Model-based testing

6 December 2017



How can we obtain models for testing?

» from exploring the system
» from the specification

» from code



From models to tests

In all cases, we need a mapping from actions and responses of the
model to inputs and responses of the system under test (SUT)

Example: Web Application Abstract Language [Biichler et al.,
KIT/TU Miinchen]

1) Abstract browser actions: FollowLink, ClickButton, Selectltems,
Clicklmage, gotoURL, InputText, MoveMouse, etc.

2) Mapping to actions specific to SUT:

login(user, pwd) =
selectItem(employeelist, user);
inputText (passwordField, pwd);
clickButton(login);

3) Mapping to actions of the testing framework (e.g., Selenium):
HtmlUnit.findElement (), WebElement.click()



Models obtained by explorinng the system

Informal: exploratory testing

e.g., model of a GUI (file editor) and generated program actions
Model building: manually
Conformance testing (system respects model?): automated

Formal: automata learning (active learning, Angluin algorithm)
generate input sequences, observing outputs

If two sequences i1, i> cannot be distinguished by suffixes w up to a

given length (iiw and hw generate same outputs), consider they

lead to the same state.

Currently very successsful in learning / testing network protocols



Models obtained from specification
Example: phone switch [Kaner]

Idle ﬂ

Ringing = Caller

hung up
\

You
T 4m Connected

b I

On Hold

hand

Usually written by



Models as part of specifications

PCl Local Bus Specification, 2004:

BACKOFF

if a conflict exists between the specification and the state machines, the specification
has precedence.”

IETF Extensible Authentication Protocol (EAP), FRC 4137 (2005)
"Should a conflict exist between the interpretation of a state diagram and either the
corresponding global transition tables or the textual description associated with the

state machine, the state diagram takes precedence. ”



Models extracted from code

do { // Fragment de device driver [Ball & Rajamani ’01]
KeAcquireSpinLock (&devExt->writeListLock) ;
nPackets0ld = nPackets;
request = devExt->WriteListHeadVa;
if (request && request->status) {

devExt->WritelListHeadVa = request->Next;
KeReleaseSpinLock (&devExt->writeListLock) ;
irp = request->irp;
if (request->status > 0) {
irp->IoStatus.Status = STATUS_SUCCESS;
irp->IoStatus.Information = request->Status;
} else {
irp->IoStatus.Status = STATUS_UNSUCCESSFUL;
irp->IoStatus.Information = request->Status;
}
SmartDevFreeBlock(request) ;
ToCompleteRequest (irp, IO_NO_INCREMENT) ;
nPackets++;

} while (nPackets != nPackets01d);
KeReleaseSpinLock (&devExt->writeListLock) ;



Using abstractions to obtain a model

do {
A: KeAcquireSpinLock();
b =T; /* b == (nPackets == nPackets01ld) */
if () {
B: KeReleaseSpinLock();
it (%) {
skip;
} else {
skip;
}
b := choose(F, b); /* choose(pl, p2) == p1 7 T :
p2 ? F : nondet */
}
} while (!b);

C: KeReleaseSpinLock();

Abstractions use Hoare rules / Dijkstra weakest preconditions



Abstractions from code: JML model fields

Fictitious fields, representing relations between actual object fields

Each method: annotated with preconditions / postconditions /
invariants, expressed in terms of model fields

http://kindsoftware.com/products/opensource/ESCJava2/
ESCTools/slides/ETAPSTutorial/5_more_jml.pdf (p. 35-45)


http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/slides/ETAPSTutorial/5_more_jml.pdf
http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/slides/ETAPSTutorial/5_more_jml.pdf

