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Abstract 

This paper presents two methoals for synthesis of VHDL 
siecijications containing concurrent processes. Our main 
objective is to preserve simulation/synthesis correspon- 
dence during high-level synthesis and to produce hardware 
that operates with a high degree of parallelism. The first 
method supports an unrestricted use of signals and wait 
statements and synthesizes synchronous hardware with glo- 
bal control of process synchronization for signal update. 
The second method allows hardware synthesis without the 
strict synchronization imposed by the VHDL simulation 
cycle. Experimental results have shown that the proposed 
methods are eficientfor a wide spectrum of digital systems. 

1. Introduction 

This paper addresses the problem of high-level synthesis 
from a behavioral VHDL description that contains interact- 
ing concurrent processes. Our goal is to conform to the 
VHDL standard semantics during synthesis and to produce 
hardware that operates with a high degree of parallelism. 
One of the most difficult issues in this context originates 
from the VHDL semantics of signal assignments and wait 
statements which is specified in terms of simulation. As 
stated in the language definition [8], unlike variables which 
are updated as soon as they are assigned a value, signals are 
only updated at the end of a simulation cycle. This means 
that the update of signal values must be synchronized with 
the execution of a wait statement by every process in the 
system and has to be performed simultaneously for all sig- 
nals that change their values in that simulation cycle. 

The synthesis strategies we present in this paper preserve 
a partial ordering relation of operations on signals and ports 
from the simulation model to the synthesized hardware 
structure. Thus, we are achieving simulation/synthesis cor- 
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respondence which means that both the simulation model 
and the synthesized hardware react with the same values 
(sequences of values) of the signals and ports to identical 
sequences of stimuli applied at the inputs. 

Most of the high-level synthesis systems which accept 
VHDL specifications restrict themselves to a virhlally 
sequential subset of the language with a very limited u:se of 
signals due to some of the problems discussed above [3]. 
According to SynVHDL [13] and VSYNTH [7] an architec- 
ture body may only contain a single process. Silicon 11076 
[lo] restricts the use of signal assignments to output ports 
and requires the design to contain only one process 
described at the architectural level. In CALLAS [2] the 
designer is required to use an explicit global clock signal. 
The entire behavior has to be described only in terms of 
variables, and the use of signals is virtually limited to input 
and output ports. In the context of restrictions like these, 
hardware implementation of standard VHDL semantics for 
process interaction through signals can be avoided. 

On the other hand papers dedicated to questions concem- 
ing the synthesis of signals (such as [14] and [9]), do not 
address the implications for synthesis of signal assignment 
semantics as it is defined, in terms of the simulation cycle, by 
the VHDL standard. DSS [ 151 supports the synthesis of inter- 
acting VHDL processes to a synchronous hardware of 
strongly coupled FSMs with lockstep execution of processes. 
The synthesis system HIS [l], designed at IBM, imposes sev- 
eral restrictions on the VHDL specification style. It restricts 
the use of signals to the explicit clock signal in the so-called 
sequential synchronous model. The system accepts only very 
strictly defined description styles: sequential synchronous 
model, explicit state machine model, and a dataflow descrip- 
tion using only concurrent signal assignments. 

The main objective of our approach is to preserve the 
computational effects of the simulation cycle with minimal 
additional costs and minimal impact on the performance of 
the synthesized hardware. To achieve this goal we have 
developed a method for compiling VHDL into an inte:mal 
design representation which explicitly captures its essential 
semantics with respect to process synchronization. The 
developed compiler automatically generates synthesis 
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structures which are later transformed by high-level synthe- 
sis algorithms. Our approach supports two different 
solutions, one with unrestricted use of signals and wait 
statements, and the other with reduced synchronization 
between processes. Which solution will be applied for a cer- 
tain synthesis task depends on the description style adopted 
by the user. Selection of the description style is decided 
according to the features of the designed hardware. The pro- 
posed solutions have been implemented, and tested with the 
CAMAD high-level synthesis system [ 121. 

This paper is divided into 6 sections. Section 2 gives a 
short introduction to the basic design environment for high- 
level synthesis and our internal design representation. Sec- 
tions 3 and 4 describe the unrestricted and reduced- 
synchronization specification styles respectively and 
present the corresponding features of the synthesized hard- 
ware. In section 5 we discuss some synthesis results 
obtained with CAMAD. Section 6 presents our conclusions. 

2. The Design Environment 

The VHDL related design environment comprises cur- 
rently the S’VI-IDL compiler and several high-level 
synthesis algorithms. S’VHDL consists of a large subset of 
standard VHDL [4]. and accepts specifications consisting of 
interacting concurrent processes. The compiler translates 
S’VHDL descriptions into an internal design representation 
which can be later synthesized. It provides several options 
to allow generation of different representation formats as 
well as acceptance of different description styles. This is 
used to make the synthesis process more efficient and give 
the designer a possibility to choose suitable synthesis styles. 
In our approach, the CAMAD system is currently used to 
carry out the synthesis task. 

‘Ihe internal design representation into which S’VHDL 
programs are translated is called ETPN (extended timed 
Petri net) [12]. ETPN consists of two separate but related 
parts: control part and data path. The data path is repre- 
sented as a directed graph with nodes and arcs. The nodes 
are used to capture data manipulation and storage units. The 
arcs represent the connections of the nodes. The control 
purl, on the other hand, is represented as a timed Petri net 
with restricted transition firing rules. 

The S’VHDL compiler translates an S’VHDL descrip- 
tion into an ETPN representation by generating the 
corresponding data path and the control Petri net. Each 
S’VHDL statement is mapped into a separate control place 
in the Petri net. An arc representing data (or control) depen- 
dence between two nodes is modelled as a transition. If the 
dependence is conditional, then the corresponding transi- 
tion is guarded by a condition generated by the data path. 
Construction of the ETPN data path is carried out by the 
convention that each scalar variable will be mapped into a 
node, i.e., each scalar variable is assumed at this point to be 
implemented by one register. Each operation instance will 

be mapped into an individual node. The arcs between the 
data path nodes are then introduced to model the data com- 
munication between the nodes. These arcs will be guarded 
by corresponding control places. Note that each statement 
will usually be mapped into a control place. However, com- 
plex statements will later be decomposed in the synthesis 
process. 

In the examples throughout the paper data path nodes 
will be represented as rectangles with labels indicating the 
functions of the nodes or their names. Transfer of data from 
one node to another via an arc is controlled by control sig- 
nals coming from the control part. This control relation is 
indicated by using control place labels to guard arcs. When 
a control place in the Petri net holds a token (a control signal 
is sent), its guarded arcs in the data path are open for data to 
flow. A transition may be guarded by one or more condi- 
tions produced from the data path. It may be fired when it is 
enabled (all its input places have a token) and the guarding 
condition is true. 

After an S’VHDL program is translated into an ETPN 
representation, parallelism extraction is carried out. As a 
result, a new ETPN with maximal parallelism is obtained. 
Scheduling/allocation is then performed using an iterative 
transformation approach implemented in CAMAD [12]. 
This means that the models described in sections 3 and 4 are 
inputs to high-level synthesis and subject to design transfor- 
mations and optimizations. When the final ETPN is 
generated it will be converted into a netlist and one or sev- 
eral FSMs which represent the final design. 

3. The Unrestricted Model 

Our approach supports two basic models for specifying 
VHDL concurrent processes, the unrestricted model and the 
reduced-synchronization model. The unrestricted model 
offers the freedom to express process interaction using sig- 
nals conforming to the full S’VHDL synthesis subset. From 
the point of view of synthesis the model implies practically 
the hardware implementation of the simulation cycle. This 
means that processes have to wait for each other until all of 
them are executing a wait statement in order to update the 
signal values. 

A “wait on signal” statement is represented in ETPN by 
associating a condition to the transition in the control part 
corresponding to the waiting process [4]. The condition will 
be produced as the result of an assignment to the corre- 
sponding signal. Figure 1 shows the ETPN representation of 
signals for this model and the control part corresponding to 
a wait statement. Signals are modeled by two register nodes 
(s and s’) in the data path. The value referred to by the pro- 
cesses accessing the signal is stored in node s while the node 
s’ stores the last assigned value. Condition C, indicates an 
event on the signal s. Updating the signal, by passing the 
value from node s’ to node s, is controlled by place Q 
(shown in Figure 2) that will hold a token only when all pro- 
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cesses are executing a wait statement. This structure can 
also be extended to produce the condition corresponding to 
a transaction on the signal [4]. For reasons of simplicity we 
use a. compressed data path representation for signals 
depicting only the two register nodes (as, for example, in 
Figure 2). 

P 
I s’ 

Q 

%b 
s Q 

Q 
cs Q 

Fig. 1. Design representation of signals and wait statements in the 
unrestricted model 

The hardware synthesized for this model is controlled, 
optionally, either by a single FSM or by several FSMs work- 
ing synchronously together. 

3.1. Synthesis of a Collection of State Machines 

Synthesis of several FSMs, one for each process, is per- 
formed on a design representation containing several 
independent control Petri nets synchronizing through 
shared data path conditions. The representation in Figure 2 
corresponds to an architecture that includes k processes and 
II signals. For simplicity reasons only one wait statement 
has been depicted in each of the processes Pl, P2, ,.., Pk. A 
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Fig. 2. Design representation for generation of a collection of FSMs 

supervisor process PO is automatically generated during 
compilation of the S’VHDL description, and is responsible 
for the synchronized updating of signals (under the control 
of place Q). The required synchronization is achie.ved by 
using the one-bit register nodes x1, x2, . . . . xk, one f#Dr each 
process in the design. Node Xi is initially reset by the place 
PO that holds the initial token in the control Petri net. Setting 
of Xi is controlled by any of the places in the set !&, where 
q consists of all control places corresponding to the wait 
statements that belong to process Pi. Node xi will be reset 
under the control of any place in the set q’, where 54’ con- 
sists of the places that are the direct successors of those in 
Qi* 

Place a in process PO does not control any a~. This 
dummy place indicates that a certain delay has to be intro- 
duced to allow resetting of the one-bit nodes (controlled by 
places in the sets q’) before the same nodes are referred to 
under the control of place Q’ (the direct successor of a) in 
process PO. 

Since the control Petri nets corresponding to the pro- 
cesses are disjoint, synthesis of a separate state machine for 
each process is possible. A reachable marking generation 
algorithm with as-soon-as-possible transition firing rule, 
which has been implemented in CAMAD. is used to trans- 
form each Petri net into an FSM [12]. The set of FSMs is 
synchronized by the FSM corresponding to process PO. 
With the help of the nodes x1, x2, . . . . xk in the data path, PO 
coordinates the global synchronization so that sign.als are 
updated only when all processes are in a wait state. 

3.2. Synthesis of a Single State Machine 

If the complexity and/or the number of processes are not 
very large, the control structure can be synthesized to a sin- 
gle FSM. This state machine is generated using a design 
representation that differs from that in Figure 2. If the user 
asks for synthesis of the k processes to a single FSM the 
S’VHDL compiler generates a control Petri net like the one 
in Figure 3. Synchronization between waiting processes in 
order to update signals is moved entirely into the control 
part where it becomes explicit. The control places Q I, Q2, 
. . . . Qk, one for each process, hold a token only when the cor- 
responding process is executing a wait statement. When a21 
processes are waiting, the transition T (in the middle of 
Figure 3) can be fired; thus the places QZ’, Q2’, . . . . Qi? will 
get tokens and the signals will be updated. If condition C,i 
associated to a signal si, on which process Pj is waiting, 
becomes true, process Pj will continue (the token is passed 
from QJ to the output place of the transition on which the 
process was waiting). If Csi is false (the expected event did 
not happen) Pj enters again its waiting state (the token is 
passed back from ej, to Qj). 

Moving synchronization entirely into the control part 
increases the complexity of the control Petri net. But this 
complexity does not entail the generation of a higher number 
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Fig. 3. Design representation for generation of one FSM 

of FSM states. The additional constraints introduced into the 
control part are used by CAMAD to eliminate unreachable 
states at FSM generation and result actually in the reduction 
of states. 

For this solution no “supervisor” process PO has to be 
generated and there is no need for the register nodes xl, x2, 
. . . . xk in the data path. The Control parts corresponding to the 
processes are tightly interconnected and thus it is appropri- 
ate to generate just one single FSM. Handling the whole 
representation globally during synthesis for the design of a 
single FSM allows more control on the allocation of data 
path elements and offers the possibility of sharing hardware 
between different processes during the synthesis process. 
During the high-level synthesis process, hardware modules 
can be shared across the process boundaries if the related 
operations are scheduled into different time steps, which is 
illustrated by the synthesis results given in section 5. 

4. The Reduced-Synchronization Model 

The unrestricted model entails the implementation of the 
VHDL simulation cycle in hardware. Thus it results in a 
strong synchronization of the processes, which very often 
exceeds the level needed for the correct functionality of the 
circuit. This oversynchronization is the price payed for an 
unrestricted use of signals while preserving at the same time 
simulation semantics for synthesis. Without giving up sim- 
ulation/synthesis correspondence, the oversynchronization 
can be relaxed when the correct behavior of the described 
hardware does not rely on the implicit synchronization 
enforced by the simulation cycle. We call such a description 
well synchronized. In a well synchronized VHDL descrip- 
tion all the assumptions that provide the proper 
synchronization and communication between processes are 
explicitly stated by operations on signals. 

We will now present a synthesis strategy that does not 
reproduce the simulation cycle in hardware while maintain- 
ing simulation/synthesis correspondence. It accepts designs 
specified according to a certain description style and pro- 
duces independent FSMs which work in parallel. The 
S’VHDL descriptions conforming to this style are implic- 
itly well synchronized. 

4. 1. The Designer’s View 

With the reduced-synchronization model, the designer 
describes hardware as a set of S’VHDL processes commu- 
nicating through signals. Any number of processes can 
communicate through a given signal (we say that these pro- 
cesses are connected to the signal) but only one of these 
processes is allowed to assign values to it. Assignment of a 
value to a signal is done by a send command. Processes that 
refer to the signal will wait until a value is assigned to it, by 
calling a receive command. Both send and receive have the 
syntax of ordinary procedure calls. 

A send command, denoted as send(X, e), where X is a 
signal, e is an assignment expression, and e and X are type 
compatible, is executed, by a process P, in two steps: 

1) process P waits until all other processes connected to 
signal X are executing a receive on this signal (if all 
these processes are already waiting on a receive for X, 
then process P enters directly step 2); 

2) expression e is evaluated and its value is assigned to 
signal X. This value becomes the new value of X. 
After that process P continues its execution. 

A receive command, denoted as receive(X), where X is a 
signal, causes the executing process to wait until a send on 
signal X is executed. Communication with send and receive 
can also be achieved through several signals [SJ. 

The definition of the sendlreceive commands ensures 
that between the execution by a process of two consecutive 
receives on a given signal X, the value of this signal remains 
unchanged. This is due to the fact that in this interval no 
send on that signal can become active. This property is very 
important from a synthesis point of view (see section 4.2). 
Communication with send and receive requires synchroni- 
zation between processes. However, it is important to note 
that this synchronization does not affect all processes. but 
onlv those involved in the snecific communication (the pro- 
cesses connected to a given signal). 

To avoid undesired blocking of a process on a receive 
command, the boolean function test is provided. Test(X), 
where X is a signal, returns true if there is a process waiting 
to execute send on X; otherwise the function returns false. 

An S’VHDL description corresponding to this model can 
be transformed by a preprocessor into an equivalent stan- 
dard VHDL model for simulation [5]. Starting from the 
same description, the S’VHDL compiler generates the 
ETPN internal representation that will be synthesized by the 
CAMAD system. Simulation/synthesis correspondence will 
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be preserved during the synthesis process. 

4.2. Reduced-Synchronization Model Synthesis 

For the reduced-synchronization model a signal will be 
represented as a simple data path node. After an assignment 
(as the result of a send executed on the signal) the value of 
the node is directly updated. Synchronization between the 
process assigning to a signal and all those accessing it, 
imposed by the send/receive mechanism, makes an assign- 
ment in two steps unnecessary. 

The synchronization protocol between the process exe- 
cuting a send and those executing receive on a given signal 
is implemented using one-bit register nodes (e.g., A-X in 
Figure 4). In Figure 4 we show the communication protocol 
for sending/receiving on signal X. The condition Cx is used 
to synchronize the process executing send on X while the 
complementary condition rx controls the continuation of 
the receive command. Petri net places PI, RI, P, and R2 are 
used to implement the proper synchronization for the hand- 
shaking protocol while the place P, evaluates the expression 
of the send command. An extension to the described formu- 
lation has also allowed the use of multiple send and receive 
commands [5]. 

This model leads to hardware structures that work at a 
higher degree of parallelism than those synthesized for the 
previous one. It doesn’t require a global synchronization of 
all processes. Signals need not be implemented by double 
registers with additional functional elements in the data path. 
They are represented and updated exactly like ordinary vari- 
ables. As a consequence of the fact that process interaction is 
based on a handshaking protocol and does not need any glo- 
bal control, the Petri net controllers of the processes can be 
implemented as independent FSMs working in parallel. 

To benefit from the advantages of this synthesis approach 
the designer has to adapt his description to the style required 
by the reduced-synchronization model. Using send and 
receive instead of wait statements and signal assignments is 
more natural and simpler for higher level descriptions. A 
similar approach is proposed for hardware/software co- 
specifications and successfully used in a co-design project 
[6]. Our results support automated synthesis and more effi- 
cient application of this model for process communication. 
This modelling style facilitates also the organization of 

send (X, e) receive(X) 

P 

cx 

,. .,,,. 
controls evaluahon 

p 
of the ex pmsion 
and assignment 

i 
P 

Fig. 4. Design repres&tation 

high-level design into loosely coupled processes with a well 
structured interface. If such an organization is possible, the 
reduced-synchronization model is a natural approach for 
synthesis and results in efficient and highly parallel hard- 
ware implementations. 

5. Experimental Results 

The tirst example is an architecture known as the “move 
machine” [ 151 which is capable of moving instructions and 
data between memory and processor. ALU operations are 
considered to be associated to addresses in memory; arith- 
metic and logic operations are side effects of moving data to 
and from these locations. The original VHDL description of 
the move machine given in [15] contains three processes: 
one for loading the next instruction, the second for comput- 
ing operand address, and the third for executing the 
instruction. The three processes are activated sequentially in 
a loop, one after the other, which corresponds to the classi- 
cal execution chain of an instruction. 

The original description of the move machine architec- 
ture has been changed according to our reduced- 
synchronization model. To increase parallelism of the 
design we organized the architecture as a control unit (one 
process) connected to two memory modules (two pro- 
cesses), the first one for instructions and the second one for 
data. The process representing control unit loads an instruc- 
tion, computes the address, and executes the instruction. 
During the execution of an instruction the next one is loaded 
to achieve more parallelism. Communication between the 
control unit and the memories is done through the bit-string 
signals representing the command (read or write), the mem- 
ory address, and the transferred data. The S’VHDL code of 
the move machine can be found in [5]. 

The synthesis results of CAMAD are presented in Table 
1. For the move machine we used first the description given 
in [ 151 and synthesized it to a single FSM, according ‘to our 
unrestricted model. The modified version of the move 
machine in reduced-synchronization style has been synthe- 
sized to three FSMs, each corresponding to one process. 
Results reported in [15], for the synthesis of the move 
machine to a synchronous hardware, indicate 118 states and 
a CPU time needed for the controller generation of 2.2’7 sec- 
onds. This time was obtained by using a multiprocessor 
machine. Our CPU times given in the table correspoad to 
the whole synthesis process and are obtained on a SUN 
Spare ELC station. Comparing the synthesis of a single 
FSM with that of more FSMs we observe that the second 
approach results in the use of two additional comparators. 
This is the consequence of the fact that generating separate 
FSMs makes it impossible to share hardware (see section 
3.2), but on the other hand results in a lower complexity of 
the control structure and in a higher degree of parallelism. 

For the elliptic filter in Table 1 we used the VHDL 
benchmark given in [16]. Its results are included here to 
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Example Model States Function units CPU 
time (s) 

Table 1: Summary of synthesis results of CAMAD [41 
show that our system performs well also with arithmetic 
dominated hardware, although the elliptic filter example 
consists of only one process. Results reported in [ 1 l] indi- 
cate 18 states by using three adders and one multiplier with 
a CPU time of 360 seconds. In [ 151 the elliptic filter is syn- 
thesized to 19 states, with three adders and one multiplier, 
in 107 seconds. 

PI 

Finally, by synthesizing the Am 2901 four-bit micropro- 
cessor slice listed in Table 1, we demonstrate that CAMAD 
is able to synthesize VHDL specifications of standard com- 
mercial microprocessor structures with results that are 
similar to the original manual design. 

M 

[71 

6. Conclusions 

This paper addresses one of the most difficult aspects in 
the hardware synthesis of behavioral VHDL specifications, 
namely synthesis of concurrent processes while preserving 
standard VHDL simulation semantics. 

We first developed a model that allows a practically 
unrestricted use of signals and wait statements by producing 
a synchronous hardware with a global control of process 
synchronization for signal update. The hardware can be 
controlled either by a single state machine or by a collection 
of FSMs working synchronously together. 

With our second model we have shown that it is possible to 
relax the strong synchronization imposed by the VHDL simu- 
lation cycle without affecting the semantic correctness of the 
synthesized circuit. S’VHDL descriptions written according to 
this style are synthesized to hardware with a higher degree of 
parallelism and asynchrony, without any need for additional 
global synchronization. 

The results we report in the paper show that the CAMAD 
high-level synthesis system can efficiently handle ETPN 
design representations produced by the S’VHDL compiler 
including designs described as interacting concurrent pro- 
cesses according to the proposed models. More research is 
needed, however, in the area of high-level specific transfor- 
mations applicable to concurrent processes and 
communication protocols. 
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