
Model-based testing

6 December 2017

How can we obtain models for testing?

I from exploring the system

I from the specification

I from code

From models to tests

In all cases, we need a mapping from actions and responses of the
model to inputs and responses of the system under test (SUT)

Example: Web Application Abstract Language [Büchler et al.,
KIT/TU München]
1) Abstract browser actions: FollowLink, ClickButton, SelectItems,
ClickImage, gotoURL, InputText, MoveMouse, etc.

2) Mapping to actions specific to SUT:

login(user, pwd) =

selectItem(employeeList, user);

inputText(passwordField, pwd);

clickButton(login);

3) Mapping to actions of the testing framework (e.g., Selenium):
HtmlUnit.findElement(), WebElement.click()

Models obtained by explorinng the system

Informal: exploratory testing
e.g., model of a GUI (file editor) and generated program actions

Model building: manually
Conformance testing (system respects model?): automated

Formal: automata learning (active learning, Angluin algorithm)
generate input sequences, observing outputs

If two sequences i1, i2 cannot be distinguished by suffixes w up to a
given length (i1w and i2w generate same outputs), consider they
lead to the same state.

Currently very successsful in learning / testing network protocols

Models obtained from specification

Example: phone switch [Kaner]

Usually written by
hand

Models as part of specifications

PCI Local Bus Specification, 2004:

PCI LOCAL BUS SPECIFICATION, REV. 3.0

 280

This indicates the output buffer for PAR is enabled when the previous state is S_DATA,
TRDY# is asserted, the transaction is a read. The first state machine presented is for the
target, the second is the master. Caution needs to be taken when an agent is both a master
and a target. Each must have its own state machine that can operate independently of the
other to avoid deadlocks. This means that the target state machine cannot be affected by the
master state machine. Although they have similar states, they cannot be built into a single
machine.

Note: LOCK# can only be implemented by a bridge; refer to Appendix F for details about
the use of LOCK#. For a non-bridge device, the use of LOCK# is prohibited.

FREE LOCKED

BACKOFF

IDLE

S_DATA

TURN_AR

Target
Sequencer
Machine

Target LOCK Machine

B_BUSY

A-0214
IDLE or TURN_AR -- Idle condition or completed transaction on bus.

goto IDLE if FRAME#
goto B_BUSY if !FRAME# * !Hit

”if a conflict exists between the specification and the state machines, the specification

has precedence.”

IETF Extensible Authentication Protocol (EAP), FRC 4137 (2005)
”Should a conflict exist between the interpretation of a state diagram and either the

corresponding global transition tables or the textual description associated with the

state machine, the state diagram takes precedence. ”

Models extracted from code

do { // Fragment de device driver [Ball & Rajamani ’01]
KeAcquireSpinLock(&devExt->writeListLock);
nPacketsOld = nPackets;
request = devExt->WriteListHeadVa;
if(request && request->status) {

devExt->WriteListHeadVa = request->Next;
KeReleaseSpinLock(&devExt->writeListLock);
irp = request->irp;
if (request->status > 0) {

irp->IoStatus.Status = STATUS SUCCESS;
irp->IoStatus.Information = request->Status;

} else {
irp->IoStatus.Status = STATUS UNSUCCESSFUL;
irp->IoStatus.Information = request->Status;

}
SmartDevFreeBlock(request);
IoCompleteRequest(irp, IO NO INCREMENT);
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock(&devExt->writeListLock);

Using abstractions to obtain a model

do {
A: KeAcquireSpinLock();

b = T; /* b == (nPackets == nPacketsOld) */

if(*) {
B: KeReleaseSpinLock();

if (*) {
skip;

} else {
skip;

}
b := choose(F, b); /* choose(p1, p2) == p1 ? T :

p2 ? F : nondet */

}
} while (!b);

C: KeReleaseSpinLock();

Abstractions use Hoare rules / Dijkstra weakest preconditions

Abstractions from code: JML model fields

Fictitious fields, representing relations between actual object fields

Each method: annotated with preconditions / postconditions /
invariants, expressed in terms of model fields

http://kindsoftware.com/products/opensource/ESCJava2/

ESCTools/slides/ETAPSTutorial/5_more_jml.pdf (p. 35-45)

http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/slides/ETAPSTutorial/5_more_jml.pdf
http://kindsoftware.com/products/opensource/ESCJava2/ESCTools/slides/ETAPSTutorial/5_more_jml.pdf

