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Abstract. The paper presents a partial order reduction method applica-
ble to networks of timed automata. The advantage of the method is that
it reduces both the number of explored control states and the number
of generated time zones. The approach is based on a local-time seman-
tics for networks of timed automata defined by Bengtsson et al. [1998],
and used originally for local reachability analysis. In this semantics, each
component automaton executes asynchronously, in its own local time
scale, which is tracked by an auxiliary reference clock. On communica-
tion transitions, the automata synchronize their time scales. We show
how this model can be used to perform model checking for an exten-
sion of linear temporal logic, which can express timing relations between
events. We also show how for a class of timed automata, the local-time
model can be implemented using difference bound matrices without any
space penalty, despite the need to represent local time. Furthermore, we
analyze the dependence relation between transitions in the new model
and give practical conditions for selecting a reduced set of transitions.

1 Introduction

Model checking [5] has emerged as a very successful automatic verification tech-
nique for finite-state systems. However, its application is still limited by the state
space explosion problem. The number of possible states in a system grows ex-
ponentially with the number of component parts, quickly exceeding the current
capabilities of verification tools. For timed systems, the complexity in the control
space is increased by the timing information that needs to be maintained, since
each untimed state can be reached at many different time instances.

Partial order reduction [8,14,15] is a well-established method to reduce the
complexity of state space exploration in asynchronous systems. It explores a
restricted number of interleavings for independent concurrent transitions, while
preserving the verified property in the reduced model. However, in timed systems
the implicit synchronization among transitions, caused by the passage of time,
makes the application of this technique problematic. This paper shows how to
perform partial order reduction for continuous-time systems modeled as timed
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automata, while preserving properties specified in an extension of linear-time
temporal logic augmented with explicit time constraints.

2 Timed Automata

2.1 Definition

Timed automata [1] are transition systems extended with real-valued clocks
which advance at the same rate and can be reset on executing a transition. Both
states and transitions are associated with temporal constraints on the clocks.

Definition 1. A clock is a variable over the set IR+ of nonnegative reals. A
clock valuation for a set of clocks C = {x1, · · · , xn} is a function v : C → IR+.

Definition 2. An atomic clock constraint is an inequality of the form x ≺ c,
c ≺ x, or x− y ≺ c, where x, y are clocks, c ∈ ZZ is an integer and ≺∈ {<,≤}.
A clock constraint is a conjunction of atomic clock constraints or the value true.
The set of clock constraints over a set of clocks C is denoted by B(C).

Definition 3. A timed automaton is a tuple A = (S, S0 , C, E, I, µ), where
• S is a finite set of nodes (control states); S0 ⊆ S is the set of initial nodes
• C is a finite set of real-valued non-negative clocks
• E ⊆ S×B(C)×2C ×S is a finite set of edges. An edge e = 〈s, ψ, R, s′〉 has an
enabling condition ψ and a set R of clocks that are reset on traversing the edge.
• I : S → B(C) defines an invariant condition associated with each node
• µ : S → 2P labels each node with atomic propositions from a set P

A satisfied enabling condition does not force the execution of a transition. An
automaton can remain at the same node as long as the node invariant is satisfied.

We define a network of timed automata using a general parallel composition:

Definition 4. Consider n timed automata Ai = (Si, S
0
i , Ci, Ei, Ii, µi), and a

synchronization function f :
∏n

i=1(Ei ∪ {ε}) → {0, 1} (where ε is a symbol
denoting a null edge). The network of timed automata A1 ‖ A2 ‖ . . . ‖ An is a
timed automaton A = (S, S0 , C, E, I, µ), where:
• S = S1 × S2 × . . .× Sn and S0 = S0

1 × S0
2 × . . .× S0

n

• C = C1 ∪ C2 ∪ . . . ∪Cn (assuming Ci ∩ Cj = ∅, for i 6= j)
• E contains a family of edges (a transition) for each tuple with f(e1 , · · · , en) = 1.
For transition a, let ei = 〈si, ψi, Ri, s

′
i〉 if ei 6= ε and active(a) = {i | ei 6= ε}. The

edges of a have endpoints with si and s′i given by ei for i ∈ active(a), sj = s′j ∈ Sj

arbitrary for j 6∈ active(a), ψ =
∧

i∈active(a) ψi, and R =
⋃

i∈active(a)Ri.
• I(s) =

∧n
i=1 Ii(si)

• µ(s) =
⋃n

i=1 µ(si) (assuming pairwise disjoint sets of atomic propositions Pi)

A transition corresponds to the synchronous traversal of edges in several
component automata. The synchronization function determines which automata
execute (the active set of the transition) and which ones remain at their local
state. This allows the modeling of many common synchronization paradigms,
including pairwise communication. A transition with more than one automaton
in its active set is called a synchronization transition, otherwise it is called local.
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2.2 Semantics

Given a clock valuation v and d ∈ IR+, v+d is the valuation given by (v+d)(x) =
v(x) + d, ∀x ∈ C. For R ⊆ C, v[R 7→ 0] is the clock valuation that is zero for
clocks in R and agrees with v for all other clocks. The truth value of the clock
constraint ψ ∈ B(C) for a clock valuation v is denoted by ψ(v).

Definition 5. A model of a timed automaton is a state-transition graph S(A) =
(Σ,Σ0,→), where
• Σ = {(s, v) | I(s)(v)} is the set of timed states satisfying the node invariant
• Σ0 = {(s0, 0C) | s0 ∈ S0} is the set of initial states, with 0C(x) = 0, ∀x ∈ C
• → is the transition relation defined as union of delay and action transitions:
– (s, v) d

; (s, v + d) if d ∈ IR+, and for all 0 ≤ d′ ≤ d, I(s)(v + d′) holds
– (s, v) a→ (s′, v[R 7→ 0]) for a ∈ T (the set of transitions of A) if there exists an
edge e = (s, ψ, R, s′) ∈ a, such that ψ(v) is true and I(s′)(v[R 7→ 0]) holds

A delay transition models the elapse of time in the same control state,
while maintaining the invariant. An action transition can be executed (instan-
taneously) if the clock valuation satisfies the enabling condition. Clocks in the
set R are reset, the other clocks maintain their value.

We assume that node invariants contain only constraints of the form xi ≺ c,
because the constraints xi − xj ≺ c or c ≺ xi are not falsified by time passage,
and can be incorporated into the enabling condition of incoming edges. Also,
since clock constraints are convex, invariants must only be checked in the final
state of a delay transition: (s, v) d

; (s, v + d) if d ∈ IR+ and I(s)(v + d) holds.

Definition 6. An execution trace of a timed automaton is a finite or infinite
sequence σ = (s0, 0C) → (s1, v1) . . .→ (sk, vk) . . . starting from a state s0 ∈ S0.

We denote by σ(k) = (sk, vk) the kth state on the trace σ, by σk the finite
prefix of σ ending at (sk , vk) and by σk the suffix of σ starting at the same state.

2.3 The Model Checking Problem

Several model checkers for timed automata exist. The Kronos tool is a model
checker for TCTL and timed µ-calculus [9], and Uppaal [11] verifies properties
in a timed modal logic. However, partial order approaches have been so far re-
stricted to less expressive properties: Pagani [12,13] performs deadlock detection,
whereas Bengtsson et al. [2] check local reachability within one process.

We use an extension of LTL inspired from the timed temporal logic for nets
(TNL) of [18], which has been used to verify time Petri nets. By allowing con-
straints on two clock differences, the logic permits reasoning about the time
separation of two events, since the difference between two clocks corresponds to
the difference between the execution times of the transitions that reset them.

The formulas of our logic, called LTL∆, are defined by the grammar:
ψ ::= true | p | x− y ≺ c | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2

where p ∈ P is an atomic proposition, x, y ∈ C are clocks, c ∈ Z and ≺∈ {<,≤}.
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Definition 7. Consider an infinite execution trace σ = (s0, v0) → (s1, v1) →
. . .→ (sk, vk) → . . . The semantics of an LTL∆ formula is defined as follows:
• (s, v) |= p iff p ∈ µ(s)
• (s, v) |= x− y ≺ c iff v(x) − v(y) ≺ c.
• σ |= ϕa iff ϕa is an atomic formula and (s0 , v0) |= ϕa

• σ |= ¬ϕ iff σ |= ϕ does not hold
• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• σ |= ϕ1 U ϕ2 iff ∃k ≥ 0 such that σk |= ϕ2 and σj |= ϕ1 for all 0 ≤ j < k
• S(A) |= ϕ iff σ |= ϕ for any infinite execution trace σ of S(A).

Since control state and clock differences are preserved by time passage, all
intermediate states traversed by a delay transition have the same truth value for
any atomic subformulas in LTL∆. Thus, the given semantics based on transition
endpoints corresponds to the intuitive meaning of continuous execution.

3 The Model Checking Approach

3.1 Effect of Transition Interleavings

The traditional reachability analysis algorithm for networks of timed automata
explores all possible transition interleavings among the individual components.
Partial order methods choose a representative from each set of equivalent inter-
leavings, exploring only a reduced portion of the state space. However, in our
model of time, clocks advance simultaneously in all automata, and different in-
terleavings may produce different assignments to clock values. The independence
of transitions in the underlying untimed system may not be preserved.

Consider the system of two automata in Fig. 1 and its exploration using timed
zones [9]. From the initial state 〈(s1, s2), x = y〉, transition a leads to the state
〈(s′1, s2), x ≤ y〉 (since clock x is reset). Next, on executing b, clock y is reset,
leading to state 〈(s′1, s′2), x ≥ y〉. If b is executed before a, the system reaches
first the state 〈(s1 , s′2), x ≥ y〉, and then the state 〈(s′1, s′2), x ≤ y〉.

��
��
s1

��
��
s′1

?
a x 7→ 0

��
��
s2

��
��
s′2

?
b y 7→ 0

Fig. 1. Effect of transition interleavings

The two interleavings lead to the same control state, but to distinct clock
zones and thus distinct states in the zone automaton. Hence, the transitions are
not independent and usual partial order reduction techniques cannot be applied.

For a property insensitive to the ordering of x and y, both interleavings
are still equivalent, leading to a timed state in the union of the two zones,
〈(s′1, s′2), x ≥ y ∨ x ≤ y〉 = 〈(s′1 , s′2), true〉. Our goal is a partial order reduction
method that produces a zone containing the timed states reachable by all tran-
sition interleavings, while exploring only one interleaving, and thus fewer states.
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3.2 Related Work

Partial order reduction has been investigated by Yoneda and Schlingloff [18]
for time Petri nets, which have earliest and latest firing times associated with
transitions and are thus less expressive than timed automata. The logic used for
specifications is similar to LTL∆, but the dependency relation between transi-
tions uses run-time information about the time component of the current state.
Lilius [10] improves on this technique by not storing the transition firing order
in the timing constraints and reducing branching in the generated graph.

For timed automata, Pagani [12,13] shows that in many cases timing in-
troduces dependencies and reduces the amount of partial order reduction. The
analysis is limited to deadlock detection. Dams et al. [6] handle some of these
cases, generalizing the notion of independence and selecting at a state those
transitions whose executions cover the result of exploring other interleavings.

Belluomini and Myers [3] use an event model with lower and upper time
bounds associated to transitions. Timing information is represented in the form
of partially ordered sets, reducing the number of generated time zones. However,
their analysis does not reduce the number of explored transition interleavings.

The method from which we draw most is that of Bengtsson, Jonsson, Lilius
and Wang [2]. They define a local-time semantics based on desynchronized execu-
tion of the component automata and local time delays, with additional reference
clocks to model synchronization. In this model the same independence conditions
as in the untimed case apply, and an algorithm is given to decide the reachability
of a local control state.

3.3 Local-Time Model

We revisit the local-time model of Bengtsson et al. [2] using somewhat different
notations and prove several results underlying its use in model checking.

Consider the interaction of action and delay transitions. The enabling of an
action transition and the resulting state change depend only on the state of the
participating automata. Hence, two action transitions with disjoint active sets
are independent. On the other hand, a delay transition changes the state in all
automata by incrementing the values of all clocks. It is therefore dependent on
any action transition that also changes clock values (specifically, resets clocks).

However, one can view a global delay transition as a set of simultaneous
transitions with equal delay in all component automata. This suggests that time-
induced dependencies can be removed by separating a global delay transition
into individual transitions for each component automaton, without requiring
their simultaneity. To this effect, local passage of time is introduced as follows:

For a clock valuation v, d ∈ IR and i ∈ 1, n, define the clock valuation v +i d
by: (v +i d)(x) = v(x) + d for x ∈ Ci and (v +i d)(x) = v(x) otherwise.

A local delay transition d
;i increments only the clocks in automaton Ai. We

identify it with a pair (d, i) ∈ T∆ = IR+ × 1, n, define active( d
;i) = {i} and

denote Tl = T ∪ T∆. For i ∈ 1, n, define the functions delay i : Tl 7→ IR+ as
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follows: delay i(
d
;i) = d, delay i(

d
;j) = 0 for i 6= j, and delay i(

a→) = 0 for a ∈ T .
They indicate the delay caused by a transition in a component automaton.

Definition 8. The local-time model L(A) for a network of timed automata A =
A1 ‖ A2 ‖ . . . ‖ An is a state-transition graph with state set Σ, initial state set
Σ0 and execution traces σ = (s0, v0) τ1→ (s1, v1) . . . τk→ (sk, vk) . . . starting from a
state (s0, v0) ∈ Σ0 and satisfying one of the following conditions for any k ≥ 1:
• τk = (d, i) ∈ T∆, sk = sk−1, vk = vk−1 +i d and ∀d′ ∈ [0, d]. Ii(sk

i )(vk + d′), or
• τk ∈ T , (sk−1, vk−1) τk→ (sk, vk) and

∑k−1
l=1 delay i(τl) =

∑k−1
l=1 delayj(τl) for

all i, j ∈ active(τk)

The first case is a local delay transition (sk−1, vk−1) d
;i (sk, vk) in automatonAi.

In the second case, an action transition (sk−1, vk−1) τk→ (sk, vk) is executed, under
the additional constraint that the elapsed time (the sum of delays) is identical
for all automata in the active set. (For a local action transition, this additional
constraint is void). In both cases, the transition τk is said to be enabled after the
execution of σk−1. Denote by enabled(σ) and enabled∗(σ) the set of transitions
and transition sequences, respectively, that can follow a finite trace σ.

For a finite execution trace σ = (s0 , v0) τ1→ (s1, v1) . . . τk→ (s, v), define
timei(σ) = t0 +

∑k
l=1 delay i(τl), where t0 ∈ IR+ is an arbitrary timepoint at

which the execution of σ starts. Then, timei(σ) (or timei, when σ is implicit)
denotes the timepoint reached in Ai after executing σ. The local configuration
of Ai reached by σ is the tuple cfg i(σ) = (si, vi, timei), where vi denotes the
restriction of v to the clocks of Ai. The global configuration of A is the tuple
cfg(σ) = (cfg1(σ), cfg2(σ), · · · , cfgn(σ)), also denoted cfg(σ) = (s, v, time) with
time = (time1, time2, · · · , timen). The set of configurations is ΣC = Σ× (IR+)n.

Note that the enabling of an action transition is defined in terms of the
trace executed so far. The following result shows that a configuration determines
completely the subsequently enabled transitions. The proof follows directly from
the definitions of parallel composition and the local-time model.

Proposition 1. The following properties hold in the local-time model L(A) for
finite execution traces σ and σ′ and transition τ ∈ enabled(σ):
• if cfg i(σ) = cfgi(σ′) for all i ∈ active(τ ), then τ ∈ enabled(σ′) and cfgi(στ ) =
cfgi(σ

′τ ) for all i ∈ active(τ )
• cfgj(στ ) = cfgj(σ) for all j 6∈ active(τ ), where στ denotes the trace obtained
by extending σ with the transition τ .

Consequently, two finite execution traces leading to the same configuration have
the same enabled transitions. For a configuration γ ∈ ΣC one can thus define
enabled(γ) = enabled(σ), where σ is an execution trace such that cfg(σ) = γ.
Likewise, the successor configuration of γ by a transition τ ∈ enabled(σ) is
defined as the configuration reached when extending the trace σ by transition τ :
succτ (γ) = cfg(στ ). This is again independent of σ and we write γ τ→ succτ (γ).

We now prove the desired independence properties for transitions in L(A). In
general, two transitions are called independent if neither disables the execution
of the other, and the same state is reached by executing them in either order:
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Definition 9. Two transitions τ1 and τ2 are independent iff for any finite exe-
cution trace σ such that τ1, τ2 ∈ enabled(σ) the following two conditions hold:
• Enabledness: τ2 ∈ enabled(στ1) ∧ τ1 ∈ enabled(στ2)
• Commutativity: fin(στ1τ2) = fin(στ2τ1) ∧ enabled∗(στ1τ2) = enabled∗(στ2τ1)
where fin(σ) denotes the last state on the trace σ.

Theorem 1. Two (action or local delay) transitions τ1, τ2 ∈ Tl that involve
disjoint sets of automata (active(τ1) ∩ active(τ2) = ∅) are independent.

Proof. For all j ∈ active(τ2), we have j 6∈ active(τ1), hence cfgj(στ1) = cfgj(σ).
Therefore, τ2 ∈ enabled(σ) ⇒ τ2 ∈ enabled(στ1), and symetrically for τ1. Also,
since active(τ1) ∩ active(τ2) = ∅, each local configuration is changed at most
once, either by τ1 or by τ2, irrespective of their ordering. Therefore, cfg(στ1τ2) =
cfg(στ2τ1) and fin(στ1τ2) = fin(στ2τ1). Since the enabled transitions are deter-
mined by the reached configuration, enabled∗(στ1τ2) = enabled∗(στ2τ1). ut

A finite trace σ in L(A) is called synchronized if timei(σ) = timej(σ) for
all i, j ∈ 1, n, i.e., if all automata have executed for the same amount of time,
denoted by time(σ). The following theorem relates the reachable state spaces of
the standard and local-time models (cf. [2]):

Theorem 2. Each state reachable in S(A) is also reachable in L(A). Moreover,
each state reached by a synchronized trace in L(A) is also reachable in S(A).

Proof. First, any trace in S(A) yields a trace in L(A) by replacing each global
delay transition d

; with the sequence of local delay transitions d
;1 . . .

d
;n.

The reverse implication follows by induction on the number of action transi-
tions in the trace σl of L(A). For the base case, if σl is synchonized and contains
only local delay transitions, they sum up to the same total delay d. Then, fin(σl)
is reachable in S(A) by executing the global delay transition d

;.
For the induction step, let a be the action transition in σl executed at the

latest timepoint, ta ≤ t = time(σl). In every automaton, σl ends with local delay
transitions totaling at least t−ta. Removing this delay in every automaton yields
a synchronized trace σ′

l with time(σ′
l) = ta. In σ′

l, a is the last transition in all
participating automata. Its removal yields a synchronized execution trace σ′′

l
with fewer action transitions. By the induction hypothesis, fin(σ′′

l ) is reachable
in S(A), and fin(σl) is reachable from it by executing a→ followed by t−ta

; . ut

3.4 Local-Time Zone Automaton

An analogue of the zone automaton [9], which represents sets of timed states
using clock constraints can be derived for the local-time model [2]. A local-time
zone is a convex set of configurations z ∈ ΣC with the same control state. A
transition is enabled in a zone iff it is enabled in some configuration in the zone:
enabled(z) = {τ ∈ Tl | ∃γ ∈ z. τ ∈ enabled(γ)}. The successor of a zone z by a
transition τ ∈ enabled(z) is succτ (z) = {succτ (γ) | γ ∈ z ∧ τ ∈ enabled(γ)}.
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For the standard zone automaton, an exploration step consists of an action
transition followed by a delay transition of arbitrary amount. For the local-time
model, we combine an action transition with subsequent delay transitions in all
automata belonging to its active set, and show:

Proposition 2. For any finite execution trace σ, there exists a trace σ′ with
the same final configuration, which starts with a local delay transition in each
component automaton, after which every subsequent action transition is followed
by local delay transitions in all participating automata.

Proof. A delay transition d
;i commutes with any other delay transition, and

with action transitions a for which i 6∈ active(a). Thus, a delay transition can
be moved towards the beginning of the execution trace σ (merging consecutive
delay transitions in the same automaton) until the preceding action transition
involves the same automaton, or there are no preceding action transitions. ut

Based on this result, we define the zone successor operation as follows:

succZ
l (z, a) = {γk ∈ ΣC | ∃γ ∈ z, ∃di1, · · · , dik ∈ IR+. γ

a→ γ′
di1
; γ1 . . .

dik
; γk}

where active(a) = {i1, i2, · · · , ik}. An initial local-time zone is the set of all
configurations reachable from an initial state by a sequence of delay transitions:

initZ
l (s0) = {cfg(σ) | ∃di1 , · · · , din ∈ IR+. σ = (s0, 0C)

di1
; (s0, v1) . . .

din
; (s0 , vn)}

If succ∆
i (z) = {γ′ | ∃γ ∈ z, ∃d ∈ IR+. γ

d
;i γ

′} is the successor by an arbitrary
local delay, then initZ

l (s0) = (succ∆
n ◦ . . . ◦ succ∆

1 )(γ0(s0)) and succZ
l (z, a) =

(succ∆
ik

◦ . . . ◦ succ∆
i1
◦ succa)(z), where ◦ denotes function composition.

Definition 10. The local-time zone automaton Zl(A) for a network of automata
A is a tuple (Zl, Z

0
l , succ

Z
l ), with Z0

l = {initZ
l (s0) | s0 ∈ S0} the set of initial

local-time zones, succZ
l the successor relation defined above, and Zl the set of

local-time zones reachable by successive application of succZ
l from an initial zone.

Together with Prop. 2, this definition implies directly the following:

Theorem 3. A state is reachable in the model L(A) iff it belongs to a zone z
which is reachable in the local-time zone automaton Zl(A).

3.5 Representation of Local-Time Zones

In [2], it is shown how local-time zones can be represented by difference bound
matrices [7] using one additional variable per automaton. For a class of timed
automata, we derive an improved representation which does not need additional
space compared to the standard zone automaton.

The difference between two clocks is invariant to global delay transitions,
but in the local-time model, it may be changed by a local delay transition if the
clocks belong to different automata. However, since a transition d

;i increments
both timei and the clocks in Ci, the value timei−vi(x) is invariant to local delay
transitions. Indeed, it represents the timepoint at which clock x was last reset.
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Consider the new variables ti for i ∈ 1, n (the reference time in Ai) and tx
for all clocks x ∈ C (the last reset time of x). Denote Ti = {tx | x ∈ Ci} for
i ∈ 1, n, T+

i = Ti ∪ {ti}, T = {tx | x ∈ C} =
⋃n

i=1 Ti, and T+ =
⋃n

i=1 T
+
i . For a

configuration (s, v, time), define the valuation v̄ : T+ → IR+ by v̄(ti) = timei for
i ∈ 1, n and v̄(tx) = timei − v(x) for x ∈ Ci. Conversely, v̄ uniquely determines
v and time, and (s, v̄) is an alternate representation for a configuration.

Any atomic clock constraint appearing in the description of A can be rewrit-
ten as a difference constraint over T+. In a difference constraint x− y ≺ c, both
clocks belong to the same automaton Ai, and x−y = (ti−tx)−(ti−ty) = ty−tx.
Likewise, x ≺ c and c ≺ x are rewritten as ti − tx ≺ c and tx − ti ≺ −c.

A local-time clock zone is the set of valuations belonging to a local-time zone.
A zone is written as 〈s, ψl〉 with s the control state and ψl the clock zone.

Proposition 3. A local-time clock zone can be written as a difference constraint
over the variables in T+: ψl =

∧
tu,tw∈T+ tu − tw ≺ cuw.

Proof. Initially, tx = ti = t0, ∀x ∈ Ci, i ∈ 1, n. Thus, ψl =
∧

tu,tw∈T+(tu = tw).
For an action transition (s, v̄) a→ (s′, v̄′), we have v̄′(tu) = v̄(tu) for u 6∈ Ra and
v̄′(tx) = tix for x ∈ Ra (with x ∈ Cix). We denote this by v̄′ = v̄[tx 7→ tix ]x∈Ra

and extend the notation to clock zones. Also, the enabling condition ψa holds
for v̄ and the reference times in Ta = {ti | i ∈ active(a)} are equal. Thus,
succa(ψl) = {v̄′ | (s, v̄) a→ (s′, v̄′)} = (ψl∧ψa∧

∧
ti,tj∈Ta

ti = tj)[tx 7→ tix ]x∈Ra =
[∃Xa .ψl∧ψa∧

∧
ti,tj∈Ta

ti = tj ]∧
∧

x∈Ra
tx = tix , withXa = {tx | x ∈ Ra} and ∃Xa

denoting quantification over all variables in Xa. Since difference constraints are
closed under conjunction and quantification, succa(ψl) is a difference constraint.

For a local delay transition (s, v̄) d
;i (s, v̄′), we have v̄′(ti) = v̄(ti) + d and

v̄′(tu) = v̄(tu) for all tu ∈ T+ \{ti}. Denote this by v̄′ = v̄+i d and the successor
of ψl after an arbitrary delay d

;i as ψl⇑i= {v̄′ | ∃v̄ ∈ ψl, ∃d ∈ IR+. v̄′ = v̄ +i d}.
We have ψl⇑i= ∃d ∈ IR+. ψl[ti − d/ti] = ∃t′i ∈ IR+. ψl[t′i/ti] ∧ t′i − ti ≤ 0, where
e[y/x] denotes substitution of y for x in e. Since (s, v̄) d

;i (s, v̄′) iff v̄′ = v̄+id and
Ii(si)(v̄′) holds, we have succ∆

i (ψl) = ψl⇑i ∧Ii(si), again a difference constraint.
Combining action and delay steps, we obtain the relation: succZ

l (ψl, a) =
([∃Xa .ψl∧ψa∧

∧
ti,tj∈Ta

ti = tj]∧
∧

x∈Ra
tx = tix)⇑i1 . . .⇑ik ∧

∧
i∈active(a) Ii(s

′
i).

This representation of a local-time zone is monolithic and relates reset times
of clocks to reference times in all automata, using n auxiliary reference times.
For a certain class of networks, we prove the following simpler representation:

Proposition 4. If each synchronization transition in a network of automata A
resets at least one clock in each participating automaton, a local-time clock zone
has the form ψl = ψ∆(T ) ∧

∧n
i=1 ψi(Ti, ti), where:

• ψ∆(T ) =
∧

tx 6=ty∈T tx − ty ≺ cxy, with cxy ∈ ZZ

• ψi(Ti, ti) =
∧

tx∈Ti
(ti − tx ≺ cix ∧ tx − ti ≺ cxi) with cix, cxi ∈ ZZ

We call A a sync-reset network of automata. The term ψ∆(T ) relates pairs of
two reset times, while ψi(Ti, ti) relates ti to the reset times in automaton Ai.
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Proof. The initial zone is written as: initZ
l (s0) =

∧
x,y∈C(tx = ty)∧

∧n
i=1 Ii(s

0
i ).

For succZ
l , the term ψl∧ψa∧

∧
ti,tj∈Ta

ti = tj from Prop. 3 has the required form,
save for ti = tj . Quantification over Xa adds constraints between ti and tz, for
i ∈ active(a), tz ∈ T . By assumption, for every i ∈ active(a), a clock x ∈ Ra∩Ci

is reset, yielding tx = ti. Hence, constraints on ti − tz can be included in ψ∆

as constraints on tx − tz. Finally, executing ⇑i for i ∈ active(a) removes the
equalities ti = tj, and adds constraints on tz − tj with z 6∈ Cj. Likewise, these
can be replaced with tz − ty for y ∈ Ra ∩Cj, which are in the desired form. ut

Clock constraints are usually represented as difference-bound matrices [7],
which are indexed by clock variables and whose elements are bounds, i.e., pairs
(≺, c) corresponding to an atomic clock constraint. The component ψ∆ of a local-
time zone can be represented as a DBM of dimension |C| (the total number of
clocks). Each constraint ψi requires 2 ∗ |Ci| time bounds, for a total of 2 ∗ |C|,
i.e., an additional row and column. Thus, ψl can be represented by a matrix of
dimension |C| + 1, the same size as the DBM used in the standard algorithm.
However, only the submatrices corresponding to individual automata (with ref-
erence time) and the submatrix for ψ∆ (without reference times) are subject
to DBM operations. The successor computation is done first on the submatrix
corresponding to the active automata (after enforcing the synchronization con-
straints ti = tj). Strengthened constraints may lead to the recanonicalization of
ψ∆ and possibly of submatrices for other individual automata.

If an automaton in the network has synchronization transitions that do not
reset clocks, an additional clock can be inserted into the automaton for this
purpose. This transforms any network of automata into a sync-reset network,
with potentially fewer than n additional time variables.

3.6 Preservation of LTL∆ Formulas

Since in the local-time model L(A) the execution order of transitions is relaxed,
L(A) accepts a richer set of behaviors than S(A). This section establishes restric-
tions on the local-time model which ensure that each of its traces is equivalent
to a trace of the standard model with respect to a given LTL∆ formula ϕ.

We extend LTL∆ to the local-time model by defining the satisfaction of an
atomic time constraint in a configuration: (s, v̄) |= x−y ≺ c iff v̄(ty)− v̄(tx) ≺ c.
For x ∈ Ci and y ∈ Cj we have v̄(ty) − v̄(tx) = (timej − v(y)) − (timei − v(x)).
Thus, in a synchronized configuration, the semantics is the same as in S(A). The
transitions which affect the truth value of a formula are identified as follows:

Definition 11. (Visibility) A transition (s, v) → (s′, v′) is invisible with respect
to a specification ϕ if every atomic subformula of ϕ that has the same truth value
in (s, v) and (s′, v′). A transition which is not invisible is called visible.

A transition in L(A) is visible if it connects two states which differ by at least
one atomic proposition in the specification or it resets at least one clock in the
specification, affecting the truth value of a difference constraint. Delay transitions
are invisible, since they don’t change the control state and don’t reset clocks.
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For a network of timed automata A and a formula ϕ in LTL∆ denote by
Fϕ(A) the set of those traces of L(A) which satisfy the following properties:
• Ordering (O): Visible transitions occur in increasing order of their execution
times. That is, in any trace σ ∈ Fϕ(A), for visible transitions τk and τl with
k < l, we have time(τk) ≤ time(τl) (where time(τ ) is the execution time of τ ).
• Fairness (F): Time progress is unbounded in all automata. That is, for any
trace σ ∈ Fϕ(A), i ∈ 1, n and M ∈ IR+, there exists k ∈ IN with timei(σk) > M .

Theorem 4. Given an LTL∆ formula ϕ, for any execution trace in S(A) there
exists an execution trace in Fϕ(A) with the same truth value for ϕ and vice versa.

Proof. The direct implication is straightforward: from a trace σ in S(A) con-
struct a trace σl in L(A) by replacing each global delay transition d

; with the
sequence of local delay transitions d

;1 . . .
d
;n. The trace σl satisfies O, since

no action transitions are reordered, and F, since the same delay transitions are
executed in each automaton. Because delay transitions are invisible, this trans-
formation preserves the truth value of ϕ, and σ |= ϕ iff σl |= ϕ.

For the reverse implication, we construct σ from σl by reordering all transi-
tions in increasing order of their timepoints. The ordering condition O guarantees
that no visible transitions are reordered, and the truth value of the formula is not
changed. Delay transitions may be split and reordered so every action transition
is preceded by equal delays in all automata. The fairness condition F guarantees
that for all automata, local delay transitions with the needed amount exist in σl.
Finally, all local delay transitions between two consecutive action transitions are
merged into a global delay transition, resulting in a trace σ of S(A). ut

Based on the above theorem, we proceed as follows: We first define a restricted
local-time model Lϕ(A) whose traces satisfy the ordering condition O. Next, we
construct a zone automaton Zϕ

l (A) whose states are local-time atoms, i.e., sets
of configurations with the same truth value for all atomic subformulas of ϕ. We
show a correspondence between the traces of Lϕ(A) and Zϕ

l (A), and then impose
a fairness condition corresponding to F to ensure equivalence with the standard
model. Finally, we apply a maximization to the atoms in Zϕ

l (A) to obtain an
automaton Mϕ

l (A) which is finite and therefore amenable to model checking.
To preserve the ordering of visible transitions, we introduce a new reference

variable tv, denoting the timepoint of the last visible transition executed. The
domain of the valuation v̄ is extended to include tv. In the initial configuration,
v̄(tv) = 0. The model Lϕ(A) is defined in the same way as L(A), but with the
additional restriction v̄(tv) ≤ time(a) for executing a visible transition a, and
v̄′(tv) = time(a) in the resulting configuration. Thus, each visible transition is
executed at a later timepoint than the previous one, and condition O holds.

The zone successor formula for a visible transition becomes: succv
a(ψl) =

[∃Xa∃tv.ψ∧ψa∧
∧

ti,tj∈Ta
ti = tj∧

∧
ti∈Ta

tv ≤ ti]∧
∧

ti∈Ta
tv = ti∧

∧
x∈Ra

tx = tix ,
For invisible transitions, the successor operation remains the same.

The ordering condition O can also be ensured without a new variable by a
stronger condition on the traces of Lϕ(A). This requires a visible transition to
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precede in time all action transitions which follow it in the execution trace and
is enforced by the conjunct

∧
j 6∈active(a) time(a) ≤ tj.

In this case, the zone successor formula for visible transitions is written:
succv

a(ψl) = [∃Xa .ψ∧ψa∧
∧

ti,tj∈Ta
ti = tj∧

∧
ti∈Ta,tj 6∈Ta

ti ≤ tj]∧
∧

x∈Ra
tx = tix .

To perform model checking, we consider zones in which every configuration
satisfies the same atomic subformulas of the specification ϕ (cf. [18]):

Definition 12. (Atom) Given a timed automaton A and a LTL∆ formula ϕ,
an atom is a zone 〈s, ψl〉 such that v̄1(ty)− v̄1(tx) ≺ c⇔ v̄2(ty)− v̄2(tx) ≺ c for
all v̄1, v̄2 ∈ ψl and any constraint x− y ≺ c in ϕ.

For each atomic clock constraint in ϕ, consider a new atomic proposition
qk = tyk − txk ≺k ck. Thus, ϕ is reduced to a next-time free LTL formula ϕq. All
configurations in an atom have the same truth value for all propositions qk. The
atoms comprising a zone 〈s, ψl〉 are given by the nonempty intersections between
ψl and all constraints tyk − txk ≺k ck, either in positive or negated form:
atomsϕ(〈s, ψl〉) = {〈s, φ〉 | φ = ψl ∧

∧m
k=1 q

′
k, φ 6= false, q′k = qk or q′k = ¬qk}.

Define transitions between atoms as follows: z a⇒ z′ if a ∈ enabled(z) and
z′ ∈ atomsϕ(succZ

l (z, a)), and z
ε⇒ z if at least one local state of z has the

invariant Ii(si) = true. We obtain an atom graph for A and the formula ϕ:

Definition 13. (Atom graph) The atom graph Aϕ(A) of a timed automaton A
with respect to formula ϕ is a state-transition graph (Zϕ

l , Z
0
l ,⇒), with Z0

l the
set of initial local-time zones, ⇒ the atom transition relation and Zϕ

l the set of
atoms reachable from Z0

l by repeated application of ⇒.

Then, our problem reduces to LTL model checking:

Proposition 5. For each execution trace σl of Lϕ(A), there is an atom sequence
in Aϕ(A) that has the same truth value for ϕq as σl has for ϕ and vice versa.

Proof. The proof is based on reordering transitions as in Prop. 2 (cf. also [18]),
with a⇒ transitions corresponding to series of action-delay transitions in Lϕ(A).
In addition, ε⇒ transitions correspond to delay transitions in automata which
remain indefinitely at a state with the invariant true. Again, the ordering con-
dition O ensures that the truth value of the formula is preserved. ut

We now restrict the zone execution sequences such that the execution traces
included herein satisfy the fairness condition F. Otherwise, the local-time model
may contain traces that stop executing some automata and do not correspond
to any trace in the standard model. The fairness condition F is violated if the
execution trace does not make infinite time progress in some automaton, i.e., if
the growth of a clock is always restricted by a state invariant. This cannot happen
if any clock which is infinitely often limited by an invariant is reset infinitely
often, allowing time to diverge. The fairness constraint can thus be written in
terms of the structure of the automaton,

∧
x∈C GFx.bounded⇒ GFx.reset. The

model checking problem on the initial network of automata is thus reduced to
LTLmodel checking of a finite Kripke structure with a set of fairness constraints.
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A stronger fairness constraint restricts the atom graph Aϕ(A) to zones that
are synchronizable, i.e., contain at least one synchronized configuration (with
v̄(ti) = v̄(tj) for all i, j ∈ 1, n). This ensures that no more zones are explored in
the local-time zone automaton than in the standard zone automaton, and the
reduction is applied to a state space which is not larger than the original one.
This guarantee comes at the expense of an additional check for the enabledness
of transition a⇒ in a given atom z, namely that succZ

l (z, a) be synchronizable.

3.7 Building a Finite Model

The local-time zone automaton can be infinite, since difference bounds on clocks
can become arbitrarily large. In [2], a finite quotient is shown to exist, but no
method to compare local-time zones for equivalence is given. We show that, just
as for the standard zone automaton, the actual value of time bounds does not
affect the enabledness of transitions, once a certain value is exceeded. Hence,
each local-time zone can be normalized to obtain a finite model.

We adapt the maximization (rounding) operation described, e.g., in [17] to
the local-time model. Let cmax be the maximum absolute value of all constants
in the automaton A and the formula ϕ. Adapting the region graph construction
of [1], two valuations v̄ and v̄′ are called region-equivalent (written v̄ 'reg v̄

′) if
for any time variables tu, tv ∈ T+, either bv̄(tu) − v̄(tv)c = bv̄′(tu) − v̄′(tv)c or
both differences have the same sign and are greater in absolute value than cmax.
Region equivalence extends to configurations by defining (s, v̄) 'reg (s′, v̄′) iff
s = s′ and v̄ 'reg v̄

′. Regions are the equivalence classes induced by 'reg on the
set of configurations ΣC . It is straightforward to show:

Lemma 1. Let v̄ 'reg v̄
′. Then:

1. If ψ is any constraint in A or in the specification ϕ, then v̄ ∈ ψ iff v̄′ ∈ ψ.
2. For any clock set R, v̄[R 7→ 0] 'reg v̄

′[R 7→ 0].
3. For i ∈ 1, n and d ≥ 0 there exists d′ ≥ 0 such that v̄ +i d 'reg v̄

′ +i d
′.

Since Lemma 1 covers all operations involved in executing a transition, the
following property follows (cf. [1]):

Proposition 6. Let γ 'reg γ
′ be two region-equivalent configurations in ΣC .

1. If γ a→ γ1, there exists γ′1 'reg γ1 such that γ′ a→ γ′1.

2. If γ d
;i γ1, there exists d′ ∈ IR+ and γ′1 'reg γ1 such that γ′ d′

;i γ
′
1.

The maximization of a zone z is the set of configurations which have some
region-equivalent configuration in z: max(z) = {γ′ ∈ ΣC | ∃γ ∈ z. γ 'reg γ

′}.
A maximized zone is therefore a convex union of regions. It is easily seen that
a maximized zone is obtained from the canonical representation of a zone by
modifying all constraints involving constants ±c′ with c′ > cmax: tu − tv ≺ −c′
becomes tu − tv < −cmax and tu − tv ≺ c′ becomes tu − tv < ∞ (trivially
true). Furthermore, by point (1) of Lemma 1, a maximized atom is in turn an
atom. Define succM

l (z, a) = max(succZ
l (z, a)) and let Mϕ

l (A) be the atom graph
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induced by succM
l through repeated application from an initial zone. Since the

constants in a maximized zone are bounded, it follows that Mϕ
l (A) is finite.

By Prop. 6, the same transitions are enabled in every point of a region. Since
a maximized atom is the closure of an atom with respect to region equivalence,
this implies that the atom graph Aϕ(A) and the maximized atom graph graph
Mϕ(A) are bisimilar. Putting the previous results together, we obtain the fol-
lowing theorem, which reduces our initial problem to LTL model checking with
fairness constraints on a finite model:

Theorem 5. The model Mϕ
l (A) with the fairness constraint F is equivalent to

the standard model S(A) with respect to the formula ϕ.

3.8 Partial Order Reduction

Partial order reduction constructs only a representative part of the state space
of a model, while preserving the verified property. This is done by exploring a
subset of the enabled transitions at each states, instead of the entire set. Several
criteria for choosing the subset of explored transitions have been developed. We
follow the approach of Peled [14], in which the selected transitions are denoted
as an ample set and have to satisfy the following conditions:
C0 Emptiness: ample(s) = ∅ iff enabled(s) = ∅.
C1 Ample decomposition: On any path from any state s, a transition in ample(s)
appears before the first transition dependent on a transition in ample(s).
C2 Invisibility: If ample(s) 6= enabled(s), all transitions in ample(s) are invisible.
C3 Cycle closing: A transition enabled in every state of a cycle in the reduced
state graph belongs to the ample set of some state on that cycle.

Having established the visible transitions in the model Mϕ
l (A), one needs to

determine the transition dependence relation. Bengtsson et al. [2] give a purely
structural dependence relation, identical to that for untimed parallel composi-
tion: two transitions are independent if the two sets of automata involved in each
of them are disjoint. This condition is sufficient for the local-time model L(A),
as shown by Theorem 1. Since transitions in the zone automaton are composed
of action and local delay transitions in the local-time model, the commutativity
relation also follows for the zone automaton:

succZ
l (succZ

l (z, a), b) = succZ
l (succZ

l (z, b), a) if active(a) ∩ active(b) = ∅
However, in the local-time zone automaton, just like in the standard zone

automaton, transitions which are both enabled in a zone may actually be enabled
in different sets of configurations belonging to that zone.

Let A1 and A2 be two automata with clock sets {x, u} and {y, v}, and con-
sider a zone that is reached after executing two synchronization transitions, one
resetting x and y, and the second resetting u and v. Thus, we have tx = ty and
tu = tv. Assume now that transition a in A1 has enabling condition x − u =
tu−tx < 2 and transition b inA2 requires y−v = tv−ty > 3. Since tu−tx = tv−ty
due to the previous synchronizations, the two conditions cannot be satisfied si-
multaneously. Exploring either of a⇒ and b⇒ restricts the current local-time zone
to a fragment where the other transition is no longer enabled.
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Consequently, when selecting an ample set of transitions, one needs to check,
just as for full state exploration, whether for every configuration in the current
zone each of the explored automata is either be forced to execute an action
transition or allows indefinite time progress. Otherwise, a potential deadlock
exists. For a local transition, this check can be made statically by analyzing
the invariant of the originating state together with the guard condition of the
transition. This gives us a practical condition for the selection of an ample set:

Proposition 7. In a sync-reset network of automata, a local transition in a
process with a single clock does not disable transitions in other automata.

Proof. Given local transition a in automaton Ai with a single clock x, the con-
straints in the enabling condition of a can be of the form tx−ti ≺ c and ti−tx ≺ c.
In a sync-reset network of automata, the representation of a local-time constraint
links ti only to clocks in the same automaton, i.e., to tx. Therefore, the conjunc-
tion ψl∧ψa does not induce stronger constraints on the other time variables and
does not affect the enabledness of transitions in other automata. ut

Based on the above results, we can use the ample set approach [14] to con-
struct a reduced model for the automaton Mϕ

l (A), and perform model checking
by composing it with the tableau for the LTL formula [16].

4 Conclusions and Future Work

We have presented a method that allows the application of partial order re-
duction to systems modeled as a composition of timed automata. The method
results in reduction in the state space, as well as in the number of clock zones
that are generated for each control state. Compared to previous related work,
this paper shows that partial order reduction can be used for model checking of
properties described in a timed extension of linear temporal logic, rather than
just for local reachability analysis. Furthermore, for a certain class of automata,
we show that the local-time zones can be represented as efficiently as standard
clock zones. We also analyze the dependence relation between transitions in the
new model and give practical conditions for selecting an ample set.

An implementation of the presented algorithm is in progress, and we expect
it to support the theoretical claims for efficiency improvement with experimental
results. We also plan to extend the technique to models with other variants of
synchronization, such as timed automata with deadlines. Of particular interest
is a detailed comparison of the present approach with techniques developed for
other timed models, such as time Petri nets and timed event level structures,
and possible improvements that can result from here. Finally, we plan to explore
how partial order reduction can be used for other finite quotient representations
of timed automata, such as the region graph construction.
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