
Model checking

1 November 2017



Verification purpose

show that program is correct
(if feasible)

finding errors
methods that only target error finding (testing)
or methods that try to prove correctness

and show error (counterexample) if they fail



Verification methods

static = without code execution
finding error patterns
dataflow analysis
formal verification

dynamic = by running code
instrumenting / running on virtual machine
symbolic execution (work with formulas, not values)



Trusting the verification outcome

A method is
sound ? = every answer is valid ?
complete ? = finds all the answers ?

Verification:
sound: a system reported as correct is correct
complete: can prove correctness of any system

impossible for precise problems (e.g. halting)
possible for more general ones (e.g. no type errors)

Error finding:
sound: every reported error is real
complete: finds all errors



Formal verification

Uses mathematical model of system
⇒ allows guaranteed (certified) results

within modeling assumptions (compiler, libraries, OS, hardware...)

Theorem proving
verification conditions (from Floyd/Hoare rules)
provers or satisfiability checkers (SAT-solvers)
may need human hints / annotations for complex cases

intense interaction with human expert

Model checking
system = finite-state automaton
algorithm = explore state space (graph traversal)
automated; gives counterexample in case of error
challenge: state space explosion



Model checking in brief

developed from 1981 (Clarke & Emerson; Sifakis – Turing award 2007)
initially applied to hardware and small concurrent programs

Example: Peterson’s mutual exclusion algorithm
while (1) {

L1: flag[0] = true; // try
L2: turn = 1; // other’s turn
L3: while (flag[1] && turn==1)

; // wait
C0: flag[0] = false;

}

while (1) {
R1: flag[1] = true; //try
R2: turn = 0; // other’s turn
R3: while (flag[0] && turn==0)

; // wait
C1: flag[1] = false;

}

Can programs simultaneously reach critical section ?
labels C0 and C1, before setting to false (freeing resource)



Model checking: automaton representation

L1

L2

L3

L4

C0

f0←T

t←1

f1

¬f1

t = 1

¬(t = 1)

f0←F

State space:
variables: 3 bits: f0, f1, t, initially (?, ?, ?)
program counters (2 threads)
⇒ cartesian product: pairs (pc0, pc1)

Explicit representation: 23 · 5 · 5 states

Not all states are reachable (feasible).

Can we reach state with
pc0 = C0, pc1 = C1?

Answer: explore state space
forward, from initial state (L1, L1, ?, ?, ?)

is bad state reachable? or
backward, from error state (C0, C1, ?, ?, ?)

is initial state reachable?
A model checker implements traversal algorithms
also for more complex properties (temporal logic)



Model checking vs. graph traversal

Simplest property: reachability – is error state reachable ?

We know this from graph traversal (BFS, DFS).
but there, the graph is explicit and pre-build
must only follow pointers from node to node

Model checking usually starts from a model description in text (program)
C, Java, dedicated specification/modeling language

No pre-existing graph of nodes, model must be built
e.g. explicit-state, on-the-fly state-space exploration
or symbolic: state sets and transition relation are formulas

represented as binary decision diagrams (BDDs)
may need to compose models (automata) for components



Everything is a formula

L1

L2

L3

L4

C0

f0←T

t←1

f1

¬f1

t = 1

¬(t = 1)

f0←F

State sets are formulas over state variables:
Si = (pc0 = 1) ∧ (pc1 = 1) (initial)

f0, f1, t arbitrary ⇒ 8 individual states

transition: formula over state and next state
pc0 = 1 ∧ pc ′0 = 2 ∧ f ′0 = 1
∧ pc ′1 = pc1 ∧ t ′ = t ∧ f ′1 = f1
Transition relation: disjunction (∨) of all
transitions

Next state set: all states s ′ such that
s ∈ Si ∧ step(s, s ′) i.e., Si (s)∧ step(s, s ′)



Finding an execution path

A path of length k from initial state set Si to target state (set) Sf
must satisfy

Si (s0) ∧ step(s0, s1) ∧ ... ∧ step(sk−1, sk) ∧ Sf (sk)

This means satisfiability checking of a Boolean formula
NP-complete, but efficient algorithms in recent practice

Bounded model checking
If one can’t explore the full state space, show that no error paths of
length less than some k exist



Software model checking in practice
Early: SPIN tool (own modeling language with guarded commands)
SLAM project [Microsoft Research] (starting 2000)
(Software (Specifications), Languages, Analysis and Model checking)
later, many others: BLAST (UC Berkeley), CBMC (Oxford), ...
today: Software Verification Competition (5th edition, 2016)

Goal: checking safety properties (invariants)
example: a program respects API usage rules
calls to lock() and unlock() alternate

used in practice for device drivers in Windows, Linux
focused mostly on finding control/interface errors

Advantages:
– no need to annotate program by user
(only specify rules to monitor – simple automata)
– checking is automatic, for all possible executions
– generates counterexample (concrete execution) in case of error



Sample program
do { // Device driver fragment [Ball & Rajamani ’01]

KeAcquireSpinLock(&devExt->writeListLock);
nPacketsOld = nPackets;
request = devExt->WriteListHeadVa;
if(request && request->status) {

devExt->WriteListHeadVa = request->Next;
KeReleaseSpinLock(&devExt->writeListLock);
irp = request->irp;
if (request->status > 0) {

irp->IoStatus.Status = STATUS SUCCESS;
irp->IoStatus.Information = request->Status;

} else {
irp->IoStatus.Status = STATUS UNSUCCESSFUL;
irp->IoStatus.Information = request->Status;

}
SmartDevFreeBlock(request);
IoCompleteRequest(irp, IO NO INCREMENT);
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock(&devExt->writeListLock);

Only highlighted code is relevant for correctness!



Specifying properties

A lock may be represented as one bit:
acquire and release change the bit value or signal error
state {

enum { Unlocked=0, Locked=1 }
state = Unlocked;

}
KeAcquireSpinLock.return {

if (state == Locked) abort;
else state = Locked;
}
KeReleaseSpinLock.return {

if (state == Unlocked) abort;
else state = Unlocked;
}
Given this lock model, the program is automatically instrumented
(original program is correct iff instrumented program can’t reach error)



Abstraction is key to verification

Programs may be very complex
Many statements may be irrelevant for property of interest
⇒ want to focus on relevant program part

Program Slicing [Weiser, 1981]
determines program fragment (slice) that affects a given property

(slicing criterion)
(e.g. value of a variable in a program point)

More generally: abstraction
generate a simplified program (model) from whose analysis we derive

properties of the initial program

predicate = boolean condition (expression with program variables)



Generating the boolean program

Starts from the predicates in the specification
nondeterministic branches
skip (NOP) for irrelevant statements

Initially, keep just control structure, without data
do {
A: KeAcquireSpinLock return();

skip;
if(*) {

B: KeReleaseSpinLock return();
if (*) {

skip;
} else {

skip;
}

}
} while (*);
C: KeReleaseSpinLock return();



Model checking the boolean program

Abstract program is automaton: calculate reachable state set
state = program counter + variable assignment
state space: represented efficiently as boolean formula

(binary decision diagram, BDD)
computing with state sets: captures correlations between variables
transition relation: is also a boolean formula

state = 0 ∧ state′ = 1

For given program, model checker finds error trace: may traverse
A: KeAcquireSpinLock() twice successively

if one never enters the if containing B: Release...



Is the error trace feasible ?

We get an error trace in the abstract program (model).
Is it feasible in the original (concrete) program ?

Map error trace onto original program
= find input values that satisfy constraints for the chosen path
(weakest preconditions)

If counterexample (error trace) is feasible, it is a real error.

If counterexample is not feasible, abstraction was too coarse
model myst be refined and re-checked

counterexample-guided abstraction refinement



Counterexample-guided abstraction refinement

In the given example, reproducing the counterexample fails
program exits while after first loop
⇒ the loop condition is relevant for the analyzed property

We introduce a new predicate (boolean variable) representing the
condition

b
def:= nPackets != nPacketsOld

We generate a new boolean program ⇒ find statements depending on b.
Assignments nPacketsOld = nPackets and nPackets++ affect b

We determine when after an assignment we know the value of b
(true/false)

depending on all state bits (2n for n predicates, here 1)



Abstracting statements

Find weakest precondition for b, resp. !b after given assignment.
We use for short nP and nPO.
We find wp for b: wpT = wp(nP← nP+1, nP=nPO) = nP+1=nPO
We check if b →wpT and if !b →wpT
nP=nPO 6→ nP+1=nPO and nP6=nPO 6→ nP+1=nPO
So regardless of b we can’t be sure that after nP++, b will be true.

We repeat with wpF = wp(nP← nP+1, nP 6=nPO) = nP+16=nPO
We have nP=nPO → nP+1 6=nPO and nP6=nPO 6→ nP+1 6=nPO

So if b then after nP++ we have !b, else we don’t know.
⇒ we may abstract nP++ with b = b ? F : nondet

Likewise, we may abstract nPO = nP with b = T

Regenerate boolean program with the new predicates, check again.



Second boolean program

do {
A: KeAcquireSpinLock return();

b = T; /* b == (nPackets == nPacketsOld) */
if(*) {

B: KeReleaseSpinLock return();
if (*) {

skip;
} else {

skip;
}
b := choose(F, b); // choose(p1, p2) == p1 ? T : p2 ? F : nondet
}
} while (!b);
C: KeReleaseSpinLock return();



Concluding...

The new abstraction is fine-grained enough.
Exploring all boolean program states the model-checker does not find an
error path.

after B:Release, b becomes F, we stay in the cycle,
can’t execute C:Release again (we do A:Acquire)

if we don’t pass B:Release, b stays T, we exit the cycle,
can’t repeat A:Acquire (we do C:Release)

May need several abstraction steps; termination not guaranteed.

In practice, model checking is feasible for control-rich programs: errors in
drivers, Linux kernel, etc.


