
Synthesis of VHDL Concurrent Processes

Petru Eles* Krzysztof Kuchcinskit Zebo Pengt Marius Minea *$

* Computer Science and Engineering Department
Technical University of Timisoara

Romania

Abstract

This paper presents two methoals for synthesis of VHDL
siecijications containing concurrent processes. Our main
objective is to preserve simulation/synthesis correspon-
dence during high-level synthesis and to produce hardware
that operates with a high degree of parallelism. The first
method supports an unrestricted use of signals and wait
statements and synthesizes synchronous hardware with glo-
bal control of process synchronization for signal update.
The second method allows hardware synthesis without the
strict synchronization imposed by the VHDL simulation
cycle. Experimental results have shown that the proposed
methods are eficientfor a wide spectrum of digital systems.

1. Introduction

This paper addresses the problem of high-level synthesis
from a behavioral VHDL description that contains interact-
ing concurrent processes. Our goal is to conform to the
VHDL standard semantics during synthesis and to produce
hardware that operates with a high degree of parallelism.
One of the most difficult issues in this context originates
from the VHDL semantics of signal assignments and wait
statements which is specified in terms of simulation. As
stated in the language definition [8], unlike variables which
are updated as soon as they are assigned a value, signals are
only updated at the end of a simulation cycle. This means
that the update of signal values must be synchronized with
the execution of a wait statement by every process in the
system and has to be performed simultaneously for all sig-
nals that change their values in that simulation cycle.

The synthesis strategies we present in this paper preserve
a partial ordering relation of operations on signals and ports
from the simulation model to the synthesized hardware
structure. Thus, we are achieving simulation/synthesis cor-

t at present: School of Computer Science, GMegie Mellon University

This work has been partially sponsored by the Swedish National Board for
Industrial and Technical Development (NUTEK)

t Dept. of Computer and Information Science
Linkijping University

Sweden

respondence which means that both the simulation model
and the synthesized hardware react with the same values
(sequences of values) of the signals and ports to identical
sequences of stimuli applied at the inputs.

Most of the high-level synthesis systems which accept
VHDL specifications restrict themselves to a virhlally
sequential subset of the language with a very limited u:se of
signals due to some of the problems discussed above [3].
According to SynVHDL [13] and VSYNTH [7] an architec-
ture body may only contain a single process. Silicon 11076
[lo] restricts the use of signal assignments to output ports
and requires the design to contain only one process
described at the architectural level. In CALLAS [2] the
designer is required to use an explicit global clock signal.
The entire behavior has to be described only in terms of
variables, and the use of signals is virtually limited to input
and output ports. In the context of restrictions like these,
hardware implementation of standard VHDL semantics for
process interaction through signals can be avoided.

On the other hand papers dedicated to questions concem-
ing the synthesis of signals (such as [14] and [9]), do not
address the implications for synthesis of signal assignment
semantics as it is defined, in terms of the simulation cycle, by
the VHDL standard. DSS [151 supports the synthesis of inter-
acting VHDL processes to a synchronous hardware of
strongly coupled FSMs with lockstep execution of processes.
The synthesis system HIS [l], designed at IBM, imposes sev-
eral restrictions on the VHDL specification style. It restricts
the use of signals to the explicit clock signal in the so-called
sequential synchronous model. The system accepts only very
strictly defined description styles: sequential synchronous
model, explicit state machine model, and a dataflow descrip-
tion using only concurrent signal assignments.

The main objective of our approach is to preserve the
computational effects of the simulation cycle with minimal
additional costs and minimal impact on the performance of
the synthesized hardware. To achieve this goal we have
developed a method for compiling VHDL into an inte:mal
design representation which explicitly captures its essential
semantics with respect to process synchronization. The
developed compiler automatically generates synthesis

RmkGon fo copy without fee all or part of tlk material i-5 grmtcd.
pmvidcd that Ihe copies are not made or diitributed for direct wmmctial
advanmgc. the ACM copyright notice and the title of the publication and its
date appear, and “““ce IS grvcn “,a, cnpymg IS by pc”“~~“” ‘n UIC
Association for Cumputing MaEhimry. To copy otherwise. UT w republbh.
rquins a fee andlorspeeific permission.

540
0 1994 ACM O-89791-685-9/94/0011 $1.50

structures which are later transformed by high-level synthe-
sis algorithms. Our approach supports two different
solutions, one with unrestricted use of signals and wait
statements, and the other with reduced synchronization
between processes. Which solution will be applied for a cer-
tain synthesis task depends on the description style adopted
by the user. Selection of the description style is decided
according to the features of the designed hardware. The pro-
posed solutions have been implemented, and tested with the
CAMAD high-level synthesis system [121.

This paper is divided into 6 sections. Section 2 gives a
short introduction to the basic design environment for high-
level synthesis and our internal design representation. Sec-
tions 3 and 4 describe the unrestricted and reduced-
synchronization specification styles respectively and
present the corresponding features of the synthesized hard-
ware. In section 5 we discuss some synthesis results
obtained with CAMAD. Section 6 presents our conclusions.

2. The Design Environment

The VHDL related design environment comprises cur-
rently the S’VI-IDL compiler and several high-level
synthesis algorithms. S’VHDL consists of a large subset of
standard VHDL [4]. and accepts specifications consisting of
interacting concurrent processes. The compiler translates
S’VHDL descriptions into an internal design representation
which can be later synthesized. It provides several options
to allow generation of different representation formats as
well as acceptance of different description styles. This is
used to make the synthesis process more efficient and give
the designer a possibility to choose suitable synthesis styles.
In our approach, the CAMAD system is currently used to
carry out the synthesis task.

‘Ihe internal design representation into which S’VHDL
programs are translated is called ETPN (extended timed
Petri net) [12]. ETPN consists of two separate but related
parts: control part and data path. The data path is repre-
sented as a directed graph with nodes and arcs. The nodes
are used to capture data manipulation and storage units. The
arcs represent the connections of the nodes. The control
purl, on the other hand, is represented as a timed Petri net
with restricted transition firing rules.

The S’VHDL compiler translates an S’VHDL descrip-
tion into an ETPN representation by generating the
corresponding data path and the control Petri net. Each
S’VHDL statement is mapped into a separate control place
in the Petri net. An arc representing data (or control) depen-
dence between two nodes is modelled as a transition. If the
dependence is conditional, then the corresponding transi-
tion is guarded by a condition generated by the data path.
Construction of the ETPN data path is carried out by the
convention that each scalar variable will be mapped into a
node, i.e., each scalar variable is assumed at this point to be
implemented by one register. Each operation instance will

be mapped into an individual node. The arcs between the
data path nodes are then introduced to model the data com-
munication between the nodes. These arcs will be guarded
by corresponding control places. Note that each statement
will usually be mapped into a control place. However, com-
plex statements will later be decomposed in the synthesis
process.

In the examples throughout the paper data path nodes
will be represented as rectangles with labels indicating the
functions of the nodes or their names. Transfer of data from
one node to another via an arc is controlled by control sig-
nals coming from the control part. This control relation is
indicated by using control place labels to guard arcs. When
a control place in the Petri net holds a token (a control signal
is sent), its guarded arcs in the data path are open for data to
flow. A transition may be guarded by one or more condi-
tions produced from the data path. It may be fired when it is
enabled (all its input places have a token) and the guarding
condition is true.

After an S’VHDL program is translated into an ETPN
representation, parallelism extraction is carried out. As a
result, a new ETPN with maximal parallelism is obtained.
Scheduling/allocation is then performed using an iterative
transformation approach implemented in CAMAD [12].
This means that the models described in sections 3 and 4 are
inputs to high-level synthesis and subject to design transfor-
mations and optimizations. When the final ETPN is
generated it will be converted into a netlist and one or sev-
eral FSMs which represent the final design.

3. The Unrestricted Model

Our approach supports two basic models for specifying
VHDL concurrent processes, the unrestricted model and the
reduced-synchronization model. The unrestricted model
offers the freedom to express process interaction using sig-
nals conforming to the full S’VHDL synthesis subset. From
the point of view of synthesis the model implies practically
the hardware implementation of the simulation cycle. This
means that processes have to wait for each other until all of
them are executing a wait statement in order to update the
signal values.

A “wait on signal” statement is represented in ETPN by
associating a condition to the transition in the control part
corresponding to the waiting process [4]. The condition will
be produced as the result of an assignment to the corre-
sponding signal. Figure 1 shows the ETPN representation of
signals for this model and the control part corresponding to
a wait statement. Signals are modeled by two register nodes
(s and s’) in the data path. The value referred to by the pro-
cesses accessing the signal is stored in node s while the node
s’ stores the last assigned value. Condition C, indicates an
event on the signal s. Updating the signal, by passing the
value from node s’ to node s, is controlled by place Q
(shown in Figure 2) that will hold a token only when all pro-

541

cesses are executing a wait statement. This structure can
also be extended to produce the condition corresponding to
a transaction on the signal [4]. For reasons of simplicity we
use a. compressed data path representation for signals
depicting only the two register nodes (as, for example, in
Figure 2).

P
I s’

Q

%b
s Q

Q
cs Q

Fig. 1. Design representation of signals and wait statements in the
unrestricted model

The hardware synthesized for this model is controlled,
optionally, either by a single FSM or by several FSMs work-
ing synchronously together.

3.1. Synthesis of a Collection of State Machines

Synthesis of several FSMs, one for each process, is per-
formed on a design representation containing several
independent control Petri nets synchronizing through
shared data path conditions. The representation in Figure 2
corresponds to an architecture that includes k processes and
II signals. For simplicity reasons only one wait statement
has been depicted in each of the processes Pl, P2, ,.., Pk. A

process Pl process P2 process Pk process PO

WPI

Csj

$ PI

.

W

Csl

1 P2

.

WP

Csm

e Pk

wait on sj wait on sl wait on sm

. c;
$

sn

cm

nl-wp,, . ..h
al’-{w,,‘, . ..}.
R2-{Wpz, . ..}.

Q2’-{W,‘, . ..}.

. . .

Fig. 2. Design representation for generation of a collection of FSMs

supervisor process PO is automatically generated during
compilation of the S’VHDL description, and is responsible
for the synchronized updating of signals (under the control
of place Q). The required synchronization is achie.ved by
using the one-bit register nodes x1, x2, xk, one f#Dr each
process in the design. Node Xi is initially reset by the place
PO that holds the initial token in the control Petri net. Setting
of Xi is controlled by any of the places in the set !&, where
q consists of all control places corresponding to the wait
statements that belong to process Pi. Node xi will be reset
under the control of any place in the set q’, where 54’ con-
sists of the places that are the direct successors of those in
Qi*

Place a in process PO does not control any a~. This
dummy place indicates that a certain delay has to be intro-
duced to allow resetting of the one-bit nodes (controlled by
places in the sets q’) before the same nodes are referred to
under the control of place Q’ (the direct successor of a) in
process PO.

Since the control Petri nets corresponding to the pro-
cesses are disjoint, synthesis of a separate state machine for
each process is possible. A reachable marking generation
algorithm with as-soon-as-possible transition firing rule,
which has been implemented in CAMAD. is used to trans-
form each Petri net into an FSM [12]. The set of FSMs is
synchronized by the FSM corresponding to process PO.
With the help of the nodes x1, x2, xk in the data path, PO
coordinates the global synchronization so that sign.als are
updated only when all processes are in a wait state.

3.2. Synthesis of a Single State Machine

If the complexity and/or the number of processes are not
very large, the control structure can be synthesized to a sin-
gle FSM. This state machine is generated using a design
representation that differs from that in Figure 2. If the user
asks for synthesis of the k processes to a single FSM the
S’VHDL compiler generates a control Petri net like the one
in Figure 3. Synchronization between waiting processes in
order to update signals is moved entirely into the control
part where it becomes explicit. The control places Q I, Q2,
. . . . Qk, one for each process, hold a token only when the cor-
responding process is executing a wait statement. When a21
processes are waiting, the transition T (in the middle of
Figure 3) can be fired; thus the places QZ’, Q2’, Qi? will
get tokens and the signals will be updated. If condition C,i
associated to a signal si, on which process Pj is waiting,
becomes true, process Pj will continue (the token is passed
from QJ to the output place of the transition on which the
process was waiting). If Csi is false (the expected event did
not happen) Pj enters again its waiting state (the token is
passed back from ej, to Qj).

Moving synchronization entirely into the control part
increases the complexity of the control Petri net. But this
complexity does not entail the generation of a higher number

542

C sh

waiton

Fig. 3. Design representation for generation of one FSM

of FSM states. The additional constraints introduced into the
control part are used by CAMAD to eliminate unreachable
states at FSM generation and result actually in the reduction
of states.

For this solution no “supervisor” process PO has to be
generated and there is no need for the register nodes xl, x2,
. . . . xk in the data path. The Control parts corresponding to the
processes are tightly interconnected and thus it is appropri-
ate to generate just one single FSM. Handling the whole
representation globally during synthesis for the design of a
single FSM allows more control on the allocation of data
path elements and offers the possibility of sharing hardware
between different processes during the synthesis process.
During the high-level synthesis process, hardware modules
can be shared across the process boundaries if the related
operations are scheduled into different time steps, which is
illustrated by the synthesis results given in section 5.

4. The Reduced-Synchronization Model

The unrestricted model entails the implementation of the
VHDL simulation cycle in hardware. Thus it results in a
strong synchronization of the processes, which very often
exceeds the level needed for the correct functionality of the
circuit. This oversynchronization is the price payed for an
unrestricted use of signals while preserving at the same time
simulation semantics for synthesis. Without giving up sim-
ulation/synthesis correspondence, the oversynchronization
can be relaxed when the correct behavior of the described
hardware does not rely on the implicit synchronization
enforced by the simulation cycle. We call such a description
well synchronized. In a well synchronized VHDL descrip-
tion all the assumptions that provide the proper
synchronization and communication between processes are
explicitly stated by operations on signals.

We will now present a synthesis strategy that does not
reproduce the simulation cycle in hardware while maintain-
ing simulation/synthesis correspondence. It accepts designs
specified according to a certain description style and pro-
duces independent FSMs which work in parallel. The
S’VHDL descriptions conforming to this style are implic-
itly well synchronized.

4. 1. The Designer’s View

With the reduced-synchronization model, the designer
describes hardware as a set of S’VHDL processes commu-
nicating through signals. Any number of processes can
communicate through a given signal (we say that these pro-
cesses are connected to the signal) but only one of these
processes is allowed to assign values to it. Assignment of a
value to a signal is done by a send command. Processes that
refer to the signal will wait until a value is assigned to it, by
calling a receive command. Both send and receive have the
syntax of ordinary procedure calls.

A send command, denoted as send(X, e), where X is a
signal, e is an assignment expression, and e and X are type
compatible, is executed, by a process P, in two steps:

1) process P waits until all other processes connected to
signal X are executing a receive on this signal (if all
these processes are already waiting on a receive for X,
then process P enters directly step 2);

2) expression e is evaluated and its value is assigned to
signal X. This value becomes the new value of X.
After that process P continues its execution.

A receive command, denoted as receive(X), where X is a
signal, causes the executing process to wait until a send on
signal X is executed. Communication with send and receive
can also be achieved through several signals [SJ.

The definition of the sendlreceive commands ensures
that between the execution by a process of two consecutive
receives on a given signal X, the value of this signal remains
unchanged. This is due to the fact that in this interval no
send on that signal can become active. This property is very
important from a synthesis point of view (see section 4.2).
Communication with send and receive requires synchroni-
zation between processes. However, it is important to note
that this synchronization does not affect all processes. but
onlv those involved in the snecific communication (the pro-
cesses connected to a given signal).

To avoid undesired blocking of a process on a receive
command, the boolean function test is provided. Test(X),
where X is a signal, returns true if there is a process waiting
to execute send on X; otherwise the function returns false.

An S’VHDL description corresponding to this model can
be transformed by a preprocessor into an equivalent stan-
dard VHDL model for simulation [5]. Starting from the
same description, the S’VHDL compiler generates the
ETPN internal representation that will be synthesized by the
CAMAD system. Simulation/synthesis correspondence will

543

be preserved during the synthesis process.

4.2. Reduced-Synchronization Model Synthesis

For the reduced-synchronization model a signal will be
represented as a simple data path node. After an assignment
(as the result of a send executed on the signal) the value of
the node is directly updated. Synchronization between the
process assigning to a signal and all those accessing it,
imposed by the send/receive mechanism, makes an assign-
ment in two steps unnecessary.

The synchronization protocol between the process exe-
cuting a send and those executing receive on a given signal
is implemented using one-bit register nodes (e.g., A-X in
Figure 4). In Figure 4 we show the communication protocol
for sending/receiving on signal X. The condition Cx is used
to synchronize the process executing send on X while the
complementary condition rx controls the continuation of
the receive command. Petri net places PI, RI, P, and R2 are
used to implement the proper synchronization for the hand-
shaking protocol while the place P, evaluates the expression
of the send command. An extension to the described formu-
lation has also allowed the use of multiple send and receive
commands [5].

This model leads to hardware structures that work at a
higher degree of parallelism than those synthesized for the
previous one. It doesn’t require a global synchronization of
all processes. Signals need not be implemented by double
registers with additional functional elements in the data path.
They are represented and updated exactly like ordinary vari-
ables. As a consequence of the fact that process interaction is
based on a handshaking protocol and does not need any glo-
bal control, the Petri net controllers of the processes can be
implemented as independent FSMs working in parallel.

To benefit from the advantages of this synthesis approach
the designer has to adapt his description to the style required
by the reduced-synchronization model. Using send and
receive instead of wait statements and signal assignments is
more natural and simpler for higher level descriptions. A
similar approach is proposed for hardware/software co-
specifications and successfully used in a co-design project
[6]. Our results support automated synthesis and more effi-
cient application of this model for process communication.
This modelling style facilitates also the organization of

send (X, e) receive(X)

P

cx

,. .,,,.
controls evaluahon

p
of the ex pmsion
and assignment

i
P

Fig. 4. Design repres&tation

high-level design into loosely coupled processes with a well
structured interface. If such an organization is possible, the
reduced-synchronization model is a natural approach for
synthesis and results in efficient and highly parallel hard-
ware implementations.

5. Experimental Results

The tirst example is an architecture known as the “move
machine” [151 which is capable of moving instructions and
data between memory and processor. ALU operations are
considered to be associated to addresses in memory; arith-
metic and logic operations are side effects of moving data to
and from these locations. The original VHDL description of
the move machine given in [15] contains three processes:
one for loading the next instruction, the second for comput-
ing operand address, and the third for executing the
instruction. The three processes are activated sequentially in
a loop, one after the other, which corresponds to the classi-
cal execution chain of an instruction.

The original description of the move machine architec-
ture has been changed according to our reduced-
synchronization model. To increase parallelism of the
design we organized the architecture as a control unit (one
process) connected to two memory modules (two pro-
cesses), the first one for instructions and the second one for
data. The process representing control unit loads an instruc-
tion, computes the address, and executes the instruction.
During the execution of an instruction the next one is loaded
to achieve more parallelism. Communication between the
control unit and the memories is done through the bit-string
signals representing the command (read or write), the mem-
ory address, and the transferred data. The S’VHDL code of
the move machine can be found in [5].

The synthesis results of CAMAD are presented in Table
1. For the move machine we used first the description given
in [151 and synthesized it to a single FSM, according ‘to our
unrestricted model. The modified version of the move
machine in reduced-synchronization style has been synthe-
sized to three FSMs, each corresponding to one process.
Results reported in [15], for the synthesis of the move
machine to a synchronous hardware, indicate 118 states and
a CPU time needed for the controller generation of 2.2’7 sec-
onds. This time was obtained by using a multiprocessor
machine. Our CPU times given in the table correspoad to
the whole synthesis process and are obtained on a SUN
Spare ELC station. Comparing the synthesis of a single
FSM with that of more FSMs we observe that the second
approach results in the use of two additional comparators.
This is the consequence of the fact that generating separate
FSMs makes it impossible to share hardware (see section
3.2), but on the other hand results in a lower complexity of
the control structure and in a higher degree of parallelism.

For the elliptic filter in Table 1 we used the VHDL
benchmark given in [16]. Its results are included here to

544

Example Model States Function units CPU
time (s)

Table 1: Summary of synthesis results of CAMAD [41
show that our system performs well also with arithmetic
dominated hardware, although the elliptic filter example
consists of only one process. Results reported in [1 l] indi-
cate 18 states by using three adders and one multiplier with
a CPU time of 360 seconds. In [151 the elliptic filter is syn-
thesized to 19 states, with three adders and one multiplier,
in 107 seconds.

PI

Finally, by synthesizing the Am 2901 four-bit micropro-
cessor slice listed in Table 1, we demonstrate that CAMAD
is able to synthesize VHDL specifications of standard com-
mercial microprocessor structures with results that are
similar to the original manual design.

M

[71

6. Conclusions

This paper addresses one of the most difficult aspects in
the hardware synthesis of behavioral VHDL specifications,
namely synthesis of concurrent processes while preserving
standard VHDL simulation semantics.

We first developed a model that allows a practically
unrestricted use of signals and wait statements by producing
a synchronous hardware with a global control of process
synchronization for signal update. The hardware can be
controlled either by a single state machine or by a collection
of FSMs working synchronously together.

With our second model we have shown that it is possible to
relax the strong synchronization imposed by the VHDL simu-
lation cycle without affecting the semantic correctness of the
synthesized circuit. S’VHDL descriptions written according to
this style are synthesized to hardware with a higher degree of
parallelism and asynchrony, without any need for additional
global synchronization.

The results we report in the paper show that the CAMAD
high-level synthesis system can efficiently handle ETPN
design representations produced by the S’VHDL compiler
including designs described as interacting concurrent pro-
cesses according to the proposed models. More research is
needed, however, in the area of high-level specific transfor-
mations applicable to concurrent processes and
communication protocols.

References
111

PI

131

PI

[91

[lOI

[ill

[W

[I31

iI41

WI

Bergamaschi, R. A., Kuehlmann, A., A System for
Production Use of High-Level Synthesis, IEEE Transactions
on Very Large Scale Integration (VLSI), vol. 1, no. 3, Sept.
1993, pp. 233-243.

Biesenack, J., et. al., The Siemens High-Level Synthesis
System CALLAS, IEEE Transactions on Very Large Scale
Integration (VLSI), vol. 1, no. 3, Sept. 1993, pp. 244-253.

Camposano, R., Saunders, L. F. and Tabet, R. M., VHDL as
Input for High-Level Synthesis, IEEE Design and Test of
Computers, March 1991, pp. 43-49.

Eles, P., Kuchcinski, K., Peng, Z., Minea, M., Compiling
VHDL into a High-Level Synthesis Design Representation,
Proc. EURO-DAC/EURO-VHDL’92, 1992, pp. 604-609.

Eles, P., Kuchcinski, K., Peng, Z., Minea, M., Two Methods
for Synthesizing VHDL Concurrent Processes, Research
Report, LiTH-IDA-R-93-22.

Ecker, W., Using VHDL for HWJSW Co-Specification, Proc.
EURO-DACYEURO-VHDL’93,1993, pp. 500-505.

Harper, P., Krolikoski, S., Levia, O., Using VHDL as a
Synthesis Language in the Honeywell VSYNTH System, in
J.A. Darringer, F.J. Rammig (Editors), Computer Hardware
Description Languages and their Applications, North
Holland, 1990, pp. 315-330.

IEEE Standard VHDL Language Reference Manual, IEEE
Std. 1076-1987, IEEE Computer Sot. Press, 1987.

Miiller, J., Krlmer, H., Analysis of Multi-Process VHDL
Specifications with a Petri Net Model, in: Proc. EURO-DA0
EURO-VHDL’93 (1993), pp. 474-479.

Nagasamy, V., Berry, N., Dangelo, C., Specification,
Planning, and Synthesis in a VHDL Design Environment,
IEEE Design &Test of Computers, June 1992, pp. 58-68.

Paulin, PG., Knight, J.P., Force-Directed Scheduling for the
Behavioral Synthesis of ASIC’s, IEEE Transactions on
Computer-Aided Design, vol. 8, no. 6, June 1989, pp. 661-679.

Peng, Z., Kuchcinski K., Automated Transformation of
Algorithms into Register-Transfer Level Implementation,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, no. 2, Feb. 1994, pp. 150-166.

Postula, A., VHDL Specific Issues in High Level Synthesis,
Proc. Euro-VHDL’91, 1991, pp. 70-77.

Ramachandran, L., Vahid, F., Narayan, S., Gajski, D.,
Semantics and Synthesis of Signals in Behavioral VHDL,
Proc. EURO-DAC/EURO-VHDL’92, 1992, pp. 616-621.

Roy, J., Kumar, N., Dutta, R., Vemuri, R., DSS: A Distributed
High-Level Synthesis System, IEEE Design & Test of
Computers, June 1992, pp. 18-32.

[161 Vemuri, R., Roy, J., Mamtora, P., Kumar, N., Benchmarks for
High Level Synthesis, Technical Memo-ECE-DDE-9 I- 11,
University of Cincinnati, 1991.

545

