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Errors in concurrent programs

Deadlock
Livelock (loop without useful progress)
Starvation: inequitable resource access

(threads that do not get access, without deadlock overall)
Race conditions

in particular, data races
Not observing atomicity

simple source code statements (++) may not be atomic in
machine code

or: writes to variables covering several memory words



Synchronization primitives

Concurrent programs have synchronization primitives
but how are they implemented ?

e.g. with hardware support: test_and_set instruction

// busy wait
// returns old value of lock
// sets it to 1 if it was 0
while (test_and_set(lock) == 1);

more general: compare-and-swap



Mutual exclusion: Peterson’s algorithm

while (1) {
L1: flag[0] = true; // try
L2: turn = 1; // other’s turn
L3: while (flag[1] && turn==1)

; // wait
C0: flag[0] = false;

}

while (1) {
R1: flag[1] = true; //try
R2: turn = 0; // other’s turn
R3: while (flag[0] && turn==0)

; // wait
C1: flag[1] = false;

}

Designed for single-processor shared memory
Not safe in a multicore setting (will discuss)



Data races

Happen when two threads access a variable, and
at least one does a write access
the threads are not explicitly synchronized

Analyzing race conditions is complicated by reorderings within a
thread (through compiler optimizations)

init: x = 0; y = 0; Possible outcomes (r1, r2): (0, 0)
t1: r1 = x; t2: r2 = y; (1, 0)

y = 2; x = 1; (0, 2)
But by reordering in t1 and t2 we could obtain r1 = 1, r2 = 2 !

This result does not match sequential consistency
(that we are intuitively used to)

all memory accesses correspond to total order (linear), and
order of accesses in any thread is program order



Java memory model

A concurrent language must have a memory model that is intuitive,
and which does not limit performance, by restricting optimizations

Solution [JSR 133; Manson, Pugh, Adve, PLDI’05]:
define a class of well-synchronized programs (data race free), for

which sequential consistency is ensured
+ minimal guarantees for the rest of programs (even if

incorrectly synchronized)

Principle: define a happens-before ordering [Lamport] between
program actions, which transitively combines

ordering of synchronization actions (b/w unlock and any lock on
the same monitor, and between writing a volatile variable and
reading it)

and program order (between execution threads)



Volatile variables and synchronization

Reading a volatile variable:
last value written in synchronization order

Reading a non-volatile variable:
any value which is not written later according to happens-before
and is not obsoleted by another write

Warning: volatile does NOT mean atomic !

Race condition =
conflicting accesses (r-w, w-w) not ordered by happens-before.

Well-synchronized program = does not have race conditions
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Why are concurrent programs hard to verify?

Understanding concurrency problems is often hard
Difficult to exercise a certain execution sequence

needs control over/changes to scheduler/external conditions
Error traces might be very rare (in certain complex scenarios)
Error conditions may be hard to reproduce (“Heisenbugs”)
Exhaustive exploration of all execution traces is infeasible

(exponential in number of threads / their size)



Error patterns in concurrent programs

[after Farchi, Nir, Ur – IBM Haifa]
Ignoring non-atomicity

x = 0 || x = 0x101 ⇒ x == 1 is possible!!
if the two bytes are written separately (hi from 0, low from

0x101)
Two-step access

even if both accesses are protected, object may change in
between
lock(); idx = table.find(key); unlock();
if (...) { lock(); table[idx] = newval; unlock(); }
Missing / wrong lock (e.g. programmer unfamiliar with code)

t1: synchronized(o1) { n++; } t2: n++;
or

t1: synchronized(o1) { n++; } t1: synchronized(o2)
{ n++; }



Error patterns in concurrent programs (cont.)

Double-checked locking: “optimizing” on-demand initialization

class Foo {
private Helper helper = null;
public Helper getHelper() { // tries to avoid some synchronization

if (helper == null) // already allocated? return
synchronized(this) {

if (helper == null) // second check is protected
helper = new Helper();

}
return helper; // other thread may see incomplete object

}
}

Problem: compiler is free to reorder for optimization



Error patterns in concurrent programs (cont.)

Situations assumed impossible (but which may happen):
sleep() wrongly used to guarantee a delay
Lost Notify: when executed before wait:
t1: synchronized(o) { o.wait(); }

|| t2: synchronized(o) { o.notifyAll(); }
Unchecked Wait: on resume, must check awaited condition

(resume might have happened due to other causes)

Deadlock scenarios
code written assuming the critical section won’t block

false, if (bad) code provided by someone else
“orphan” threads

if creator thread terminates with error ⇒ may lead to deadlock



Unit testing solutions

Implicitly, JUnit observes thread that launched the test
⇒ does not detect exceptions in threads launched later
⇒ need frameworks with features adapted to concurrency
e.g.: ConcJUnit [Rice University]

creates/observers a group of execution threads
warns if other threads still running after main thread completes

(should have been handled with a join ...)
may insert arbitrary delays ⇒ generates other interleavings



Solutions for system-level testing

Idea: create variation in thread scheduling
ConTest [IBM Haifa]

instruments program (sleep(), yield(), etc.)
or simulates delays, message loss, etc.

⇒ random or guided variation in scheduling
measures coverage with respect to all possible

schedules/interleavings

CHESS [Microsoft Research]
captures calls to synchronization functions
systematically generates executions with new schedules

in increasing order of preemption count
can reproduce generated executions



Detecting race conditions
Many solutions have been proposed. One of the classic ones:
Eraser [1997]

combines static and dynamic analysis
by analyzing one execution finds potential errors in others
keeps track of locks acquired by each thread
tries to derive which lock protects which shared object

init: C(v) = all locks; // for each variable v
access: C(v) = C(v) ∩ locks held(t); // on access by t

if C(v) = ∅ warning(); // unprotected access!

If extended, may distinguish read and write locks, tracking the
state of each variable (virgin, exclusive, shared, shared-modified)

Conservative algorithm, may lead to false alarms for correct
programs
(which do not associate a variable with a unique lock throughout
execution)



High-level data races
[Artho, Havelund, Biere 2003]
Errors: when granularity of protected variables not same over time
void swap() {

int lx, ly;
synchronized(this) {

lx = this.x;
ly = this.y;

}
synchronized(this) {

this.x = ly;
this.y = lx;

}
}

void reset() {
synchronized(this) {

this.x = 0;
}
synchronized(this) {

this.y = 0;
}

}

Access to members is synchronized, but swap and reset may
interfere!
⇒ Analysis not just from point of view of variables (what locks
protect them?)
but also starting from locks (what variable sets covered by each?)



Java PathFinder [NASA]: Model checking for concurrency

Completely explores program executions
simulates nondeterminism through a custom virtual machine
which allows choosing scheduling variants at each step
and returning to unexplored ones (similar to backtracking)

Works at bytecode level; allows to check
deadlocks
exceptional conditions
assertions in code

Limited to smaller programs (10 kloc): “state space explosion”
size of stored states (number of program variables)
number of possible executions (exponential in number of

threads)


