Model checking

1 November 2017

show that program is *correct* (if feasible)

finding *errors* methods that only target error finding (testing) or methods that try to prove correctness and show error (counterexample) if they fail

Verification methods

static = without code execution
finding error patterns
dataflow analysis
formal verification

dynamic = by running code instrumenting / running on virtual machine symbolic execution (work with formulas, not values)

Trusting the verification outcome

```
A method is

sound ? = every answer is valid ?

complete ? = finds all the answers ?
```

Verification:

sound: a system reported as correct is correct complete: can prove correctness of any system impossible for precise problems (e.g. halting) possible for more general ones (e.g. no type errors)

Error finding: sound: every reported error is real complete: finds all errors

Formal verification

Uses mathematical model of system ⇒ allows *guaranteed* (certified) results within modeling assumptions (compiler, libraries, OS, hardware...)

Theorem proving

verification conditions (from Floyd/Hoare rules) provers or satisfiability checkers (SAT-solvers) may need human hints / annotations for complex cases intense interaction with human expert

Model checking

system = finite-state automaton algorithm = explore state space (graph traversal) automated; gives counterexample in case of error challenge: state space explosion

Model checking in brief

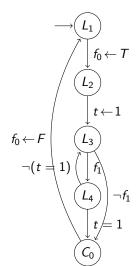
developed from 1981 (Clarke & Emerson; Sifakis – Turing award 2007) initially applied to hardware and small concurrent programs

Example: Peterson's mutual exclusion algorithm

```
while (1) {
    L1: flag[0] = true; // try
    L2: turn = 1; // other's turn
    L3: while (flag[1] && turn==1)
    ; // wait
    C0: flag[0] = false;
    }
    while (flag[1] = false;
}
```

Can programs simultaneously reach critical section ? labels C0 and C1, *before* setting to *false* (freeing resource)

Model checking: automaton representation



State space:

variables: 3 bits: f_0, f_1, t , initially (?,?,?) program counters (2 threads) \Rightarrow cartesian product: pairs (pc_0, pc_1) Explicit representation: $2^3 \cdot 5 \cdot 5$ states

Not all states are *reachable* (feasible).

Can we reach state with

$$pc_0 = C_0, \ pc_1 = C_1?$$

Answer: explore state space forward, from initial state $(L_1, L_1, ?, ?, ?)$ is bad state reachable? or backward, from error state $(C_0, C_1, ?, ?, ?)$ is initial state reachable?

A *model checker* implements traversal algorithms also for more complex properties (*temporal logic*)

Model checking vs. graph traversal

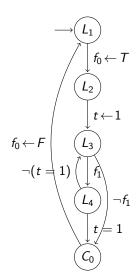
Simplest property: *reachability* – is error state reachable ?

We know this from graph traversal (BFS, DFS). but there, the graph is explicit and pre-build must only follow pointers from node to node

Model checking usually starts from a *model description* in text (program) C, Java, dedicated specification/modeling language

No pre-existing graph of nodes, model must be built e.g. explicit-state, on-the-fly state-space exploration or *symbolic*: state sets and transition relation are formulas represented as *binary decision diagrams* (BDDs) may need to *compose* models (automata) for components

Everything is a formula



State sets are formulas over state variables: $S_i = (pc_0 = 1) \land (pc_1 = 1)$ (initial) f_0, f_1, t arbitrary $\Rightarrow 8$ individual states transition: formula over state and next state $pc_0 = 1 \land pc'_0 = 2 \land f'_0 = 1$ $\land pc'_1 = pc_1 \land t' = t \land f'_1 = f_1$

Transition relation: disjunction (\lor) of all transitions

Next state set: all states s' such that $\neg f_1 \ s \in S_i \land step(s,s')$ i.e., $S_i(s) \land step(s,s')$ A path of length k from initial state set S_i to target state (set) S_f must satisfy

 $S_i(s_0) \land step(s_0, s_1) \land ... \land step(s_{k-1}, s_k) \land S_f(s_k)$

This means *satisfiability checking* of a Boolean formula NP-complete, but efficient algorithms in recent practice

Bounded model checking

If one can't explore the full state space, show that no error paths of length less than some k exist

Software model checking in practice

Early: SPIN tool (own modeling language with guarded commands) SLAM project [Microsoft Research] (starting 2000) (Software (Specifications), Languages, Analysis and Model checking) later, many others: BLAST (UC Berkeley), CBMC (Oxford), ... today: Software Verification Competition (5th edition, 2016)

Goal: checking safety properties (invariants)
 example: a program respects API usage rules
 calls to lock() and unlock() alternate

used in practice for device drivers in Windows, Linux focused mostly on finding control/interface errors

Advantages:

- no need to annotate program by user

(only specify rules to monitor – simple automata)

- checking is automatic, for *all* possible executions

- generates counterexample (concrete execution) in case of error

Sample program

```
// Device driver fragment [Ball & Rajamani '01]
do {
 KeAcquireSpinLock(&devExt->writeListLock);
  nPacketsOld = nPackets:
 request = devExt->WriteListHeadVa;
  if(request && request->status) {
    devExt->WriteListHeadVa = request->Next;
    KeReleaseSpinLock(&devExt->writeListLock);
    irp = request->irp;
    if (request->status > 0) {
      irp->IoStatus.Status = STATUS_SUCCESS;
      irp->IoStatus.Information = request->Status;
    } else {
      irp->IoStatus.Status = STATUS_UNSUCCESSFUL;
      irp->IoStatus.Information = request->Status;
    SmartDevFreeBlock(request);
    IoCompleteRequest(irp, IO_NO_INCREMENT);
    nPackets++;
  }
} while (nPackets != nPacketsOld);
KeReleaseSpinLock(&devExt->writeListLock);
Only highlighted code is relevant for correctness!
```

Specifying properties

A lock may be represented as one bit: acquire and release change the bit value or signal error

```
state {
  enum { Unlocked=0, Locked=1 }
    state = Unlocked;
KeAcquireSpinLock.return {
 if (state == Locked) abort;
 else state = Locked:
KeReleaseSpinLock.return {
 if (state == Unlocked) abort;
 else state = Unlocked;
```

Given this lock model, the program is automatically instrumented (original program is correct iff instrumented program can't reach error)

Abstraction is key to verification

Programs may be very complex

Many statements may be irrelevant for property of interest

 \Rightarrow want to focus on relevant program part

Program Slicing [Weiser, 1981]

determines program fragment (*slice*) that affects a given property (*slicing criterion*)

(e.g. value of a variable in a program point)

More generally: *abstraction*

generate a simplified program (model) from whose analysis we derive properties of the initial program

predicate = boolean condition (expression with program variables)

Generating the boolean program

Starts from the predicates in the specification nondeterministic branches skip (NOP) for irrelevant statements

```
Initially, keep just control structure, without data
do {
A: KeAcquireSpinLock_return();
  skip;
  if(*) {
B: KeReleaseSpinLock_return();
    if (*) {
      skip;
     else {
      skip;
  while (*);
C: KeReleaseSpinLock_return();
```

Model checking the boolean program

Abstract program is automaton: calculate reachable state set

state = program counter + variable assignment state space: represented efficiently as boolean formula

(binary decision diagram, BDD)

computing with state sets: captures correlations between variables transition relation: is also a boolean formula

 $\textit{state} = 0 \land \textit{state}' = 1$

For given program, model checker finds error trace: may traverse

A: KeAcquireSpinLock() twice successively

if one never enters the if containing B: Release...

Is the error trace feasible ?

We get an error trace in the abstract program (model). Is it feasible in the original (concrete) program ?

Map error trace onto original program

= find input values that satisfy constraints for the chosen path (weakest preconditions)

If counterexample (error trace) is feasible, it is a real error.

If counterexample is not feasible, abstraction was too coarse model myst be refined and re-checked

counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement

In the given example, reproducing the counterexample fails program exits while after first loop \Rightarrow the loop condition is *relevant* for the analyzed property

We introduce a new *predicate* (boolean variable) representing the condition

b $\stackrel{\text{def}}{:=}$ nPackets != nPacketsOld

We generate a new boolean program \Rightarrow find statements depending on b. Assignments nPacketsOld = nPackets and nPackets++ affect b

We determine when after an assignment we know the value of b (true/false) depending on all state bits $(2^n \text{ for } n \text{ predicates, here } 1)$

Abstracting statements

Find weakest precondition for b, resp. !b after given assignment. We use for short nP and nPO.

We find wp for b: $wp_T = wp(nP \leftarrow nP+1, nP=nP0) = nP+1=nP0$ We check if $b \rightarrow wp_T$ and if $!b \rightarrow wp_T$ $nP=nP0 \not\rightarrow nP+1=nP0$ and $nP \not= nP0 \not\rightarrow nP+1=nP0$ So regardless of b we can't be sure that after nP++, b will be true. We repeat with $wp_F = wp(nP \leftarrow nP+1, nP \not= nP0) = nP+1 \not= nP0$ We have $nP=nP0 \rightarrow nP+1 \neq nP0$ and $nP \not= nP0 \not\rightarrow nP+1 \neq nP0$

So if b then after nP++ we have !b, else we don't know.

 \Rightarrow we may abstract nP++ with b = b ? F : nondet

Likewise, we may abstract nPO = nP with b = T

Regenerate boolean program with the new predicates, check again.

Second boolean program

```
do {
A: KeAcquireSpinLock_return();
 b = T; /* b == (nPackets == nPacketsOld) */
 if(*) {
B: KeReleaseSpinLock_return();
   if (*) {
    skip;
   } else {
    skip;
   }
   b := choose(F, b); // choose(p1, p2) == p1 ? T : p2 ? F : nondet
 }
} while (!b);
C: KeReleaseSpinLock_return();
```

Concluding...

The new abstraction is fine-grained enough.

Exploring all boolean program states the *model-checker* does not find an error path.

after B:Release, b becomes F, we stay in the cycle, can't execute C:Release again (we do A:Acquire)

can't execute C:Release again (we do A:Acquire)

if we don't pass B:Release, b stays T, we exit the cycle,

can't repeat A:Acquire (we do C:Release)

May need several abstraction steps; termination not guaranteed.

In practice, *model checking* is feasible for *control*-rich programs: errors in drivers, Linux kernel, etc.