \neg p \lor \beta \\
\hline
\alpha \lor \beta \\
\text{resolution}
\]

The new clause = *resolvent* of the two clauses w.r.t. p

Example: \(rez_p(p \lor q \lor \neg r, \neg p \lor s) = q \lor \neg r \lor s\)

Modus ponens may be seen as a *special case of resolution*:

\[
p \lor \text{false} \quad \neg p \lor q \\
\hline
\text{false} \lor q
\]

Resolution is a *valid* inference rule:

\[
\{p \lor \alpha, \neg p \lor \beta\} \models \alpha \lor \beta
\]

(for any truth assignment where premises are true, conclusion is true)

Corollary: if \(\alpha \lor \beta\) is a contradiction, so is \((p \lor \alpha) \land (\neg p \lor \beta)\).

We use resolution to show that a formula is a *contradiction*. resolution is a method for proof by *refutation*.
Why substitution and term unification?

We have two formulas where a predicate may appear positive and negated:
$$\forall x. \forall y. P(x, g(y)) \quad \text{and} \quad \forall z. \neg P(z, a).$$
or
$$\forall x. \forall y. P(x, g(y)) \quad \text{and} \quad \forall z. \neg P(a, z)$$
Are these contradictory?

We may substitute a universally quantified variable with any term.

⇒ in the second case, we may substitute $x \mapsto a$, $z \mapsto g(y)$
⇒ we obtain $P(a, g(y))$ and $\neg P(a, g(y))$, contradiction.

In the first case, we may not substitute y and obtain a from $g(y)$

interpretation: we may not assume that the arbitrary function g

must also take the constant value a.

This is precisely defined by substitution and unification.
A substitution is a function that associates terms to variables:

\[\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\} \]

For example,

\[
f(x, g(y, z), a, t) \{x \mapsto g(y), y \mapsto f(b), t \mapsto u\} = f(g(y), g(f(b), z), a, u)
\]

Obs: other encountered notations: \(x_i / t_i\), or \(t_i / x_i\)

Usually postfix notation \(T\sigma\) is used for substitutions \(\sigma\) applied to term \(T\)

The composition of two substitutions is a substitution
Term unification

Two terms t_1 and t_2 may be *unified* if there is a substitution σ that makes them equal: $t_1\sigma = t_2\sigma$. Such a substitution is called *unifier*.

Example: $f(x, g(y))\{x \mapsto a\} = f(a, g(y)) = f(a, z)\{z \mapsto g(y)\}$
i.e., the substitution $\{x \mapsto a, z \mapsto g(y)\}$ is a *unifier*.

More generally: applied to a *set of* pairs of terms.

The *most general unifier* is that from which any other unifier may be obtained by using another substitution.

In *resolution*: having the clauses $P(l_1, l_2, \ldots l_n)$ and $\neg P(r_1, r_2, \ldots r_n)$ if we find a unifier for $(l_1, r_1), \ldots$ we have a *contradiction*.
Unification rules

A variable x may be unified with any term t
 if x does not occur in t not: x with $f(g(y), h(x,z))$
 (substitution would lead to an infinite term)

Two functional terms may be unified only if they have identical functions, and the term arguments may be pairwise unified.
 in particular: only identical constants may be unified
Prolog and resolution

Prolog execution can be seen in two ways:
Match goal with head of rule or fact, until no more subgoals.
Apply resolution with negation of goal, until empty clause.
Prolog and resolution

Consider as goal: \texttt{desc(X, peter)}.
A \textit{solution} \textit{=} a value for \textit{X} that makes the predicate true
A formula is \textit{satisfiable} if its \textit{negation} is a \textit{contradiction}.
We derive a contradiction using \textit{resolution}.
Prolog and resolution

Consider as goal: \(\text{desc}(X, \text{peter}) \).

A **solution** = a value for \(X \) that makes the predicate true.

A formula is **satisfiable** if its **negation** is a **contradiction**.

We derive a contradiction using **resolution**.

Write the negated goal: \(\neg \text{desc}(X, \text{peter}) \).

i.e., \(\text{desc}(X, \text{peter}) \) is **false** for any \(X \).
Prolog and resolution

Consider as goal: desc(X, peter).
A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: ¬ desc(X, peter).
 i.e., desc(X, peter) is false for any X.

Choose the first rule for unification (use fresh variables):
desc(X1, Y1) ∨ ¬ child(X1, Y1).
We get as resolvent ¬ child(X, peter).
 X1=X, Y1=peter
Consider as goal: \(\text{desc}(X, \text{peter}) \).

A **solution** = a value for \(X \) that makes the predicate true.

A formula is **satisfiable** if its **negation** is a **contradiction**.

We derive a contradiction using **resolution**.

Write the negated goal: \(\neg \text{desc}(X, \text{peter}) \).

i.e., \(\text{desc}(X, \text{peter}) \) is **false** for any \(X \).

Choose the first rule for unification (use fresh variables):

\[
\text{desc}(X_1, Y_1) \lor \neg \text{child}(X_1, Y_1).
\]

We get as resolvent \(\neg \text{child}(X, \text{peter}) \). \(X_1=X, Y_1=\text{peter} \)

Choose for unification the fact \(\text{child}(\text{jon}, \text{peter}) \) (nr. 3).

We get as resolvent the empty clause (contradiction) \(X=\text{jon} \)
Prolog and resolution

Consider as goal: \(\text{desc}(X, \text{peter}) \).
A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: \(\neg \text{desc}(X, \text{peter}) \).
 i.e., \(\text{desc}(X, \text{peter}) \) is false for any X.

Choose the first rule for unification (use fresh variables):
\(\text{desc}(X_1, Y_1) \lor \neg \text{child}(X_1, Y_1) \).
We get as resolvent \(\neg \text{child}(X, \text{peter}) \).
 \(X_1=X, Y_1=\text{peter} \)

Choose for unification the fact \(\text{child}(\text{jon}, \text{peter}) \) (nr. 3).
We get as resolvent the empty clause (contradiction) \(X=\text{jon} \)

Thus \(\text{desc}(X, \text{peter}) \) is NOT false for any X.
\(\text{desc}(\text{jon}, \text{peter}) \) is true. \(X=\text{jon} \) is a solution
Prolog and resolution

Consider as goal: desc(X, peter).

A solution = a value for X that makes the predicate true
A formula is satisfiable if its negation is a contradiction.
We derive a contradiction using resolution.

Write the negated goal: ¬ desc(X, peter).

i.e., desc(X, peter) is false for any X.

Choose the first rule for unification (use fresh variables):
desc(X1, Y1) ∨ ¬ child(X1, Y1).

We get as resolvent ¬ child(X, peter).

X1=X, Y1=peter

Choose for unification the fact child(jon, peter) (nr. 3).

We get as resolvent the empty clause (contradiction)

X=jon

Thus desc(X, peter) is NOT false for any X.
desc(jon, peter) is true. X=jon is a solution

Continue for other solutions....
We restart with the negated goal: \(\neg \text{desc}(X, \text{peter}) \).
We restart with the negated goal: \(\neg \text{desc}(X, \text{peter}) \).

We unify with rule 2 (renaming variables again):

\[
\text{desc}(X_2, Z_2) \lor \neg \text{child}(X_2, Y_2) \lor \neg \text{desc}(Y_2, Z_2)
\]

We get: \(\neg \text{child}(X, Y_2) \lor \neg \text{desc}(Y_2, \text{peter}) \)

\(X_2 = X \), \(Z_2 = \text{peter} \)

We unify with \(\text{child}(\text{anna}, \text{jon}) \) (nr. 3)

\(X = \text{anna} \), \(Y_2 = \text{jon} \)

We get as resolvent \(\neg \text{desc}(\text{jon}, \text{peter}) \).

We've already seen \(\text{desc}(\text{jon}, \text{peter}) \Rightarrow \) leads to empty clause.

\(\Rightarrow \) \(X = \text{anna} \) is another solution for initial question

If goal has variables, Prolog searches for all unifications/substitutions.

With no variables, determines if predicate is true.
We restart with the negated goal: \negdesc(X, peter).

We unify with rule 2 (renaming variables again):

\[
\text{desc}(X_2, Z_2) \lor \neg \text{child}(X_2, Y_2) \lor \neg \text{desc}(Y_2, Z_2)
\]

We get: \neg child(X, Y_2) $\lor\neg$ desc(Y_2, peter) $X_2=X$, $Z_2=peter$

We unify with child(anna, jon) (nr. 3) $X=anna$, $Y_2=jon$

We get as resolvent \neg desc(jon, peter).
We restart with the negated goal: \(\neg \text{desc}(X, \text{peter}) \).

We unify with rule 2 (renaming variables again):
\[
\text{desc}(X_2, Z_2) \lor \neg \text{child}(X_2, Y_2) \lor \neg \text{desc}(Y_2, Z_2)
\]
We get:
\[
\neg \text{child}(X, Y_2) \lor \neg \text{desc}(Y_2, \text{peter}) \quad X_2=X, \ Z_2=\text{peter}
\]

We unify with \(\text{child}(\text{anna}, \text{jon}) \) (nr. 3) \(X=\text{anna}, \ Y_2=\text{jon} \)
We get as resolvent \(\neg \text{desc}(\text{jon}, \text{peter}) \).

We’ve already seen \(\text{desc}(\text{jon}, \text{peter}) \) \(\Rightarrow \) leads to empty clause.
\(\Rightarrow X=\text{anna} \) is another solution for initial question.
We restart with the negated goal: \(\neg \text{desc}(X, \text{peter}) \).

We unify with rule 2 (renaming variables again):
\[
\text{desc}(X_2, Z_2) \lor \neg \text{child}(X_2, Y_2) \lor \neg \text{desc}(Y_2, Z_2)
\]
We get: \(\neg \text{child}(X, Y_2) \lor \neg \text{desc}(Y_2, \text{peter}) \) \hspace{1cm} \(X_2=X, Z_2=\text{peter} \)

We unify with \(\text{child}(\text{anna}, \text{jon}) \) (nr. 3) \hspace{1cm} \(X=\text{anna}, Y_2=\text{jon} \)
We get as resolvent \(\neg \text{desc}(\text{jon}, \text{peter}) \).

We’ve already seen \(\text{desc}(\text{jon}, \text{peter}) \Rightarrow \) leads to empty clause.
\(\Rightarrow \) \(X=\text{anna} \) is another solution for initial question

If goal has variables, Prolog searches for all unifications/substitutions.
With no variables, determines if predicate is true.
Example with terms: list reversal

Use constant \texttt{nil} and binary function \texttt{c} (\texttt{cons}) to model lists.

Model \textit{n}-ary \textit{function} with \textit{n + 1}-ary \textit{relation} (between args and result)

Model tail-recursive call using same variable in the result position.

\begin{verbatim}
rev3(nil, R, R).
rev3(c(H, T), Ac, R) :- rev3(T, c(H, Ac), R).
rev(L, R) :- rev3(L, nil, R)
\end{verbatim}

With goal \texttt{rev(c(1, c(2, c(3, nil))))}, \(X\) we get \(X = c(3, c(2, c(1, nil)))\).

Derivation:

\begin{verbatim}
← \texttt{rev(c(1, c(2, c(3, nil)))), X} \quad \text{L1=c(1,c(2,c(3,nil))), R1=X}
← \texttt{rev3(c(1, c(2, c(3, nil))), nil, X)} \quad \text{H1=1, T1=c(2,c(3,nil)), Ac1=nil}
← \texttt{rev3(c(2, c(3, nil)), c(1, nil), X)} \quad \text{H2=2, T2=c(3,nil), Ac2=c(1,nil)}
← \texttt{rev3(c(3, nil), c(2, c(1, nil)), X)} \quad \text{H3=3, T3=nil, Ac3=c(2,c(1,nil))}
← \texttt{rev3(nil, c(3, c(2, c(1, nil)))), X)} \quad \text{X=c(3,c(2,c(1,nil)))}
\end{verbatim}