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Abstract: This paper presents a case study in the application of formal methods to the verification of communication 
protocols. We analyze one component block of telephone switching software developed in the SDL language at Alcatel 
Network Systems Romania. We use the IF toolset from VERIMAG Grenoble to build a state-transition model of the 
system and verify selected properties. We present the steps performed for translation and verification and discuss the 
potential for automating the process and using it on a larger scale. 
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1. INTRODUCTION 

Traditionally, the most commonly used methods 
for ensuring the correctness of a system have been 
simulation and testing. While both have their strong 
points – simulation for evaluating functionality early 
in the design, and testing for ascertaining the 
behavior of the actual finished product – they clearly 
have significant limitations. First, neither simulation 
nor testing can be exhaustive for any reasonably 
complex system, leaving open the possibility of 
unexpected behavior in situations that have not been 
explored. Moreover, testing takes up a large part of 
development costs, and errors discovered late in the 
development process can be prohibitively expensive. 

Verification is critical especially for concurrent 
systems, which often present intricate interactions 
between components that are difficult to follow and 
evaluate without formal and automated support. 
Errors can sometimes occur only for specific 
execution sequences which are difficult if not 
impossible to reproduce or debug, making an 
exhaustive analysis necessary. 

Formal verification has matured in the past 
decade to a point where it provides an effective 
answer to the above problems. Speaking most 
generally, it involves building a model of the system 
under scrutiny, and performing an exhaustive 
analysis, both model construction and verification 

being done with rigorous formal techniques. Formal 
verification is exhaustive, covering all possible 
system behaviors; it is also highly automatable. 

Most major companies in the computer and 
telecommunication industries have formal 
verification groups that apply these methods in the 
design process, and perform in-house research. 
Moreover, for certain critical systems, the 
application of formal methods has become a 
requirement, both for structuring the development 
process and for verifying the resulting product. For a 
survey on the state of the art in the field, including 
numerous industrial examples, see [4]. 
 

2. THE VERIFICATION PROBLEM 

The SDL language 

The Specification and Description Language 
SDL is supported and standardized by the 
International Telecommunications Union (ITU-T). It 
provides both concurrent and real-time aspects and 
is targeted for the description of communication 
protocols. Systems are decomposed into blocks and 
processes, the latter being the unit of concurrency. 
Code is further modularized into procedures. 
Processes interact asynchronously via signals that 
are placed into and consumed from queues. The 
communication structure is given by signalroutes 
that connect individual system components. 

computing@tanet.edu.te.ua 
www.tanet.edu.te.ua/computing 

ISSN 1727-6209�����	��
��������������������������	�������
������
 ����!���#"$��%'&����	����(

 



SDL has a formal semantics and is thus naturally 
suited to formal verification. Automatic verification 
techniques like model checking can be applied by 
translating the SDL description into an automaton-
based representation, which is then exhaustively 
analyzed by state-space exploration algorithms. 
The case study 

The code base for the systems developed in SDL 
at Alcatel is extremely large, both in terms of the 
number of files and lines of code. The SDL 
descriptions are complemented by low-level routines 
written in C. Coding activity involves mostly 
maintenance and development of new features and 
integration with the existing system. There is a fairly 
high amount of unit and non-regression testing. 
Specifications are natural language descriptions for 
the individual behavior of the smallest-grained 
design units, as well as message sequence charts 
describing the desired scenarios of message 
propagation through the system. 

To assess the feasibility of applying formal 
verification in this setting, we started out with 
analyzing a small component part that would be 
amenable to full state space exploration and also 
comprehensible for an outsider. 

The chosen block serves as an intermediate 
communication step in the establishment of a 
telephone connection, in which certain special 
services are requested from a server. Several types 
of functionality are possible, and the block is in 
charge of performing the appropriate type of dialog 
depending on the parameters of the initiating and 
subsequent messages. 

The block has two interfaces, one upstream to the 
caller and one downstream to the server, totaling  
some two dozen signals. Functionality is structured 
in a single process and 8 procedures, comprising 
1500 lines of SDL code (excluding comments). 

Most specifications are expressed in terms of unit 
tests to be performed and involve checking the 
correct establishment of the dialogue depending on 
various message parameters. There are also more 
complex aspects which warrant verification. 
Messages can carry parameters which are memory 
references to allocated buffers, which have to be 
freed properly according to certain rules in the 
specification. Also, a significant part of the protocol 
logic is dedicated to checking that both upstream 
and downstream interfaces are shut down properly 
when the connection is terminated, which can occur 
due to a variety of causes. 
Related work 

Research on verification of SDL designs has been 
done both in academic and industrial settings. At 
Siemens, the verification of a layer of the GSM 
protocol is described in [8]. The in-house BDD-

based model checker SVE is used to verify designs 
of up to 6 processes and  reachable states. 

The developers of the IF toolset used in this 
paper have performed several case studies [3], 
including a standardized protocol (SSCOP) 
developed by France Telecom, with 2000 lines of 
SDL code, and the control layer of the MASCARA 
ATM protocol with 3000 lines of SDL code [7]. The 
latter study especially contains a good quantitative 
comparison of the reduction benefits obtained by 
various methods, including live variable analysis, 
partial order reduction, and compositional reasoning. 
The MASCARA protocol was also analyzed using 
the Spin model checker using a translation from IF 
as a starting point [1,9]. 

 
3. VERIFICATION FLOW 

Our goal was to use existing verification tools as 
much as possible, identify pluses as well as limits 
and draw conclusions about the most needed 
developments that would allow large-scale 
applicability to industrial-size systems. 

While there has been some considerable interest 
for the verification of SDL designs, there are few 
freely available systems that deal with SDL code 
directly. Some verification tools based on Petri nets 
have been built with the intention of accommodating 
SDL as an input language, but currently SDL 
support is either restricted to a nonstandard subset 
(PEPtool from the University of Oldenburg) or not 
yet complete (the Maria tool from Helsinki 
University of Technology). 

We have selected the IF toolset [2] from the 
VERIMAG research laboratory in Grenoble. IF is an 
intermediate representation and validation 
environment for timed asynchronous systems. It 
consists of a textual language which is suitably 
expressive for the description of a large class of such 
systems, translators that interface with commonly 
used description languages such as LOTOS and 
SDL, and a toolset that supports state space 
exploration, simulation and validation. 
Code translation 

As a first step, the SDL description was 
translated into IF. We used the sdl2if translator, 
which is part of the IF toolset, and relies on the SDL 
API provided by the Telelogic ObjectGEODE SDL 
compiler to access the intermediate representation 
built during parsing.  

Since IF was designed largely with the translation 
of SDL in mind, the result is structurally very 
similar to the original SDL description, but reduced 
to a set of primitive language features suitable for 
analysis. Thus, working with the IF translation 
should be easy for a designer familiar with SDL if 
the process were to be used in a larger setting. 



One limitation of the current version of the 
sdl2if translator is that procedures are handled 
through inline expansion. This resulted in a code 
blowup from 1500 lines of original SDL code to 
26000 lines of IF representation. While the resulting 
IF code was still analyzable within reasonable 
performance limits, it resulted in a high overhead in 
generating, parsing and compiling the model. 
Moreover, the resulting code was difficult to follow 
visually, something which was important at this 
experimentation stage, especially since the 
verification team was not familiar in detail with the 
code functionality. 

Consequently, we separated the translation of 
each procedure. Since the procedure call graph for 
this example is acyclic, only one instance of each 
procedure can be active at any moment. Thus, it 
suffices to introduce a "return address" variable of 
enumeration type for each procedure, which 
identifies the call location in the program text, and is 
tested upon exit from the procedure to determine the 
proper next state. Procedures which were called only 
once were left in their inlined expansion. This 
straightforward change reduced the generated IF 
code to 2000 lines. 
Other code processing 

Further treatment was necessary due to the semi-
formal modeling style adopted, which mixes SDL 
with code fragments written in C. SDL allows both 
decisions (conditionals) and tasks (such as 
assignments) to be specified as arbitrary text strings, 
which are uninterpreted. The outcome of a decision 
in such a case is specified as being unknown. In our 
case, conforming to a fairly typical modeling style, 
the descriptive strings are followed by comments 
which contain the actual C code for the decisions 
and tasks respectively. This code is handled 
appropriately by the Telelogic ObjectGEODE suite 
when compiling SDL into C. Using scripts, we 
embedded the C actions into the generated IF output 
and translated them into IF syntax. 

Another related issue was the preprocessing 
which is performed on message sends and receives. 
The SDL portion of the code contained signals with 
no parameters. In reality, messages sent and received 
have a large number of fields. These are handled by 
preprocessing routines written in C that copy the 
relevant message fields to and from appropriate 
variables in the context of the process. For the 
purpose of this study, the appropriate signal 
parameters and code stubs on send or receive were 
inserted into the IF code by hand. For large-scale 
applicability, automation of this procedure is 
feasible considering that the corresponding code is 
clearly structured and marked for treatment by the 
SDL compiler. 

Abstraction 

At this step, performing an abstraction on the 
resulting design becomes necessary. As already 
mentioned, the messages sent and received by the 
block under consideration have a rather large 
number of fields.  Some do not directly influence the 
behavior of this block, but are either forwarded from 
an interface to another, or are set by the block for 
use by the communicating blocks upstream or 
downstream. Their relevance to the property under 
verification can be determined automatically by a 
dependence analysis (live variable analysis or 
program slicing).  The IF toolset incorporates a 
source-to-source translator if2if that performs 
such simplifications on the design. For the studied 
example, since message fields and their treatment 
had to be inserted  by hand from the C description, 
only the fields actually used in the SDL portion of 
the code were inserted in the first place. 

In addition, the data width of some variables was 
reduced in order to cut down on the state space of 
the system. The protocol relies on memory 
references to buffers being transmitted in certain 
message fields. From the point of view of the block 
under consideration, references are an abstract data 
type for which the only operations are copying and 
testing for a null value. Thus it is formally justifiable 
to reduce the width of reference variables to one bit. 

After this processing, the resulting model has 50 
control states (out of which 13 are stable and the 
remainder are introduced in the translation to model 
decisions and procedure returns), and 25 bits of data, 
which accounts for a potential state space of about 
400 million states. 
Verification Interface 

The if.open compiler translates the IF 
description into a C source file which contains data 
structures and functions for representing and 
exploring the corresponding transition system. This 
C description can be linked with the toolset's 
libraries to produce one of several standalone 
executables for analyzing the system behavior. One 
such program is a simulator which provides a text 
interface presenting at each point the possible 
transitions that can be taken by the system, one for 
each message (with various values for the 
parameters) produced by the environment. It is also 
possible to produce a state space generator which 
writes out a textual description of the model as a 
labeled transition system for subsequent use by other 
tools, and an evaluator for specifications written in 
alternation-free µ-calculus. 
Interfaces with other verification tools 

Through the labeled transition system produced 
by the generator, the toolkit can interface with the 
CADP (Caesar-Aldebaran) verification toolset [5] 



developed at INRIA. This allows several processing 
steps to be done on the automaton description of the 
system, as well as the use of alternative verification 
algorithms. An useful such step is the renaming of 
transition labels in the model description, for 
instance in order to collapse transitions with the 
same message but different parameters. Another 
option is the hiding of transitions, which is useful 
when the specification refers only to several relevant 
transition, the rest being ignored. CADP supports 
minimization of automata after performing such 
transformations as well as bisimilarity checking of 
two automata, and µ-calculus formula evaluation. 

Using another translator, if2pml [1], developed 
at Eindhoven University of Technology, IF can 
interface with one of the most widely used model 
checkers, Spin [6], written at Bell Laboratories. Spin 
is also targeted specifically towards communication 
protocols, with an input language (Promela) 
resembling both C and Communicating Sequential 
Processes. In addition to verifying specifications 
written in linear temporal logic (LTL), Spin 
incorporates an interactive simulator which can 
represent a system run using Message Sequence 
Charts. This is particularly useful, since the 
functionality of the block under analysis is also 
described using MSCs, a common formalism for the 
specification of communication protocols. 

Most of the verification results we present have 
been obtained with the IF toolset directly. We are 
presently evaluating both CADP and Spin as 
alternatives to complete the study. 

 
4. VERIFICATION RESULTS  

Lightweight Verification 

As might be expected, we have found both the 
simulator facility in the IF toolset as well as the 
simulator in Spin useful for validating the 
functionality of the protocol and our understanding 
of it, and for presenting our results to the designers. 
While not being an aspect of formal verification 
proper, such complementary support is crucial for 
developing confidence in the verification results. 

The simplest kinds of specifications for the 
model under analysis are those used for unit testing. 
Most of the time, they specify that  the reception of a 
particular message is followed by the emission of 
another message, perhaps with some correspondence 
between their parameters. Moreover, emission is 
usually an immediate consequence of the reception. 

For these cases, one particular feature of the IF 
toolset has proved very useful. The generator which 
produces the textual description of the state-
transition system labels a transition with the message 
received or sent on that transition, or with "i" for an 
internal transition. Optionally, the generator can also 

produce the unstable states introduced in the 
translation to handle decision points, in addition to 
the stable states. This option results in transitions 
that correspond to one reactive step of receiving a 
message, performing some computation and sending 
the response. In this case, the transition label is a 
concatenation of messages received and sent, with 
their parameters. A sample label might read: 
 -(proc,q,mrcv,{ { 0,0} } ) +(proc,q,msnd,{ { 0,0} } ) i i 

For unit tests where the output is emitted in the 
same transition upon  receiving the input, this 
provides a very simple check. We generated the 
labeled state-transition system and extracted all 
transition labels (about 300). For all input/response 
unit tests we then checked whether the list contained 
precisely the expected message matches. 

With this test, we found a potential problem in 
the release of buffer references sent as message 
parameters. The specification states that for any 
message whose references are not retransmitted on 
the other interface, the references have to be freed 
(by emitting appropriate messages for this task). We 
identified that for one particular closure message, 
the references were not freed in some states and 
reported the issue to the designers. Detailed analysis 
of the scenario revealed this not to be an error, since 
no valid references are expected in that case. 

Checking µ-calculus formulae 

The evaluator built by the IF toolset can check 
temporal formulas written  in an alternation-free 
fragment of the µ-calculus. This provides an 
expressive means of specifying a wide variety of 
properties. 

In brief, formulas are evaluated as sets of states; a 
specification is true if it is satisfied by the initial 
state. If f denotes a formula, and a denotes an action, 
the temporal modalities are: 

[a]f = {  p | ∀q . p a→ q �  q |= f }  
(the states for which all a-successors satisfy f ) 

<a>f = {  p | ∃q . p a→ q ∧ q |= f }  
(the states with an a-successor that satisfies f) 

It is possible to use sets of actions, separated by  
denoting "or", their complement, denoted by ! or the 
set of all actions, denoted *. Using the least and 
greatest fixpoints as primitives, the following useful 
modalities can be defined: 
all f = gfp X.(f and [*]X) 
pot f = lfp X.(f or <*>X) 
inev f = lfp X.(f or [*]X and <*>T) 

A first and natural property to verify is absence 
of deadlock. This is specified by all<*>T (meaning 
that in every state some transition is possible). 

We continued by analyzing several properties for 
which unit tests are specified. Their general structure 
is the following: assuming that a certain sequence of 
messages – perhaps with some given parameters – 



occurs, this sequence will be followed by one 
specified message. For instance, if an opening 
message "open" is answered by a connection 
establishment "est" and then by an end of selection 
"isel" from downstream, the block will respond with 
an end of selection "osel" on the upstream interface. 
Since the system has one "silent" transition before 
waiting for the initial message, this can be written: 
[* ]<"-open">pot<"-est">pot<"-isel">inev["+osel"]T 

This property and a few similar ones are verified 
practically instantaneously. 

A further property states that in a certain state, a 
signal signifying progress of the call has to be 
accepted without influence on subsequent behavior. 
For this, we verified a necessary condition, that the 
set of states in which the progress signal can be 
accepted once is the same as the set of states in 
which the progress signal can be accepted twice: 

all (<" -prog">T <=> <" -prog"><" -prog">T) 
If a message containing an invalid reference is 

sent, the block will be informed of this error by a 
message that requests closing down the current 
dialogue. A requirement specifically stated in the 
specification is that this message has to be accepted 
at all times. To specify this property, we need to 
identify and express the set of stable states, where 
the block can accept messages, as opposed to the 
intermediate transient states where other decisions 
are taking place. To this effect, we first renamed all 
message outputs to internal transitions. The desired 
stable states are then those for which some other 
transition other than internal transitions or passage 
of time (tick) are possible, and the property is stated: 

[" i"]all(not["! i | tick(-1)"]F => <" -abort">T) 
Finally, a property which was deemed 

particularly interesting by the protocol designers is 
that each of the two protocol interfaces shuts down 
properly. The protocol logic implements this by 
sending a closure request "cls" and waiting for a 
confirmation; in case of a timeout, closure is forced 
by sending the confirmation "cls" directly. This 
dialogue is not needed if the block receives an abort 
message with a parameter specifying that the 
interface is already closed. This means verifying that 
the stop state cannot be reached without one of these 
messages occurring, i.e., the following is false: 
lfp X.<"!+cls|-cls|-abort(closed)">X or ["-tick(-1)"]F 

The system compiled from the IF description 
after performing the handling of procedures 
described in the previous section is reduced from 
875000 states (for inline expansion of procedures) to 
140000 states. This can be further reduced to 30000 
stable states if the transient states are collapsed when 
generating the labeled transition system. 

Individual time and memory consumption for the 
above properties, on a Pentium III machine at 
750MHz is given in the following table: 

Table 1. Verification performance 

Property Time (s) Memory (MB) 

no deadlock 50 27 

progress 67 36 

abort 53 36 

closure 16 19 

 
5. CONCLUSIONS AND FUTURE WORK 

As a first positive outcome, we have achieved our 
goal of showing that formal modeling and 
verification is applicable and useful for the system 
that we set out to analyze. While the result is not 
push-button verification, and a significant one-time 
effort was involved in  performing the study, many 
of the processing tasks that we performed manually 
are straightforwardly automatable, and a repeat 
effort will be significantly faster to carry out. 

With respect to the properties analyzed, those 
corresponding to unit tests are verified almost 
instantaneously. Also, their specifications, sequential 
in nature, are far simpler to write than temporal 
formulas in their full generality and  perhaps with 
the aid of pattern libraries -- should be easily 
accessible to designers. We were favorably surprised 
by the amount of information that can be extracted 
just from the labels of the transition system and 
consider this "lightweight" analysis to be valuable as 
an initial check. 

The full value of an exhaustive formal analysis 
becomes apparent for more complex global 
properties. While we identified and verified several 
such properties (e.g., reference treatment and proper 
closure) even in the case of this single block, such 
properties will occur more often when verifying 
larger subsystems. 

In terms of code size, our study is comparable to 
state-of-the-art studies performed so far, though 
probably less complex in structure. The resources 
used are still far from the limits of the currently 
available computing platform, which should allow 
scalability to multiple components larger in size. 

One aspect of future work concerns automation, 
especially related to the identified modeling style, 
with action descriptions and external routines 
written in C code. A second, more fundamental 
aspect concerns scalability. A promising approach is 
by hiding of selected transitions and subsequent 
minimization, as employed in the CADP toolset. We 
will attempt to perform simplification already at the 
source level, to avoid generating complex systems in 
the first place. We would also like to investigate 
compositional reasoning, by defining interfaces for 
each component, at appropriate levels of abstraction. 
All of these  should bring us closer to the goal of 
handling end-to-end properties of large systems. 
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