
Customizing protocol specifications for detecting
resource exhaustion and guessing attacks

Bogdan Groza and Marius Minea

Politehnica University of Timişoara and Institute e-Austria Timişoara ?

bogdan.groza@aut.upt.ro, marius@cs.upt.ro

Abstract. Model checkers for security protocols often focus on basic
properties, such as confidentiality or authentication, using a standard
model of the Dolev-Yao intruder. In this paper, we explore how to model
other attacks, notably guessing of secrets and denial of service by re-
source exhaustion, using the AVANTSSAR platform with its modelling
language ASLan. We do this by adding custom intruder deduction rules
and augmenting protocol transitions with constructs that keep track of
these attacks. We compare several modelling variants and find that writ-
ing deductions in ASLan as Horn clauses rather than transitions using
rewriting rules is crucial for verification performance. Providing auto-
mated tool support for these attacks is important since they are often
neglected by protocol designers and open up other attack possibilities.

1 Introduction and motivation

Formal verification tools provide an efficient means for automatic verification of
security protocols, once models of these have been written, e.g., some variant
of symbolic transition systems. Usually, the focus is on verification of standard
security goals, such as authenticity and confidentiality. However, in many cases,
satisfying these goals is not sufficient to consider a protocol safe and a more
in-depth analysis to rule out other kinds of attacks is necessary.

This paper focuses on two such attacks which are not handled routinely by
many protocol verifiers, namely guessing attacks and denial of service (DoS).
Both of these attacks are a main concern in protocol design. Guessing attacks
are relevant because users tend to choose weak passwords, and some values such
as PIN codes have intrinsically low entropy. They can become the weakest link
in more complex protocols, leading to other attacks as well. Resource exhaustion
is relevant as a common source of DoS as well as from an economic point of view
if one considers ruling out protocol designs that can be exploited to make honest
participants spend unreasonable amounts of resources, time or memory.

Our research is performed in the framework of the AVANTSSAR project,
where security protocols and services are specified as transition systems in the

? This work is supported in part by FP7-ICT-2007-1 project 216471, AVANTSSAR:
Automated Validation of Trust and Security of Service-oriented Architectures and
by strategic grant POSDRU/21/1.5/G/13798 of the Human Resources Development
Programme 2007-2013, co-financed by the European Social Fund – Invest in People.



ASLan specification language, based on set rewriting. ASLan models can be
analyzed by three different model checkers as back-ends: CL-Atse [19], OFMC [4]
and SATMC [2]. None of them handles DoS or guessing attacks by default.

We present several ways to model custom deduction rules in ASLan. The
purpose is to devise a way to augment protocol models so they can be analyzed
for guessing and DoS attacks without changing the model checkers.

To introduce customized attack rules at the ASLan level there are two main
options: adding new intruder transitions and/or adding Horn clauses. The first
approach results in mixing protocol steps with the new customized transitions,
which can significantly increase state space explosion and verification time. Using
Horn clauses is more efficient but faces several issues. both due to the ASLan
design (Horn clauses cannot add to intruder knowledge, which would be needed
in guessing) and because the model checkers differ in their level of support for
Horn clauses and in their search strategies. Consequently, to express customized
attack rules, we need to write additional transition rules as well as Horn clauses.

Section 2 presents the ASLan specification language focusing on the main fea-
tures relevant for our modelling. In Section 3, we briefly present the principles
behind our analysis of DoS attacks and then details of their modelling with cus-
tomized transitions. Section 4 describes the modelling of guessing attacks, with
several versions using customized transitions and, for efficiency, Horn clauses for
intruder deductions. We conclude in Section 5 with a discussion of the results.

2 The ASLan specification language

The AVANTSSAR specification language ASLan is an expressive language for
specifying security protocols and services as well as their policies, based on set
rewriting. In the following, we give a simplified account of the language, focusing
on the features which are most relevant for our customized modelling of attack
rules. A full description of the language is given in [3].

ASLan models are transition systems in which each state is modeled by a
set of ground facts. Predefined types include message and its subtypes (agent,
private key, public key, symmetric key, text). The user can declare addi-
tional type symbols, functions and facts (predicates) with their type signatures.

For example, consider the MS-CHAP protocol, a known target for guessing
attacks. Figure 1 presents the description in Alice-and-Bob notation, together
with an ASLan transition rule for role A, who on receiving nonce NB in step 2
responds with NA and a hash computation in step 3.

Here, state A is a fact that tracks the state of principal A, including an
instance identifier ID, a step counter that changes from 1 to 2, and other known
values, including the identity of B, the shared key, the hash function, and the two
nonces (which become known as a result of the step). Communication is modeled
using the fact iknows (on the left-hand side for receive, and on the right-hand
side for send), since anything transmitted becomes part of the intruder knowl-
edge. Conjunction of facts is represented by a dot; apply represents function



application and pair message concatenation. The exists keyword specifies the
creation of a fresh value as part of the transition.

1. A→ B : A
2. B → A : NB

3. A→ B : NA, H(kAB , NA, NB , A)
4. B → A : H(kAB , NA)

step step_1(A,B,H,ID,Kab,Na,Nb,Na0,Nb0) :=

state_A(A,ID,1,B,Kab,H,Na0,Nb0)

.iknows(Nb)

=[exists Na]=>

state_A(A,ID,2,B,Kab,H,Na,Nb)

.iknows(pair(Na,apply(H,

pair(Kab,pair(Na,pair(Nb,A))))))

Fig. 1. MS-CHAP v2 protocol and ASLan transition rule

Let F be the set of ground facts; the set of all possible states is then S = 2F .
An ASLan model defines a transition system M = 〈S, I,→〉, where I ⊆ S is the
set of initial states and → ⊆ S × S is the transition relation.

In an ASLan model, the set of initial states is a conjunction of facts. Tran-
sitions are rewrite rules where both sides are conjunctions of facts. A transition
can be taken from any state that contains the facts on the left-hand side; these
are removed from the state and replaced by the facts on the right-hand side.
As an exception, iknows (intruder knowledge) is a persistent fact and does not
disappear, even if written on the left-hand side and being omitted on the right.

Formally, we first define the closure dSeH of a state S with respect to the set
H of Horn clauses in the model as the set of all ground facts that can be derived
from S using H. More precisely, dSeH is the smallest set containing S such that

∀F ← F1, · · · , Fn ∈ H,∀σ.
⋃

1≤i≤n Fiσ ⊆ dSeH ⇒ Fσ ∈ dSeH
where σ is any substitution function that maps the variables of the Horn clause
F ← F1, · · · , Fn to ground terms.

A transition rule in ASLan has the form PF .NF =[V ]=> R, where PF is a
set of positive facts, NF is a set of negative (negated) facts, V is a set of fresh
introduced variables, and the right-hand side R is a conjunction of facts.

We can now define the transition relation → as follows: there is a transition
S → S′ iff there exists a transition rule PF .NF =[V ]=> R and a substitution σ
from the variables of PF to ground terms such that following conditions hold:

– PFσ ⊆ dSeH , i.e., the positive facts on the left-hand side hold in dSeH
– NFσσ′ ∩ dSeH = ∅ for all substitutions σ′ such that NFσσ′ is ground, i.e.,

the negative facts cannot hold in dSeH
– S′ = (S \PFσ)∪Rσσ′′, where σ′′ is any substitution such that for all v ∈ V ,
vσ′′ does not occur in S (i.e., variables in V are substituted with fresh terms).

The combination of transition rules and Horn clauses in the language implies
the existence of two kinds of facts. Explicit facts are introduced by the right-hand
side of transition rules and are persistent unless removed by a later transition
(if present on the left-hand side but not the right-hand side). Implicit facts are
introduced by Horn clauses and are recomputed as part of the state closure after



each transition step. To ensure a consistent semantics, explicit facts (including
the intruder knowledge iknows) cannot appear in the conclusion of a Horn clause.
This impacts our design of guessing rules, which must add intruder knowledge.

These definitions lead to an execution model for an ASLan specification that
alternates Horn clause deductions and transition steps: first, the set of facts com-
prising a state is augmented by the facts obtained by performing the transitive
closure of the Horn clauses, and then one of the applicable transition rules is
chosen and executed, after which the entire process is repeated. In particular,
this makes Horn clauses suitable for modelling intruder deduction and any addi-
tional processing necessary for attack detection, as Horn clause deductions are
performed after each transition step.

3 Customized transitions for detection of DoS attacks by
resource exhaustion

We formalize costs and attack conditions in order to detect DoS attacks by re-
source exhaustion. While we focus on computation resources due to the varying
cost of cryptographic primitives, costs could be associated to memory consump-
tion or other resources as well.

Resource exhaustion DoS attacks can be divided according to the behaviour
of the adversary in two categories: one is abusive use of the service by clients
which willingly or not deplete the server from resources, the other is malicious
use in which adversaries manipulate protocol messages and make honest prin-
cipals waste computational time without reaching protocol goals. For the first
case, we consider an attack feasible if the initiator can force repeated use of the
protocol, which leads to resource depletion. For the second case we consider the
protocol under attack when principals reach states in which their beliefs about
the protocol are wrong, e.g., messages are accepted from impersonated senders.
Cutting down communication is not an issue since the intruder can do this for
any protocol and protocol design cannot give countermeasures to it. In both
cases, to deem a resource exhaustion attack successful we must evaluate costs
for both the adversary and honest principals. An attack is flagged as successful
when both the cost of the adversary is lower and one of the two situations hold:
the adversary is the initiator or the principal’s beliefs are wrong.

3.1 Defining costs and augmenting transitions

Costs can be treated according to the framework of Meadows [16], which uses a
monoid structure; this approach is also used in follow-up related work [17,18].
The cost set employed is S = {0, low,medium, high}, and the sum of two
costs is simply defined as their maximum: ∀a, b ∈ S, a + b = max(a, b). This
can be easily modeled in ASLan by using a fact for summing costs, as shown
in Figure 2 where cost values are of type text and sum has the signature
sum: text * text * text -> fact. In the same manner, the comparison be-
tween cost values is defined with the fact less.



The existing AVANTSSAR model checkers have limited support for numeric
values. Using SMT-based techniques would allow for integer costs and a better
evaluation of complex attacks such as distributed DoS, where a more sensitive
cost analysis must be done. For example, the initial cost of the adversary can be
high, but it can be alleviated over multiple protocol sessions. Only a few manual
analyses have been done with explicit numeric cost values [15]; most analyses in
the literature are symbolic, using a monoid as cost structure.

Transitions can be easily augmented by costs. This has to be done for both
protocol steps (as described in detail in [11]) and intruder deductions. Figure 2
shows the cost definition and an intruder deduction modeled as protocol transi-
tion that keeps track of cost. The example is a deduction in which the intruder
performs a signature with key Y over term X, denoted by costSig(X,Y), and
incurring cost high, with the initial condition that he knows both X and Y .

sum(low, low, low).

sum(low, medium, medium).

sum(medium, low, medium).

sum(low, high, high).

sum(high, low, high).

sum(high, medium, high).

sum(medium, high, high).

sum(high, high, high).

less(low, medium).

less(medium, high).

less(low, high)

step trans_1(X, Y, Cost, NewCost, ID):=

state_adv(i, ID, 0)

.iknows(X).iknows(Y)

.cost(i, Cost)

.sum(Cost, high, NewCost)

=>

state_adv(i, ID, 0)

.iknows(costSig(X,Y))

.cost(i, NewCost)

.sum(Cost, high, NewCost)

Fig. 2. Defining costs (left) and a cost-augmented transition for a signature (right)

3.2 Defining the attack condition

To flag an attack on principal P , a necessary condition is that the intruder cost
is less than the cost incurred by P : cost(i, Ci).cost(i, CP).less(Ci, CP). In addi-
tion, for abusive use, we need to keep track of the protocol initiator. This can be
done by augmenting the initial transition of the protocol (done by principal A)
with the fact initiate(A) and adding initiate(i) in the attack condition (the
attack must be repeatable by the intruder). For malicious use, we track the viola-
tion of injective agreement. This can be done by augmenting the right-hand side
of each send and receive transition with the facts send(S, R, M, L, ID) and re-
spectively recv(S, R, M, L, ID), having as parameters the sender, recipient,
content, protocol step and instance. The attack is flagged by checking satisfi-
ability of the condition recv(S, R, M, L, ID).not(send(S, R, M, L, ID),
which means that a message receive does not have a matching send.

These attack conditions can be further refined along other criteria, such as
determining whether the attack is detectable or not by a given principal, or by



any honest principal, etc. A more difficult issue is handling costs over multiple
sessions. In this case, principals must not cumulate costs from correct protocol
runs, but only from sessions initiated by the adversary or from malicious sessions.
This requires rewriting each protocol transition in several ways, keeping track of
these conditions, and tracking costs either per-session or per-principal. Modelling
details are given in [11].

As an example, we discuss the Station-to-Station protocol (STS) [8] depicted
in Figure 3. The protocol computes a shared session key k = αxy starting from
the random values x and y chosen by the two participants.

A→ B : αx

B → A : αy,CertB , Ek(sigB(αy, αx))
A→ B : CertA, Ek(sigA(αx, αy))

A → Adv(B) : αx

Adv → B : αx

B → Adv : αy,CertB , Ek(sigB(αy, αx))
Adv(B) → A : αy,CertB , Ek(sigB(αy, αx))
A → Adv(B) : CertA, Ek(sigA(αx, αy))

Fig. 3. Station to Station protocol (left) and Lowe’s attack (right)

Lowe’s attack [13], in the right part of Figure 3, shows the adversary capturing
the message sent by A to B and resending it in his own name to B. Afterwards,
B is talking to Adv, while A believes she is talking to B. Adv(B) means the
adversary impersonating B, while Adv is the adversary acting as himself.

The attack found by Lowe shows a flaw in the protocol, irrespective of costs.
Later, Meadows [16] analyzed this attack from a cost-based perspective. Our
model allows a model checker to detect this attack automatically. By using an
attack condition (attack state) such as

dos_on_a(X, Y, P, V, L, ID) := cost(a, X).cost(i, Y).less(Y, X)

.recv(P, a, V, L, ID) & not(send(P, a, V, L, ID))

we direct the model checker to find a protocol trace in which the adversary has
lower cost than the honest principal A, who accepts a message from a different
session. Figure 4 presents the attack trace found by CL-Atse (release 2.5-8).
The attack differs slightly from the one found by Lowe, but by placing different
constraints the back-end can reproduce Lowe’s attack as well. The trace shows
the adversary reusing a value sent by A to obtain a response from B that is
further redirected and accepted by A. Steps 1 to 3 are from A’s session with B
(compromised by the intruder in step 3), while step 2’ is from a session between
the intruder and B (step 1’ is implicit since the intruder knows everything sent
over the network). The cost of both A and B is high as they compute modular
exponentiations while their beliefs about the resulting shared session key (αxy)
are both wrong. A believes she shares a key with B, while B believes he shares
the key with Adv, who is actually unable to compute it without knowing x.

The cost of the adversary is low as he doesn’t perform computations except
for redirecting messages, which is assumed to be cheap.



1. A→ B : αx


i → (A, 5) : {}
(A, 5) → i : costExp(g, n5(XA))
& Built from trans0

2. B → I(A) : αy1 ,CertB ,
Ek(sigB(αy1 , αx))


i → (B, 12) : costExp(g, n5(XA))
(B, 12) → i : costExp(g, n6(XB)).certB.
|costExp(g, n6(XB)).costExp(g, n5(XA)) inv(b pk)|
costExp(costExp(g, n5(XA)), n6(XB))

& Built from trans1

2′. B → I : αy2 ,CertB ,
Ek(sigB(αy2 , αx))


i → (B, 22) : costExp(g, n5(XA))
(B, 22) → i : costExp(g, n14(XB)).certB.
|costExp(g, n14(XB)).costExp(g, n5(XA)) inv(b pk)|
costExp(costExp(g, n5(XA)), n14(XB))

& Built from trans1

3. I(B) → A : αy2 ,CertB ,
Ek(sigB(αy2 , αx))



i → (A, 5) : costExp(g, n14(XB)).certB.
|costExp(g, n14(XB)).costExp(g, n5(XA)) inv(b pk)|
costExp(costExp(g, n5(XA)), n14(XB))

(A, 5) → i : certA.
|costExp(g, n5(XA)).costExp(g, n14(XB)) inv(a pk)|
costExp(costExp(g, n14(XB)), n5(XA))

& Built from trans2

Fig. 4. STS and the corresponding attack trace shown by CL-Atse

4 Combining transitions and Horn clauses for detection
of guessing attacks

A guessing attack is done by guessing the value of a low-entropy secret and
being able to verify the guess. This can be done in two distinct cases. The first
case requires knowing the image of a one-way function on the secret, e.g., h(s),
and being able to compute the function on arbitrary values for verification. The
second case computes the output of a function inverse that depends on the secret
(e.g., the secret is part of a decryption key), and checks a property of the output,
e.g., a known part a in decrypting {a.m}s or two equal parts for {m.m}s. We
have presented a formalization and automation of this approach in [10].

Related work on guessing is based on various theories. A widely used defini-
tion is due to Lowe [14], while Abadi et al. [1] present a sound approach from
an algebraic point of view based on indistinguishability. Corin et al. [6] also use
equational theories, while [12] explicitly represents intruder computation steps,
but is limited to offline attacks. Tools that are able to find guessing attacks are
presented by Blanchet [5], Corin et al. [7], and Lowe [14].

4.1 Formalization of guessing

Our approach uses oracles to represent terms obtained as functions computed
over the secret. An adversary may establish two kinds of relations with an oracle:
observes means that the adversary knows the output of the oracle, for some
inputs which are not necessarily known. The stronger notion of controls means



that the adversary can apply inputs of its choice to the oracle and obtain the
resulting output. Thus, controls implies observes, but the reverse does not hold.

With these notions defined, the first case, when the adversary knows the
image of a one-way function over the secret and controls the corresponding oracle,
is verified using the guessing rule:

observes(Of (s)) ∧ controls(Of (s))⇒ guess(s) (1)

Here Of (s) denotes the oracle computing the function (term) f over secret s.
Guessing holds because the adversary knows the image of a one-way function over
the secret and since he controls the oracle for that function he can successively
give all values of the secret as input to the oracle then verify the result. This
rule can detect guessing attacks on terms such as m.h(m, s) or {s}s, etc.

In the second case, when the secret is part of the key of an invertible function
we need to check if a term is verifiable by the adversary. We define a term as
verifiable by the adversary in any of the following cases:

– the term is already known:

verifiable(Term) :– iknows(Term) (2)

– the term is a digital signature, and the public key and message are known:

verifiable(apply(inv(PK ),Term)) :– iknows(PK ) ∧ iknows(Term) (3)

– the image of a one-way function on the term and a controllable oracle for
that function are known:

verifiable(Term) :– iknows(apply(F, T ′)) ∧ part(Term, T ′)

∧ controls(OF (T ′)(Term)) (4)

– the term is an encryption with a controllable decryption oracle, and some
part T ′′ of the encrypted term is verifiable if the remaining part T ′ is added
to the intruder knowledge (expressed by fact split(Term, T ′, T ′′)):

verifiable(scrypt(K,Term)) :– controls(O{M}K−1 (M))

∧ split(Term, T ′, T ′′) ∧ verifiable(T ′′) (5)

We can now define the second case of guessing. If the adversary observes an
encryption oracle that uses a key dependent on the secret s, if he controls the
corresponding decryption oracle (with s as input) and can verify a part of the
encrypted message then the adversary can guess the secret, i.e.,

observes(O{Term}K (s)) ∧ controls(O{Term}K−1 (s))

∧ split(Term, T ′, T ′′) ∧ verifiable(T ′′)⇒ guess(s) (6)

For example, consider h, m1, apply(h, pair(m1,m2)) and scrypt(s,m2) as known.
Since m2 is a part of apply(h, pair(m1,m2)) and this function is controllable



in m2 (h and m1 being known), then m2 is verifiable by rule 4. Knowing
scrypt(s,m2) and controlling the decryption oracle, one can guess s.

Next, consider that scrypt(s, scrypt(k, pair(m,m))) and k are known. Using
rule 5, scrypt(k, pair(m,m)) is verifiable, since adding the first instance of m
to the intruder knowledge, one can verify the second m from the pair. This in
turn allows guessing s. On the other hand, from scrypt(s, scrypt(k,m)) and k
the intruder cannot in general guess s: if symmetric encryption is done with a
one-time pad then the decrypted m has no meaning and cannot be verified. Of
course, if the adversary knows both m and k, the term is verifiable by rule 1
since iknows(scrypt(k ,m)) holds. Other verification rules can be added to the
model, for example in the case of authenticated encryption, etc.

To implement observes, the analysis performed by the model checker needs
to determine if a composed term contains the secret to be guessed. We express
observing an oracle as ihears(T )∧contains(T, S), where S is the guessable secret,
and ihears is a fact added to the right-hand side of each send transition in the
protocol, supplementary to iknows. This new fact is needed to distinguish terms
overheard on the network from terms otherwise derived by the intruder.

To decide controls, the analysis takes a term containing the secret and con-
structs a new term where the secret is replaced by a fresh value. If the adversary
knows this term, it controls the oracle corresponding to the original term. Con-
trolling an oracle is then modeled by the facts replace(T,TNew)∧iknows(TNew).

For efficiency, the above expressions can be used directly in the attack con-
dition rather than introducing explicit observes and controls facts. Moreover,
a sufficient condition for the case of offline guessing is whether the adversary
knows all parts of a term except the secret which it tries to guess. This is easier to
model and verify by the back-ends and will be used in the following subsections.

We next discuss how to express the facts contains and replace for checking
the presence of a secret in a term and constructing a new term, respectively,
and how to efficiently model the verifiability conditions given above using Horn
clauses. We evaluate the various approaches on a protocol case study.

4.2 Processing terms that contain the secret

Checking whether a term contains a particular secret, and replacing it with a
new value is simple conceptually but challenging in practice. These steps are
the basis for detecting simple attacks such as those covered by the first guessing
case of rule 1, e.g., guessing s if a and h(a.s) are known. We discuss three ways
of implementing containment and replacement, with major differences both in
writing the rules and in the analysis time to find an attack.

We test the various approaches using as example the MS-CHAP protocol [20],
depicted in Figure 1. To make analysis times more significant we modify this
simple protocol by inserting more complex terms. In MS-CHAP* the last term,
H(kAB , NA), is changed to H(NA, kAB , NA), while for MS-CHAP** we con-
catenate NA to the key seven times: H(NA, . . . , NA, kAB , NA). While guessing
is conceptually straightforward in all cases, for complex terms the rules require
more processing time, highlighting the differences between the approaches.



Naive Approach with Transitions
The straightforward approach is to consider terms heard by the intruder on

the network, to define contains and replace for atoms, and to derive them for
composed terms using the corresponding facts for their components. For atomic
terms, rules can be defined as shown in the left part of Figure 5 for an atom of
type text. Since the atom is not equal to the secret, replace does not change it,
and contains is asserted with a dummy null secret.

For composed terms, contains and replace facts can be derived if these facts
are known for their components. This is shown in the right part of Figure 5 for a
term composed with pair, and similar rules are defined for terms composed with
scrypt, crypt, etc. In our implementation, we restrict the application of these rules
only for terms sent over the network, in order to avoid their inefficient application
over the entire intruder knowledge. This is because the set of terms known by the
intruder is large, conceptually even unbounded (since the intruder can always
create fresh terms or compose already known terms with known operators), and
the back-end may fail to terminate. Using ihears instead of iknows also allows
us to derive the sub-terms of terms that are heard on the network, which can be
easily done by adding transitions for each type of composed term.

In practice, this modelling approach works for decomposing simple terms,
however if the terms are more complex, and many transitions are needed, then
the back-end times out attempting to verify the model. As seen in Table 1, this
modelling variant fails for terms on which the forthcoming procedures succeed.

state_process(A, ID, 0)

.ihears(AtomText)

.not(equal(AtomText, s))

=>

state_process(A, ID, 0)

.ihears(AtomText).

.contains(AtomText, snull)

.replace(AtomText, AtomText)

state_process(A, ID, 0)

.ihears(pair(T1, T2))

.contains(T1, S1).contains(T2, S2)

.replace(T1, T1New).replace(T2, T2New)

=>

state_process(A, ID, 0)

.ihears(pair(T1, T2))

.contains(T1, S1).contains(T2, S2)

.replace(T1, T1New).replace(T2, T2New)

.contains(pair(T1, T2), S1)

.contains(pair(T1, T2), S2)

.replace(pair(T1, T2), pair(T1New, T2New))

Fig. 5. Contains and replace for atomic terms (left) and composed terms (right)

Improved Approach with Transitions
The previous approach is inefficient because the steps for customized intruder

deductions can be interleaved with protocol steps, leading to exponential com-
plexity. To avoid this, we control the order in which the terms are processed by
placing them in a stack (constructed with pair and a dummy separator). Terms
are processed by structural decomposition and each new sub-term is placed on



top of the stack unless it is an atom and the contains and replace facts for it can
be directly deduced. Clearly an atom contains the secret if and only if it is the
actual secret, otherwise contains is false and replace leaves the atom unchanged.

For example, consider the term scrypt(k, h(pair(NA, NB))) heard over the
network. In the first step the stack contains only this term. Next, k (the left
operand of scrypt) is added to the top of the stack. As this operand is atomic,
one can directly establish contains and replace for it, and remove it from the
stack. The next item on the stack will be the right operand of scrypt, i.e.,
h(pair(NA, NB)). The next element is pair(NA, NB), with the stack now con-
taining three items, and so on. On the left side of Figure 6 an atom of type text
is eliminated from the list, while on the right side a composed term is split into
its components. This mechanism greatly reduces complexity due to interleaving.

As can be seen in Table 1, this modelling variant succeeds in deriving the
guess also for the artificially complicated structure of MS-CHAP**. However,
its time requirement increases significantly with the complexity of the term, a
drawback removed in the next modelling solution.

state_process(A, ID, 1)

.process(

pair(pair(AtomText,sep),Right))

.not(guessable(AtomText))

=>

state_process(A, ID, 0)

.process(Right)

.contains(AtomText, snull).

.checked(AtomText)

.replace(AtomText, AtomText).

.replaced(AtomText)

state_process(A, ID, 1)

.process(

pair(pair(pair(T1, T2), sep), Right))

.contains(T1, S1).replace(T1, T1New)

.contains(T2, S2).replace(T2, T2New)

=>

state_process(A, ID, 0)

.process(Right)

.contains(T1, S1).replace(T1, T1New)

.contains(T2, S2).replace(T2, T2New)

.checked(pair(T1, T2))

.contains(pair(T1, T2), pair(S1, S2))

.replace(pair(T1,T2),pair(T1New,T2New))

.replaced(pair(T1, T2)).

Fig. 6. Improved contains/replace for atomic terms (left) and composed terms (right)

Efficient approach with Horn clauses
Horn clauses are more elegant and intuitive for modelling intruder deduc-

tions. They were specially introduced in ASLan for this purpose, as well as for
modelling static or dynamic security policies.

The model checkers of the AVANTSSAR platform process Horn clauses in
different ways, depending on their overall exploration strategy. CL-Atse employs
a backward search, using Horn clauses only when deriving some fact is required
(e.g., for the left-hand side of a transition). SATMC on the other hand employs
a forward strategy and saturates the set of known facts by transitively applying
Horn clauses after each transitions. Thus, Horn clauses written with one search



strategy in mind may lead a model checker employing the opposite strategy to
non-termination. We have devised models adapted to the use of CL-Atse.

For example, the Horn clauses in Figure 7 find both the part of a term and
its remainder. The fact ispart(T1, T2, T3) denotes that T1 is split into disjoint
parts T2 and T3. The Horn clause part left states that T2 is part of pair(T0, T1)
with remainder pair(T0, T3) if T2 is part of T1 with remainder T3. Such rules
need to be written for all operators that can be applied on terms.

hc part_null(T1) :=

ispart(T1, null, T1)

hc part_id(T1) :=

ispart(T1, T1, null)

hc part_left(T0, T1, T2, T3) :=

ispart(pair(T0, T1), T2, pair(T0, T3)) :- ispart(T1, T2, T3)

hc part_right(T0, T1, T2, T3) :=

ispart(pair(T0, T1), T2, pair(T3, T1)) :- ispart(T0, T2, T3)

hc part_scrypt_left(T0, T1, T2, T3) :=

ispart(scrypt(T0, T1), T2, pair(T0, T3)) :- ispart(T1, T2, T3)

hc part_scrypt_right(T0, T1, T2, T3) :=

ispart(scrypt(T0, T1), T2, pair(T3, T1)) :- ispart(T0, T2, T3)

Fig. 7. Splitting terms using Horn clauses

1. A→ B : A

{
i → (chap Init, 11) : start
(chap Init, 11) → i : a

2. B → A : NB

{
i → (chap Resp, 18) : a
(chap Resp, 18) → i : n4(Nb)

3. A→ B : NA,
H(kAB , NA, NB , A)


i → (chap Init, 13) : n4(Nb)
(chap Init, 13) → i : pair(n2(Na), h(pair(s,

pair(n2(Na), pair(Nb(2), a)))))

4. B → A : H(kAB , NA)


i → (chap Resp, 20) : pair(n2(Na), h(pair(s,

pair(n2(Na), pair(n4(Nb), a)))))
(chap Resp, 20) → i : h(pair(s, n2(Na)))

Horn clause facts:

controls(h(pair(s,n2(Na))),s),

iguess(s),

ihears(h(pair(s,n2(Na)))),

ispart(h(pair(s,n2(Na))),h(pair(s,n2(Na))),null),

ispart(s,pair(s,n2(Na)),pair(n2(Na),null)),

ispart(s,s,null),

observes(h(pair(s,n2(Na))),s)

Fig. 8. MS-CHAP v2 and the corresponding attack trace found by CL-Atse

In the attack trace from Figure 8 the intruder was forced to guess kAB from
the message in step 4, although it could have also guessed at step 3. The Horn



clauses show that the intruder observes the term from step 4, and repeatedly
applies rules involving ispart until it can derives controls, which then allows the
guess. Rules for observes and controls are discussed in the next subsection.

Table 1 shows that by using this approach the increase in time requirements
is negligible for more complex terms which otherwise require several seconds of
processing, or even fail if naive transition rules are used for term processing.

MS-CHAP MS-CHAP* MS-CHAP**

Naive Transitions 456 ms 820 ms TOUT

Efficient Transitions 1272 ms 1812 ms 10529 ms

Horn Clauses 120 ms 120 ms 112 ms

Table 1. Timing results for attack detection on MS-CHAP with CL-Atse

4.3 Using Horn clauses and transitions for intruder deductions

Finally, to flag a guessing attack, we need to determine whether some term is
verifiable by the intruder. Figure 9 shows rules for the verifiability conditions
discussed previously. To achieve this, in some cases we need to add terms to
the intruder knowledge as shown in Figure 10. This is important for modelling:
while Horn clauses can be used for verifying terms, they cannot be used to add
terms to intruder knowledge when working with CL-Atse, due to the backward
strategy it employs when using Horn clauses. (SATMC however can do this, as
it due to the forward strategy employed). The two guessing cases are detected
by the Horn clauses in Figure 11. Thus, to validate the guess we have to use a
mixture of Horn clauses and intruder transitions. Using these, CL-Atse is able
to detect guessing from terms such as {m,m}s or k, {{m,m}k}s, etc.

4.4 Distinguishing detectable from undetectable on-line attacks

With the guessing mechanism established above, the attack condition can be
stated in different flavours. For example, as the deduction rules allow detecting
on-line attacks, we can ask whether the attack is detectable or not by some
(or any) honest participant. The relevance of this kind of undetectable on-line
attacks was previously pointed out by Ding and Horster [9].

We can express that guessing is undetectable for honest participants if for all
executions where guessing happens, the protocol is completed normally by all
participants. Thus, we can reformulate undetectable guessing as a reachability
check for an attack state in which the secret has been guessed and all protocol
participants have completed execution.

In ASLan models, each participant has a unique identifier ID which is part of
its state fact. We also define for each participant the fact running(ID) which is
true in every state except the participant’s initial and final states. An adversary



% verify known term

hc verif_iknows(MsgA) :=

verifiable(MsgA) :- iknows(MsgA)

% verify signature

hc verif_sign(PbK, MsgA) :=

verifiable(apply(inv(PbK), MsgA)) :- iknows(PbK), iknows(MsgA)

% verification of term under hash

hc verif_hash(MsgA, MsgB, MsgC) :=

verifiable(MsgA) :- iknows(apply(h,MsgB)),

ispart(apply(h,MsgB), MsgA, MsgC), iknows(MsgC)

% the ciphertext is verifiable if the encryption key is known

% and part of the plaintext is verifiable

hc verif_scrypt_ciphertext(K, MsgA, MsgB, MsgC) :=

verifiable(scrypt(K, MsgA)) :- iknows(K), split(MsgA, MsgB, MsgC),

verifiable(MsgC)

Fig. 9. Horn clauses for verifying terms

% split a message if it was not split before

step trans_split(A, MsgA, MsgB, MsgC, K):=

state_split(A)

.ihears(scrypt(K, MsgB)).ispart(MsgB, MsgA, MsgC)

.not(equal(MsgC, null)).not(is_split(MsgB))

=>

state_split(A)

.ihears(scrypt(K, MsgB)).ispart(MsgB, MsgA, MsgC)

.iknows(MsgA)

.split(MsgB, MsgA, MsgC).is_split(MsgB)

Fig. 10. Transition for adding terms to intruder knowledge

observes (controls) an oracle undetectably if it observes (controls) the oracle and
all protocol participants reach a final state, i.e., no fact running(ID) holds.

A protocol description can be automatically augmented to allow for this check
by statically identifying its initial and final transitions. Initial transitions have in
the LHS a state fact, whereas final transitions have in the RHS a state fact that
does not appear in the LHS of any other transition rule. Every initial transition
is augmented to generate a fresh ID value, and the positive fact running(ID) is
added to its RHS. Every final transition is augmented with the fact running(ID)
on the LHS, but not on the RHS, thus it becomes false. This protocol adaptation
allows to directly express undetectable guessing.

The same technique can be used to distinguish offline attacks. This is achieved
by checking for attacks, while requiring that no fresh ID is ever generated. It
may also be useful to check, for instance, if only adversary observe actions were
done on-line, while controls, which involves computations and is more tedious,



hc controls_hash(S, K, Rest, Msg) :=

controls(apply(h, Msg), S) :- ihears(apply(h, Msg)),

ispart(S, Msg, Rest), iknows(Rest)

hc observes_hash(S, K, Rest, Msg) :=

observes(apply(h, Msg), S) :- ihears(apply(h, Msg)),

ispart(S, Msg, Rest)

hc guess_case_i(S, Msg) :=

iguess(S) :- lowentropy(S), observes(Msg, S), controls(Msg, S)

hc controls_scrypt(S, K, KRest, Msg) :=

controls(scrypt(K, Msg), S) :- ihears(scrypt(K, Msg)),

ispart(S, K, KRest), iknows(KRest)

hc observes_scrypt(S, K, KRest, Msg) :=

observes(scrypt(K, Msg), S) :- ihears(scrypt(K, Msg)),

ispart(S, K, KRest)

hc guess_case_ii(S, K, MsgA, MsgB, MsgC) :=

iguess(S) :- lowentropy(S),

observes(scrypt(K, MsgA), S), controls(scrypt(K, MsgA), S),

split(MsgA, MsgB, MsgC), verifiable(MsgC)

Fig. 11. Horn clauses for guessing

is performed offline. This can be done by checking that no fresh ID is generated
between observes and controls. Thus, our approach allows not only the detection
of guessing attacks, but also their classification.

5 Conclusions

As model checkers for security protocols do not by default support the detection
of all attacks, one needs to use customized intruder deductions and transitions for
this purpose. This allows the handling of new types of attacks without changing
the model-checking back-ends. In this paper, we have explored two such case
studies: modelling guessing attacks and denial of service by resource exhaustion.
These attacks are relevant as many protocols used in practice are vulnerable to
them, and we show the applicability of our theories with automatically obtained
attack traces on known protocols.

We present different modelling options and investigate the relative efficiency
of transition rules and Horn clauses, with the latter providing significant per-
formance gain and allowing the processing of more complex message terms. The
modelling approaches described here show the power of the ASLan specification
language which serves as input to the AVANTSSAR model checkers.

We hope that the approaches shown here can provide a starting point for
modelling other types of attacks that are currently not detected by default.



References

1. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Proc. 9th Int’l. Conf. on Foundations of Soft-
ware Science and Computation Structures. pp. 398–412. LNCS vol. 3921, Springer
(2006)

2. Armando, A., Compagna, L.: SAT-based model-checking for security protocols
analysis. International Journal of Information Security 7(1), 3–32 (2008)

3. AVANTSSAR: Deliverable 2.3 (update): ASLan++ specification and tutorial
(2011), http://www.avantssar.eu

4. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for
security protocols. Internat. J. of Information Security 4(3), 181–208 (2005)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. 14th IEEE Computer Security Foundations Workshop. pp. 82–96 (2001)

6. Corin, R., Doumen, J.M., Etalle, S.: Analysing password protocol security against
off-line dictionary attacks. In: Proc. 2nd Int’l. Workshop on Security Issues with
Petri Nets and other Computational Models (WISP). pp. 47–63 (2004)

7. Corin, R., Malladi, S., Alves-Foss, J., Etalle, S.: Guess what? Here is a new tool
that finds some new guessing attacks. In: Proc. Workshop on Issues in the Theory
of Security. pp. 62–71 (2003)

8. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

9. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. Operating
Systems Review 29(4), 77–86 (1995)

10. Groza, B., Minea, M.: A formal approach for automated reasoning about off-line
and undetectable on-line guessing. In: Proc. 14th Int’l. Conf. on Financial Cryp-
tography and Data Security. pp. 391–399. LNCS vol. 6052, Springer (2010)

11. Groza, B., Minea, M.: Formal modelling and automatic detection of resource ex-
haustion attacks. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security (ASIACCS) (2011)

12. Hankes Drielsma, P., Mödersheim, S., Viganò, L.: A formalization of off-line guess-
ing for security protocol analysis. In: Proc. 11th Int’l. Conf. on Logic for Program-
ming, Artificial Intelligence, and Reasoning. pp. 363–379. LNCS vol. 3452, Springer
(2005)

13. Lowe, G.: Some new attacks upon security protocols. In: Proc. of the 9th IEEE
Computer Security Foundations Workshop. pp. 162–169 (1996)

14. Lowe, G.: Analysing protocols subject to guessing attacks. Journal of Computer
Security 12(1), 83–98 (2004)

15. Matsuura, K., Imai, H.: Modification of internet key exchange resistant against
denial-of-service. In: Pre-Proceedings of Internet Workshop. pp. 167–174 (2000)

16. Meadows, C.: A cost-based framework for analysis of denial of service networks.
Journal of Computer Security 9(1/2), 143–164 (2001)

17. Ramachandran, V.: Analyzing DoS-resistance of protocols using a cost-based
framework. Tech. Rep. DCS/TR-1239, Yale University (2002)

18. Smith, J., González Nieto, J.M., Boyd, C.: Modelling denial of service attacks
on JFK with Meadows’s cost-based framework. In: Proc. of the 4th Australasian
Information Security Workshop. pp. 125–134 (2006)

19. Turuani, M.: The CL-Atse protocol analyser. In: Proc. of the 17th Int’l. Conference
on Term Rewriting and Applications. pp. 277–286. LNCS vol. 4098, Springer (2006)

20. Zorn, G.: Microsoft PPP CHAP extensions, version 2 (2000)

http://www.avantssar.eu

	Customizing protocol specifications for detecting resource exhaustion and guessing attacks

