

EXPERIENCE WITH FORMAL VERIFICATION OF SDL PROTOCOLS

Marius Minea 1,2), Cornel Izba � a, 1,3) C � lin Jebelean, 1,2)

1) Institute e-Austria Timi � oara∗, Bd. V. Pârvan 4, 300223 Timi � oara, Romania

2) Department of Computing, "Politehnica" University of Timi � oara
3) Department of Computer Science, West University of Timi � oara

e-mail: marius@cs.utt.ro, cizbasa@info.uvt.ro, calin@cs.utt.ro

Abstract: This paper presents a case study in the application of formal methods to the verification of communication
protocols. We analyze one component block of telephone switching software developed in the SDL language at Alcatel
Network Systems Romania. We use the IF toolset from VERIMAG Grenoble to build a state-transition model of the
system and verify selected properties. We present the steps performed for translation and verification and discuss the
potential for automating the process and using it on a larger scale.

Keywords: formal verification, model checking, communication protocols, specification, SDL

∗ This research was partly sponsored by the Austrian Ministries of Education, Science, and Culture (BMBWK), and of
Economy and Work (BMWA) under grants GZ 45.527/1-VI/B/7a/2002 and GZ 98.244/1-I/18/02.

1. INTRODUCTION

Traditionally, the most commonly used methods
for ensuring the correctness of a system have been
simulation and testing. While both have their strong
points – simulation for evaluating functionality early
in the design, and testing for ascertaining the
behavior of the actual finished product – they clearly
have significant limitations. First, neither simulation
nor testing can be exhaustive for any reasonably
complex system, leaving open the possibility of
unexpected behavior in situations that have not been
explored. Moreover, testing takes up a large part of
development costs, and errors discovered late in the
development process can be prohibitively expensive.

Verification is critical especially for concurrent
systems, which often present intricate interactions
between components that are difficult to follow and
evaluate without formal and automated support.
Errors can sometimes occur only for specific
execution sequences which are difficult if not
impossible to reproduce or debug, making an
exhaustive analysis necessary.

Formal verification has matured in the past
decade to a point where it provides an effective
answer to the above problems. Speaking most
generally, it involves building a model of the system
under scrutiny, and performing an exhaustive
analysis, both model construction and verification

being done with rigorous formal techniques. Formal
verification is exhaustive, covering all possible
system behaviors; it is also highly automatable.

Most major companies in the computer and
telecommunication industries have formal
verification groups that apply these methods in the
design process, and perform in-house research.
Moreover, for certain critical systems, the
application of formal methods has become a
requirement, both for structuring the development
process and for verifying the resulting product. For a
survey on the state of the art in the field, including
numerous industrial examples, see [4].

2. THE VERIFICATION PROBLEM

The SDL language

The Specification and Description Language
SDL is supported and standardized by the
International Telecommunications Union (ITU-T). It
provides both concurrent and real-time aspects and
is targeted for the description of communication
protocols. Systems are decomposed into blocks and
processes, the latter being the unit of concurrency.
Code is further modularized into procedures.
Processes interact asynchronously via signals that
are placed into and consumed from queues. The
communication structure is given by signalroutes
that connect individual system components.

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

ISSN 1727-6209�����	��
��������������������������	�������
������
 ����!���#"$��%'&����	����(

SDL has a formal semantics and is thus naturally
suited to formal verification. Automatic verification
techniques like model checking can be applied by
translating the SDL description into an automaton-
based representation, which is then exhaustively
analyzed by state-space exploration algorithms.
The case study

The code base for the systems developed in SDL
at Alcatel is extremely large, both in terms of the
number of files and lines of code. The SDL
descriptions are complemented by low-level routines
written in C. Coding activity involves mostly
maintenance and development of new features and
integration with the existing system. There is a fairly
high amount of unit and non-regression testing.
Specifications are natural language descriptions for
the individual behavior of the smallest-grained
design units, as well as message sequence charts
describing the desired scenarios of message
propagation through the system.

To assess the feasibility of applying formal
verification in this setting, we started out with
analyzing a small component part that would be
amenable to full state space exploration and also
comprehensible for an outsider.

The chosen block serves as an intermediate
communication step in the establishment of a
telephone connection, in which certain special
services are requested from a server. Several types
of functionality are possible, and the block is in
charge of performing the appropriate type of dialog
depending on the parameters of the initiating and
subsequent messages.

The block has two interfaces, one upstream to the
caller and one downstream to the server, totaling
some two dozen signals. Functionality is structured
in a single process and 8 procedures, comprising
1500 lines of SDL code (excluding comments).

Most specifications are expressed in terms of unit
tests to be performed and involve checking the
correct establishment of the dialogue depending on
various message parameters. There are also more
complex aspects which warrant verification.
Messages can carry parameters which are memory
references to allocated buffers, which have to be
freed properly according to certain rules in the
specification. Also, a significant part of the protocol
logic is dedicated to checking that both upstream
and downstream interfaces are shut down properly
when the connection is terminated, which can occur
due to a variety of causes.
Related work

Research on verification of SDL designs has been
done both in academic and industrial settings. At
Siemens, the verification of a layer of the GSM
protocol is described in [8]. The in-house BDD-

based model checker SVE is used to verify designs
of up to 6 processes and reachable states.

The developers of the IF toolset used in this
paper have performed several case studies [3],
including a standardized protocol (SSCOP)
developed by France Telecom, with 2000 lines of
SDL code, and the control layer of the MASCARA
ATM protocol with 3000 lines of SDL code [7]. The
latter study especially contains a good quantitative
comparison of the reduction benefits obtained by
various methods, including live variable analysis,
partial order reduction, and compositional reasoning.
The MASCARA protocol was also analyzed using
the Spin model checker using a translation from IF
as a starting point [1,9].

3. VERIFICATION FLOW

Our goal was to use existing verification tools as
much as possible, identify pluses as well as limits
and draw conclusions about the most needed
developments that would allow large-scale
applicability to industrial-size systems.

While there has been some considerable interest
for the verification of SDL designs, there are few
freely available systems that deal with SDL code
directly. Some verification tools based on Petri nets
have been built with the intention of accommodating
SDL as an input language, but currently SDL
support is either restricted to a nonstandard subset
(PEPtool from the University of Oldenburg) or not
yet complete (the Maria tool from Helsinki
University of Technology).

We have selected the IF toolset [2] from the
VERIMAG research laboratory in Grenoble. IF is an
intermediate representation and validation
environment for timed asynchronous systems. It
consists of a textual language which is suitably
expressive for the description of a large class of such
systems, translators that interface with commonly
used description languages such as LOTOS and
SDL, and a toolset that supports state space
exploration, simulation and validation.
Code translation

As a first step, the SDL description was
translated into IF. We used the sdl2if translator,
which is part of the IF toolset, and relies on the SDL
API provided by the Telelogic ObjectGEODE SDL
compiler to access the intermediate representation
built during parsing.

Since IF was designed largely with the translation
of SDL in mind, the result is structurally very
similar to the original SDL description, but reduced
to a set of primitive language features suitable for
analysis. Thus, working with the IF translation
should be easy for a designer familiar with SDL if
the process were to be used in a larger setting.

One limitation of the current version of the
sdl2if translator is that procedures are handled
through inline expansion. This resulted in a code
blowup from 1500 lines of original SDL code to
26000 lines of IF representation. While the resulting
IF code was still analyzable within reasonable
performance limits, it resulted in a high overhead in
generating, parsing and compiling the model.
Moreover, the resulting code was difficult to follow
visually, something which was important at this
experimentation stage, especially since the
verification team was not familiar in detail with the
code functionality.

Consequently, we separated the translation of
each procedure. Since the procedure call graph for
this example is acyclic, only one instance of each
procedure can be active at any moment. Thus, it
suffices to introduce a "return address" variable of
enumeration type for each procedure, which
identifies the call location in the program text, and is
tested upon exit from the procedure to determine the
proper next state. Procedures which were called only
once were left in their inlined expansion. This
straightforward change reduced the generated IF
code to 2000 lines.
Other code processing

Further treatment was necessary due to the semi-
formal modeling style adopted, which mixes SDL
with code fragments written in C. SDL allows both
decisions (conditionals) and tasks (such as
assignments) to be specified as arbitrary text strings,
which are uninterpreted. The outcome of a decision
in such a case is specified as being unknown. In our
case, conforming to a fairly typical modeling style,
the descriptive strings are followed by comments
which contain the actual C code for the decisions
and tasks respectively. This code is handled
appropriately by the Telelogic ObjectGEODE suite
when compiling SDL into C. Using scripts, we
embedded the C actions into the generated IF output
and translated them into IF syntax.

Another related issue was the preprocessing
which is performed on message sends and receives.
The SDL portion of the code contained signals with
no parameters. In reality, messages sent and received
have a large number of fields. These are handled by
preprocessing routines written in C that copy the
relevant message fields to and from appropriate
variables in the context of the process. For the
purpose of this study, the appropriate signal
parameters and code stubs on send or receive were
inserted into the IF code by hand. For large-scale
applicability, automation of this procedure is
feasible considering that the corresponding code is
clearly structured and marked for treatment by the
SDL compiler.

Abstraction

At this step, performing an abstraction on the
resulting design becomes necessary. As already
mentioned, the messages sent and received by the
block under consideration have a rather large
number of fields. Some do not directly influence the
behavior of this block, but are either forwarded from
an interface to another, or are set by the block for
use by the communicating blocks upstream or
downstream. Their relevance to the property under
verification can be determined automatically by a
dependence analysis (live variable analysis or
program slicing). The IF toolset incorporates a
source-to-source translator if2if that performs
such simplifications on the design. For the studied
example, since message fields and their treatment
had to be inserted by hand from the C description,
only the fields actually used in the SDL portion of
the code were inserted in the first place.

In addition, the data width of some variables was
reduced in order to cut down on the state space of
the system. The protocol relies on memory
references to buffers being transmitted in certain
message fields. From the point of view of the block
under consideration, references are an abstract data
type for which the only operations are copying and
testing for a null value. Thus it is formally justifiable
to reduce the width of reference variables to one bit.

After this processing, the resulting model has 50
control states (out of which 13 are stable and the
remainder are introduced in the translation to model
decisions and procedure returns), and 25 bits of data,
which accounts for a potential state space of about
400 million states.
Verification Interface

The if.open compiler translates the IF
description into a C source file which contains data
structures and functions for representing and
exploring the corresponding transition system. This
C description can be linked with the toolset's
libraries to produce one of several standalone
executables for analyzing the system behavior. One
such program is a simulator which provides a text
interface presenting at each point the possible
transitions that can be taken by the system, one for
each message (with various values for the
parameters) produced by the environment. It is also
possible to produce a state space generator which
writes out a textual description of the model as a
labeled transition system for subsequent use by other
tools, and an evaluator for specifications written in
alternation-free µ-calculus.
Interfaces with other verification tools

Through the labeled transition system produced
by the generator, the toolkit can interface with the
CADP (Caesar-Aldebaran) verification toolset [5]

developed at INRIA. This allows several processing
steps to be done on the automaton description of the
system, as well as the use of alternative verification
algorithms. An useful such step is the renaming of
transition labels in the model description, for
instance in order to collapse transitions with the
same message but different parameters. Another
option is the hiding of transitions, which is useful
when the specification refers only to several relevant
transition, the rest being ignored. CADP supports
minimization of automata after performing such
transformations as well as bisimilarity checking of
two automata, and µ-calculus formula evaluation.

Using another translator, if2pml [1], developed
at Eindhoven University of Technology, IF can
interface with one of the most widely used model
checkers, Spin [6], written at Bell Laboratories. Spin
is also targeted specifically towards communication
protocols, with an input language (Promela)
resembling both C and Communicating Sequential
Processes. In addition to verifying specifications
written in linear temporal logic (LTL), Spin
incorporates an interactive simulator which can
represent a system run using Message Sequence
Charts. This is particularly useful, since the
functionality of the block under analysis is also
described using MSCs, a common formalism for the
specification of communication protocols.

Most of the verification results we present have
been obtained with the IF toolset directly. We are
presently evaluating both CADP and Spin as
alternatives to complete the study.

4. VERIFICATION RESULTS

Lightweight Verification

As might be expected, we have found both the
simulator facility in the IF toolset as well as the
simulator in Spin useful for validating the
functionality of the protocol and our understanding
of it, and for presenting our results to the designers.
While not being an aspect of formal verification
proper, such complementary support is crucial for
developing confidence in the verification results.

The simplest kinds of specifications for the
model under analysis are those used for unit testing.
Most of the time, they specify that the reception of a
particular message is followed by the emission of
another message, perhaps with some correspondence
between their parameters. Moreover, emission is
usually an immediate consequence of the reception.

For these cases, one particular feature of the IF
toolset has proved very useful. The generator which
produces the textual description of the state-
transition system labels a transition with the message
received or sent on that transition, or with "i" for an
internal transition. Optionally, the generator can also

produce the unstable states introduced in the
translation to handle decision points, in addition to
the stable states. This option results in transitions
that correspond to one reactive step of receiving a
message, performing some computation and sending
the response. In this case, the transition label is a
concatenation of messages received and sent, with
their parameters. A sample label might read:
 -(proc,q,mrcv,{ { 0,0} }) +(proc,q,msnd,{ { 0,0} }) i i

For unit tests where the output is emitted in the
same transition upon receiving the input, this
provides a very simple check. We generated the
labeled state-transition system and extracted all
transition labels (about 300). For all input/response
unit tests we then checked whether the list contained
precisely the expected message matches.

With this test, we found a potential problem in
the release of buffer references sent as message
parameters. The specification states that for any
message whose references are not retransmitted on
the other interface, the references have to be freed
(by emitting appropriate messages for this task). We
identified that for one particular closure message,
the references were not freed in some states and
reported the issue to the designers. Detailed analysis
of the scenario revealed this not to be an error, since
no valid references are expected in that case.

Checking µ-calculus formulae

The evaluator built by the IF toolset can check
temporal formulas written in an alternation-free
fragment of the µ-calculus. This provides an
expressive means of specifying a wide variety of
properties.

In brief, formulas are evaluated as sets of states; a
specification is true if it is satisfied by the initial
state. If f denotes a formula, and a denotes an action,
the temporal modalities are:

[a]f = { p | ∀q . p a→ q � q |= f }
(the states for which all a-successors satisfy f)

<a>f = { p | ∃q . p a→ q ∧ q |= f }
(the states with an a-successor that satisfies f)

It is possible to use sets of actions, separated by
denoting "or", their complement, denoted by ! or the
set of all actions, denoted *. Using the least and
greatest fixpoints as primitives, the following useful
modalities can be defined:
all f = gfp X.(f and [*]X)
pot f = lfp X.(f or <*>X)
inev f = lfp X.(f or [*]X and <*>T)

A first and natural property to verify is absence
of deadlock. This is specified by all<*>T (meaning
that in every state some transition is possible).

We continued by analyzing several properties for
which unit tests are specified. Their general structure
is the following: assuming that a certain sequence of
messages – perhaps with some given parameters –

occurs, this sequence will be followed by one
specified message. For instance, if an opening
message "open" is answered by a connection
establishment "est" and then by an end of selection
"isel" from downstream, the block will respond with
an end of selection "osel" on the upstream interface.
Since the system has one "silent" transition before
waiting for the initial message, this can be written:
[*]<"-open">pot<"-est">pot<"-isel">inev["+osel"]T

This property and a few similar ones are verified
practically instantaneously.

A further property states that in a certain state, a
signal signifying progress of the call has to be
accepted without influence on subsequent behavior.
For this, we verified a necessary condition, that the
set of states in which the progress signal can be
accepted once is the same as the set of states in
which the progress signal can be accepted twice:

all (<" -prog">T <=> <" -prog"><" -prog">T)
If a message containing an invalid reference is

sent, the block will be informed of this error by a
message that requests closing down the current
dialogue. A requirement specifically stated in the
specification is that this message has to be accepted
at all times. To specify this property, we need to
identify and express the set of stable states, where
the block can accept messages, as opposed to the
intermediate transient states where other decisions
are taking place. To this effect, we first renamed all
message outputs to internal transitions. The desired
stable states are then those for which some other
transition other than internal transitions or passage
of time (tick) are possible, and the property is stated:

[" i"]all(not["! i | tick(-1)"]F => <" -abort">T)
Finally, a property which was deemed

particularly interesting by the protocol designers is
that each of the two protocol interfaces shuts down
properly. The protocol logic implements this by
sending a closure request "cls" and waiting for a
confirmation; in case of a timeout, closure is forced
by sending the confirmation "cls" directly. This
dialogue is not needed if the block receives an abort
message with a parameter specifying that the
interface is already closed. This means verifying that
the stop state cannot be reached without one of these
messages occurring, i.e., the following is false:
lfp X.<"!+cls|-cls|-abort(closed)">X or ["-tick(-1)"]F

The system compiled from the IF description
after performing the handling of procedures
described in the previous section is reduced from
875000 states (for inline expansion of procedures) to
140000 states. This can be further reduced to 30000
stable states if the transient states are collapsed when
generating the labeled transition system.

Individual time and memory consumption for the
above properties, on a Pentium III machine at
750MHz is given in the following table:

Table 1. Verification performance

Property Time (s) Memory (MB)

no deadlock 50 27

progress 67 36

abort 53 36

closure 16 19

5. CONCLUSIONS AND FUTURE WORK

As a first positive outcome, we have achieved our
goal of showing that formal modeling and
verification is applicable and useful for the system
that we set out to analyze. While the result is not
push-button verification, and a significant one-time
effort was involved in performing the study, many
of the processing tasks that we performed manually
are straightforwardly automatable, and a repeat
effort will be significantly faster to carry out.

With respect to the properties analyzed, those
corresponding to unit tests are verified almost
instantaneously. Also, their specifications, sequential
in nature, are far simpler to write than temporal
formulas in their full generality and perhaps with
the aid of pattern libraries -- should be easily
accessible to designers. We were favorably surprised
by the amount of information that can be extracted
just from the labels of the transition system and
consider this "lightweight" analysis to be valuable as
an initial check.

The full value of an exhaustive formal analysis
becomes apparent for more complex global
properties. While we identified and verified several
such properties (e.g., reference treatment and proper
closure) even in the case of this single block, such
properties will occur more often when verifying
larger subsystems.

In terms of code size, our study is comparable to
state-of-the-art studies performed so far, though
probably less complex in structure. The resources
used are still far from the limits of the currently
available computing platform, which should allow
scalability to multiple components larger in size.

One aspect of future work concerns automation,
especially related to the identified modeling style,
with action descriptions and external routines
written in C code. A second, more fundamental
aspect concerns scalability. A promising approach is
by hiding of selected transitions and subsequent
minimization, as employed in the CADP toolset. We
will attempt to perform simplification already at the
source level, to avoid generating complex systems in
the first place. We would also like to investigate
compositional reasoning, by defining interfaces for
each component, at appropriate levels of abstraction.
All of these should bring us closer to the goal of
handling end-to-end properties of large systems.

Acknowledgments: We thank Marius Bozga of
VERIMAG for his time and patience in providing
support for the sdl2if translator and answering
questions about the IF toolset. At Alcatel, special
thanks go to Florin Bunescu who as leader of one of
the design groups provided constant help with
everything we needed to carry out the study, and to
Delia Golcea who as software development manager
supported this project with great interest from the
very beginning. We also thank Telelogic AB for
providing a trial license of their SDL API interface.

6. REFERENCES

[1] D. Bošnacki, D. Dams, L. Holenderski, N.
Sidorova. Model checking SDL with Spin.
Proceedings, 6th International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS 2000), Springer Verlag, LNCS
1785, pp. 363–377.
[2] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf,
J.-P. Krimm, L. Mounier. IF: A validation
environment for timed asynchronous systems.
Proceedings, 12th International Conference on
Computer Aided Verification (CAV 2000), Springer
Verlag, LNCS 1855, pp. 543–547.
[3] M. Bozga, S. Graf, L. Mounier. Automated
validation of distributed software using the IF
environment. Proceedings, Workshop on Software

Model Checking, Elsevier Electronic Notes in
Theoretical Computer Science 55(3) (2001).
[4] E.M. Clarke, J.M. Wing. Formal methods. State
of the art and future directions. ACM Computing
Surveys, 28(4) (1996), pp. 626–643.
[5] J.-C. Fernandez, H. Garavel, A. Kerbrat, L.
Mounier, R. Mateescu, M. Sighireanu. CADP: a
protocol validation and verification toolbox.
Proceedings, 8th International Conference on
Computer Aided Verification (CAV'96), Springer
Verlag, LNCS 1102, pp. 437–440.
[6] G. J. Holzmann. The model checker Spin. IEEE
Transactions on Software Engineering, 23(5)
(1997), pp. 279–295.
[7] G. Jia, S. Graf. Verification experiments on the
MASCARA protocol. Proceedings,8th International
Workshop on Model Checking of Software (SPIN
2001), Springer Verlag, LNCS 2057, pp. 123–142.
[8] F. Regensburger, A. Barnard. Formal verification
of SDL systems at the Siemens mobile phone
department. Proceedings, 4th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS'98),
Springer Verlag, LNCS 1384, pp. 439–455.
[9] N. Sidorova, M. Steffen. Verifying large SDL-
specifications using model checking. Proceedings,
Meeting UML: 10th International SDL Forum (SDL
2001), Springer Verlag, LNCS 2078, pp. 403–416.

