Programming language design and analysis

Lambda Calculus

Marius Minea

25 September 2017

Course references:

Principles of Programming Languages, Uday Reddy, Univ. of Birmingham Program Analysis and Understanding, Jeff Foster, Univ. of Maryland

Background. Church-Turing thesis

Lambda calculus: developed in 1930's by Alonzo Church initially typed, then untyped fragment

Formalizing *computability*:

Lambda calculus [Church] Turing machines [1936–37] general recursive functions [Church, Kleene, Rosser]

These three computational processes are equivalent, i.e., the class of *computable* functions (by recursion or λ -calculus) are precisely the *effectively calculable* ones (by a Turing machine).

Church-Turing thesis: these models express what is effectively computable.

 \Rightarrow Lambda calculus is a *universal model of computation*.

Syntax

We've seen: computation is done by functions in general, both function and arguments can be expressions

e ::= x	variable
$\lambda x.e$	function abstraction (definition)
$ e_1 e_2$	function application

Basic ideas:

functions are values(no split b/w functions and args/results)functions need not be named $(\lambda$ -abstractions suffice)functions are all one needs(can express numbers, if-then, etc.)

Syntax conventions:

the scope of the abstraction . extends as far right as possible application is left-associative, $e_1 e_2 e_3$ means $(e_1 e_2) e_3$

Free and bound variables

The function abstraction $\lambda x.e$ binds the occurrence of x in e intuitively: inside e, x is the argument; outside e it has no meaning

Set of free variables of an expression:

$$FV(x) = \{x\}$$

$$FV(\lambda x.e) = FV(e) \setminus \{x\}$$

$$FV(e_1 \ e_2) = FV(e_1) \cup FV(e_2)$$

A term is *closed* if it has no free variables.

A variable that is not free is called *bound*.

Calling a function means using the (actual) argument in place of the (formal) parameter.

In most languages, this means *evaluating* the argument expressions.

In lambda calculus, we will just do syntactic substitution.

Substitutions

To correctly compute with λ expressions, we need to define substitutions.

Denote by $e_1[x \rightarrow e_2]$ the substitution of x by e_2 in e_1 (various other notations: $e_1[x := e_2], e_1[x/e_2], e_1[e_2/x]$)

Define: $y[x \to e] = \begin{cases} e & \text{if } y \text{ is the same as } x \\ y & \text{if } y \text{ is different from } x \end{cases}$ $(\lambda y.e_1)[x \to e_2] = \\
\begin{cases} \lambda y.e_1 & \text{if } y \text{ is the same as } x \\ \lambda y.(e_1[x \to e_2]) & \text{if } y \text{ is different from } x \text{ and } y \notin FV(e_2) \end{cases}$ $(\text{otherwise occurrences of } y \text{ in } e_2 \text{ would be captured by } \lambda y.e_1)$ $(e_1 e_2)[x \to e] = (e_1[x \to e])(e_2[x \to e])$

Capture-avoiding substitution

 α -conversion (bound variables can be renamed)

$$\lambda x.e = \lambda y.(e[x
ightarrow y] ext{ if } y
ot\in FV(e)$$

Then we can substitute $\lambda y.e_1[x \to e_2]$ also when $y \in FV(e_2)$: first rename y to some fresh variable z: $\lambda y.e_1 = \lambda z.e_1[y \to z]$ then substitute x with e_1 : $\lambda z.e_1[y \to z][x \to e_2]$

Reductions: Computing with lambda expressions

 β -conversion (or β -reduction)

$$(\lambda x.e_1) e_2 = e_1[x \rightarrow e_2]$$

is the *evaluation* step for lambda expressions. We write:

$$(\lambda x.e_1) \ e_2 \longrightarrow_{\beta} e_1[x \rightarrow e_2]$$

 η -conversion: simplifies application + abstraction

$$\lambda x.e \ x = e$$
 if $x \notin FV(e)$

Equivalence and Confluence

Two terms are *equivalent* if one can be converted to each other by the three conversion rules.

A λ -expressions may have several β -reducible subexpressions (*redexes*) \Rightarrow which one to apply first ?

Church-Rosser theorem: if a term reduces to two different terms, these in turn reduce to a common term (diamond property).

$$e \longrightarrow^*_\beta e_1 \wedge e \longrightarrow^*_\beta e_2 \Rightarrow \ \exists e' \ . \ e_1 \longrightarrow^*_\beta e' \wedge e_2 \longrightarrow^*_\beta e'$$

Precedence

Precedence

allows disambiguating expressions, without need for excess parantheses

Precedence

allows disambiguating expressions, without need for excess parantheses

Associativity

Precedence

allows disambiguating expressions, without need for excess parantheses

Associativity

how to evaluate operators with same precedence left-associative, right-associative operators may be associative in math, but not in prog.lang.

Precedence

allows disambiguating expressions, without need for excess parantheses

Associativity

how to evaluate operators with same precedence left-associative, right-associative operators may be associative in math, but not in prog.lang.

Evaluation order

Precedence

allows disambiguating expressions, without need for excess parantheses

Associativity

how to evaluate operators with same precedence left-associative, right-associative operators may be associative in math, but not in prog.lang.

Evaluation order

of operands for a given operator specified or unspecified

Reduction strategies

normal-order reduction

leftmost outermost redex first also reduces under λ if any reduction terminates, then normal order terminates

call-by-name leftmost outermost redex first does not reduce under λ

applicative order reduction (call by value) only reduce $(\lambda x.e_1) e_2$ when argument e_2 is value

In programming language practice: *lazy* evaluation: only reduce argument if needed, but do not duplicate expressions (evaluate at most once)

Usually, recursion requires *naming* the recursive object. But λ -calculus does not let us introduce names...

Start from the diverging (infinite) self-application $(\lambda x . x x)(\lambda x . x x)$

Define another closed term that applies a function to an argument $\mathbf{Y} = \lambda f \cdot (\lambda x \cdot f(x x))(\lambda x \cdot f(x x))$

Y is called *fixpoint combinator*, because **Y** $f = f(\mathbf{Y} f)$ (show!)