
Assume-Guarantee Reasoning
for Hierarchical Hybrid Systems?

Thomas A. Henzinger Marius Minea Vinayak Prabhu

Dept. of EECS, University of California, Berkeley, CA 94720, USA
{tah,marius,vinayak}@eecs.berkeley.edu

www.eecs.berkeley.edu/~{tah,marius,vinayak}

Abstract. The assume-guarantee paradigm is a powerful divide-and-
conquer mechanism for decomposing a verification task about a system
into subtasks about the individual components of the system. The key
to assume-guarantee reasoning is to consider each component not in iso-
lation, but in conjunction with assumptions about the context of the
component. Assume-guarantee principles are known for purely concur-
rent contexts, which constrain the input data of a component, as well as
for purely sequential contexts, which constrain the entry configurations of
a component. We present a model for hierarchical system design which
permits the arbitrary nesting of parallel as well as serial composition,
and which supports an assume-guarantee principle for mixed parallel-
serial contexts. Our model also supports both discrete and continuous
processes, and is therefore well-suited for the modeling and analysis of
embedded software systems which interact with real-world environments.
Using an example of two cooperating robots, we show refinement between
a high-level model which specifies continuous timing constraints and an
implementation which relies on discrete sampling.

1 Introduction

In the automatic verification of systems with very large state spaces, the model-
checking task needs to be decomposed into subtasks of manageable complexity.
It is natural to decompose the verification task following the component struc-
ture of the design. However, an individual component often does not satisfy its
requirements unless the component is put into the right context. Thus, in or-
der to verify each component individually, we need to make assumptions about
its context, namely, about the other components of the design. This reasoning
is circular: component A is verified under the assumption that context B be-
haves correctly, and symmetrically, B is verified assuming the correctness of A.
The assume-guarantee paradigm provides a systematic theory and methodology
for ensuring the soundness of the circular style of postulating and discharging
assumptions in component-based reasoning.
? Support for this research was provided in part by the AFOSR MURI grant F49620-

00-1-0327, and the DARPA SEC grant F33615-C-98-3614, the MARCO GSRC grant
98-DT-660, the NSF ITR grant CCR-0085949.

II

When components are composed in parallel, context assumptions constrain
the inputs to a component. Assume-guarantee principles for parallel compo-
sition are advocated, among others, by [MC81,AL95,McM97,AH99], and by
[TAKB96,AH97] in a real-time setting. If components are composed in series,
context assumptions constrain the entry configurations of a component. An
assume-guarantee principle for serial composition is given in [AG00]. In hier-
archical design, it is often useful to nest parallel and serial composition. This is
especially true for embedded software, where serial composition occurs at multi-
ple levels of granularity (e.g., software procedures; modes of operation; exception
handling), and so does parallel composition (e.g., hardware modules; software
threads; environment interaction). We provide an assume-guarantee principle
for the case where a context can contain both parallel and serial components,
arbitrarily nested.

For this purpose, we use a formal model which is called Masaccio, in honor of
the Italian fresco painter who is credited with inventing perspective. The Masac-
cio language was defined in [Hen00]; we modify it slightly in order to obtain a
general assume-guarantee principle. Masaccio is a formal model for hybrid dy-
namical systems which are built from atomic discrete components (difference
equations) and atomic continuous components (differential equations) by paral-
lel and serial composition, arbitrarily nested. Data is represented by variables;
control by locations. The syntax of components includes six operations: besides
parallel and sequential composition, data connections are built by variable re-
naming, control connections by location renaming, data abstractions by variable
hiding, and control abstractions by location hiding. The formal semantics of each
component consists of an interface, which determines the possible ways of using
the component, and a set of executions, which define the possible behaviors of
the component in real time. The intended use of Masaccio is to provide a for-
mal, structured model for software and hardware that interacts with a physical
environment in real time. Parallel composition is conjunctive: it typically com-
bines actors (software threads, sensors, actuators, etc.); serial composition is
disjunctive: it typically combines modes of operation (time-triggered and event-
triggered mode switching, degraded and fault modes, etc.). Masaccio conserva-
tively extends Reactive Modules [AH99,AH97], which provide parallel but no
serial composition, and it inherits the mixing of discrete and continuous behav-
ior from Hybrid Automata [ACH+95,Hen96], which are not hierarchical. The
parallel composition of Masaccio is synchronous; asynchronicity can be modeled
as in [AH99].

We demonstrate that Masaccio supports hierarchical, component-based de-
sign and analysis. In particular, we prove the soundness of (noncircular) compo-
sitional proof rules for both parallel and serial composition, and the soundness
of a (circular) assume-guarantee proof rule, which permits assumptions about
mixed parallel-serial contexts. Several key insights are necessary to enable the
assume-guarantee principle. First, assume-guarantee reasoning is sound only for
components that cannot deadlock internally. We therefore equip the interface
of a component with entry conditions and insist that a location can be hidden

III

only if the corresponding entry condition is valid. Second, if two components A
and B are composed in series, the assume-guarantee principle is sound only if
each trace of the composite system A + B can be assigned uniquely to either
A or B. This can be achieved by requiring that for all locations common to A
and B, the entry conditions are disjoint. Third, if A and B are composed in par-
allel, we wish to model the fact that either component may preempt the other
on termination, causing A||B to terminate. Therefore, in refinement, B is more
specific than C not only if every trace of B is a trace of C, but also if every
trace of B has a prefix (possibly generated if B is preempted) which is a trace of
C. This novel notion of refinement is consistent with sequential composition: a
trace may terminate at an exit location of a component, and the serial addition
of another component can then provide it with a continuation. Thus, a prefix of
a trace is more general than the trace itself, since it potentially allows several
different continuations. It will follow that both parallel and serial composition
are congruences with respect to refinement.

We illustrate our formalism by modeling at different levels of detail a sys-
tem of two cooperating robots, one of which is always following the other. The
specification requires that a request by one robot to lead is honored within a
certain time bound by the other robot starting to follow. We give an imple-
mentation that relies on periodic sampling of the robot states, and show how
assume-guarantee reasoning simplifies the task of refinement checking between
implementation and specification.

Related work Concurrent and sequential hierarchies have long been nested in
informal and semiformal ways (for instance, Statecharts [Har87], UML [BRJ98],
Ptolemy [DGH+99]). While these languages enjoy considerable acceptance as
good engineering practice, the most widely used versions of these languages do
not support compositional formal analysis. For Statecharts, variants with compo-
sitional semantics have been defined (see, e.g., [US94]), but an assume-guarantee
paradigm is not known. Hierarchic Modules [AG00] provide an assume-guarantee
principle for serial composition, and parallel composition is reduced to serial com-
position. No continuous behaviors are considered. The languages Shift [DGV97]
and Charon [AGH+00] support the hierarchical design of hybrid systems, but its
emphasis is on simulation, and serial and parallel composition cannot be nested
arbitrarily. The model of Hybrid I/O Automata [LSVW96] offers composition-
ality in a setting without serial composition.

2 The Masaccio Model for Embedded Components

In Masaccio, a system model is built out of components. We illustrate Masaccio
by modeling parts of a system with two communicating robots, which will be
used in Section 4; the formal definition of Masaccio is given in the appendix.
The semantics of a component is defined by its interface (“structure”) and its
set of executions (“behavior”). The executions are hybrid : the state of a compo-
nent may evolve by any sequence of discrete transitions (so-called jumps) and
continuous evolutions (flows).

IV � �

�

r
eR

pppppppppppppppp p p p p p p p p p p p p p p p pRobotA‖-leftB: B

-rightB: B

-leadB: B

-switchB: B

-obstA: B

-leftA: B

-rightA: B

-leadA: B

-switchA: B

� �
�
reCpppppppppppppppp ControlA+ -leftA: B

-rightA: B

-leadA: B

-switchA: B

� �
�
reMT

-xA: R

-yA: RMotorA

� �
�
reL1 reL2 p p p p p p prxL p p p p p p pLeadA

� �
� reFrxF

FollowA

Fig. 1. Robot specification

The interface of a component The interface of a component determines how
the component can be composed (i.e., can interact) with other components. In
Masaccio, control and data are handled separately. The interface of a compo-
nent A contains a set VA of variables partitioned into input variables and output
variables, and a set LA of interface locations, through which control can enter
and/or exit the component. All variables are typed, with domains such as the
booleans B, the natural numbers N, and the reals R. While control resides in-
side a component, the input variables are updated by the environment (such
as another component put in parallel), and the output variables are updated
by the component. The component interface specifies a dependency relation ≺A
between I/O variables and output variables. If x ≺A y, then the value of y can
depend without delay on the value of x. Specifically, with each jump, the new
value of output y can depend on the new value of (say) input x, and during a
flow, the derivative of output y can depend on the simultaneous derivative of
input x. The dependency relation must be acyclic, in order to guarantee the
existence of suitable output values and output curves.

An I/O state of the component is a value assignment to the variables in VA.
The component interface specifies for each location a ∈ LA a jump entry con-
dition ψjumpA (a) and a flow entry condition ψflowA (a). The component can be
entered by a jump iff the jump entry condition is satisfied by the current I/O
state, and by the new values of the input variables; the component can be en-
tered by a flow iff the flow entry condition is satisfied by the current I/O state.
The length of a flow may be constrained by the component, but whenever the
flow entry condition is satisfied, at least a flow of duration 0 is possible. Control
can exit the component at every location. In typical designs, the exit points are
the locations with unsatisfiable entry conditions.

As an example, we portray a scenario in which two similar robots, structured
as in Figure 1, move around in an environment with obstacles. The robots jointly
choose the strategy of one leading and the other following, and their roles can
switch. The interface of robot A consists of five input and six output variables. It
contains a unique location eR, with jump entry condition true (not represented).
Once entered, the robot will react and execute forever, without control exiting.
The inputs leadB and switchB indicate whether robot B is in the lead mode, or
about to switch from follow to lead. The input obstA indicates if an obstacle is
encountered. The component MotorA, shown in Figure 2, controls the motion of
the two wheels based on the signals leftA and rightA, which allow the robot to

V� �

�
MotorA-leftA: B

-rightA: B

-xA: R

-yA: R
reMT -r��������

leftA=T
∧rightA=T
∧ ˙xA=ν cos θ
∧ ˙yA=ν sin θ

A
AHHjHHj

leftA=F
∧rightA=T

∧θ̇=ω

��
�
��
�
��

leftA=F
∧rightA=F

A
A
HHYHHY leftA=T

∧rightA=F

∧θ̇=−ω

Fig. 2. Motor specification

go straight, halt, or turn in either direction. The outputs xA and yA give the
position of the robot.

The executions of a component The behavior of a component A is described
by a set EA of finite executions; the treatment of infinite behaviors for the study
of liveness issues, such as nonzenoness [Hen96], is deferred for now. An execution
is either a triple (a,w, b) or a pair (a,w) defined by an origin location a ∈ LA,
a nonempty finite sequence w of execution steps and, possibly, a destination
location b ∈ LA. An execution step is either a jump or a flow. A jump consists
of a source I/O state and a sink I/O state; a flow consists of a real duration
δ ≥ 0 together with a differentiable curve f that maps every real time in the
compact interval [0, δ] to an I/O state. For types other than R, we assume that
only constant functions are differentiable. The source of the flow is the I/O
state f(0), and the sink is f(δ). For any two successive execution steps, the sink
of the first must coincide with the source of the second. In figures, arrows with
double tips denote flows, whereas normal arrows represent jumps.

The set EA of executions is prefix-closed. Indeed, if a component permits a
flow of a certain duration, then all restrictions of the flow to shorter durations,
including the restriction to duration 0, are also permitted. Every component is
deadlock-free, in the sense that (1) if the jump entry condition of a location a
is satisfiable at an I/O state q, then there is an execution with origin a which
starts with a jump with source q, (2) if the flow entry condition of location a is
true at q, then there is an execution with origin a which starts with a flow with
source q, and (3) every execution that does not end in a destination location can
be prolonged by either a destination or a jump. Indeed, the stronger condition of
input-permissiveness holds, which asserts that a component cannot deadlock no
matter how the environment decides to change the inputs, by either jumping or
flowing. Prefix-closure, deadlock-freedom, and input-permissiveness are formally
defined and proved in the full version of this paper. They are essential properties
of every component, because the environment (another component) may decide
to interrupt a flow at any time to perform a jump, in which case the component
must be prepared to match the environment jump by a local jump.

Atomic components Every component in Masaccio is built from two kinds
of atomic components, with discrete and continuous behavior, respectively. An
atomic component has an arbitrary number of input and output variables, but
only two locations, which serve as origin and destination, respectively, for its
executions, all of which contain a single step. For an atomic discrete compo-
nent, that step is a jump; for an atomic continuous component, a flow. The legal

VI

jumps of an atomic discrete component are defined by a jump predicate, which
constrains the output values of the sink depending on the source I/O state and
on input values of the sink. Such a predicate is typically specified by a differ-
ence equation. The legal flows of an atomic continuous component are defined
by a flow predicate, which constrains the time derivatives of output variables
depending on the current I/O state and on the current time derivatives of input
variables. Such a predicate is typically specified by a differential equation, as in
Figure 2. A flow predicate may also constrain the values of output variables, so
that a flow must not go on for any duration that would violate this “invariant”
condition. Both jump predicates and flow predicates may allow nondeterminism.

Operations on components Discrete components are built from atomic dis-
crete components using the six operations of parallel and serial composition, vari-
able and location renaming, and variable and location hiding, arbitrarily nested.
The discrete components conservatively extend Reactive Modules [AH99] by se-
rial composition. Hybrid components are built from both discrete and continuous
atomic components using the same six operations.

Parallel composition is defined synchronously, as conjunction, with static await
dependencies between outputs and inputs preventing circularity. For two compo-
nents A and B, an execution of the parallel composition A||B starts at a common
location in LA ∩ LB . The execution is synchronous in both components: each
jump of A must be matched by a concurrent jump of B, and each flow of A
must be matched by a concurrent flow of B with the same duration. Control
exits the parallel composition when it exits any one of the two components. If
the execution of A reaches a destination location, then the concurrent execution
of B is preempted and terminated; if B reaches a destination location, then the
concurrent execution of A is terminated; if both A and B simultaneously reach
destination locations, then the result is nondeterministic. When constructing a
parallel composition A||B, inputs of A can be identified with outputs of B, and
vice versa, by renaming variables. Such identifications are depicted by solid lines
in the figures. Similarly, locations of A can be identified with locations of B by
renaming locations; these identifications are depicted by dotted lines. We write
A[x := y] for the component that results from renaming the variable x in A to y,
and A[a := b] for the component that results from renaming the location a in A
to b.

In Figure 1, the component RobotA is the parallel composition of the com-
ponents ControlA and MotorA. Before composition, the two entry locations eC
and eMT are renamed to a common location eR.

Serial composition and location hiding can be used to achieve the sequencing of
components. Serial composition represents disjunctive choice between the exe-
cutions of two components. For two components A and B, an execution of the
serial composition A+B is either an execution of A or an execution of B. Hiding
renders a location internal to a component, and inaccessible (invisible) from the
outside. The executions of the resulting component are obtained by stringing
together at that location any finite number of executions of the original com-

VII� �

�

+

reS p
-obstA: B -leftA: B

-rightA: B

-leadA: B

-switchA: Bp rxS
� �
�

S1r -
left′A=T

∧right′A=T

∧lead′A=T

∧switch′A=F

rap p p p p pp p p p p p
� �
�

S2raPPP��)���)
¬obstA� �� S3ra -r

true
hide a
=⇒

� �

�

StraightA

-obstA: B

-leftA: B

-rightA: B

-leadA: B

-switchA: B
reS -

left′A=T

∧right′A=T

∧lead′A=T

∧switch′A=F
r���BBNBBBN ¬obstA

-true rxS
Fig. 3. Serial composition and location hiding

ponent. To avoid internal deadlock, a location a can be hidden only if its jump
entry condition is valid, so that it can always take another jump at a. We write
A\a for the component that results from hiding a in A.

Figure 3 shows how a sequential component (representing the straight move-
ment of the robot in the lead mode) is obtained by the serial composition of sev-
eral components, followed by location hiding. Let StraightA = (S1 + S2 + S3)\a,
where S1 and S3 are atomic discrete components, and S2 is obtained from an
atomic continuous component by renaming destination location to origin loca-
tion. The resulting component initializes its output variables by a jump, flows
(without output changes) for any amount of time as long as the input obstA
remains false, and nondeterministically exits with a jump. In the same way,
any “automaton structure” can be built from individual “edges” (i.e., atomic
components) using serial composition, location renaming, and location hiding.

Variable hiding builds an abstract component by turning some outputs of a
component into internal state. Hidden variables, however, do not maintain their
values from one exit of a component to a subsequent entry, but they are nonde-
terministically reinitialized upon every entry to the component so as to satisfy
the applicable entry condition. We write A\x for the component that results
from hiding the output variable x of the component A.

3 Assume-Guarantee Refinement between Components

If component A refines component B, then B can be viewed as a more abstract
(permissive) version of A, with some details (constraints) left out in B which
are spelled out in A. In particular, in the trace-based semantics of concurrent
systems, refinement is taken to be the containment relation on trace sets. If A
refines B, then A is a more specific description of system behavior than B in
the sense that A may be equivalent to B||C for some parallel context C which
constrains the inputs to B. In analogy, in the trace-based semantics of sequential
systems, refinement ought to be interpreted as prefix relation on trace sets. If
A refines B, then A is a more specific description of system behavior than B in
the sense that A may be equivalent to B + C for some serial context C which
constrains the continuations of B. Consequently, in Masaccio, if A refines B,
then A may specify fewer traces and longer traces than B.

The refinement relation Component A refines component B if the following
two conditions are satisfied:

VIII

1. Every output variable of B is an output variable of A, every input variable
of B is an I/O variable of A, and the dependency relation of B is a subset
of the dependency relation of A.

2. For every execution (a,w) (or (a,w, b), respectively) of A, either (a,w[VB])
(or (a,w[VB], b), respectively, where w[VB] is the projection of w to the
variables of B) is an execution of B, or there exist a proper, nonempty
prefix w′ of w and an interface location c ∈ LB such that (a,w′[VB], c) is
an execution of B.

Note that the second condition implies that every interface location of A is an
interface location of B. Furthermore, by input-permissiveness, if A refines B,
then for every location a of A, the jump entry condition of a in A implies the
jump entry condition of a in B, and the flow entry condition of a in A implies
the flow entry condition of a in B.

Compositionality All six operations on components are compositional.

Theorem 1. Let A and B be components, let x and y be variables, and let a
and b be locations so that the following expressions are all well-defined. If A
refines B, then A||C refines B||C; and A + C refines B + C; and A[x := y]
refines B[x := y]; and A[a := b] refines B[a := b]; and A\x refines B\x; and
A\a refines B\a.

More generally, define a context to be a component expression that can take a
component as a parameter. For instance, if (A + B)||D is well-defined, we can
regard C[·] = ([·] +B)||D as a context for component A.

Corollary 1. Let C[·] be a context for both A1 and A2. If A1 refines A2, then
C[A1], refines C[A2].

Assume-guarantee reasoning Our assume-guarantee rule states that for dis-
crete components, if two components can be individually replaced in a context
while maintaining refinement, then both can be replaced simultaneously. There-
fore, in order to show that a complex component C[A1, B1] (the “implementa-
tion”) refines a simpler component C[A2, B2] (the “specification”), it suffices to
look at simplified versions of the implementation one at a time. First, we prove
that A1 refines its specification B1, under the “assumption” B2; then, we prove
that A2 refines its specification B2, under the “assumption” B1. This reason-
ing is inherently circular. A special case is the assume-guarantee rule for the
parallel composition of Reactive Modules [AH99]: take the context C[◦, •] in the
following theorem to be ◦||•. The proof relies on the deadlock-freedom and input-
permissiveness of components. It also requires that each execution of a serial com-
position can be uniquely assigned to one of the components. This can be achieved
by disjoint entry conditions. We say that the serial composition A+B is jump-
deterministic if for all common interface locations a ∈ LA ∩LB , the conjunction
ψjumpA (a)∧ψjumpB (a) is unsatisfiable, and flow-deterministic ifψflowA (a)∧ψflowB (a)
is unsatisfiable for all a ∈ LA∩LB . The serial composition A+B is deterministic
if it is both jump-deterministic and flow-deterministic.

IX� �

�

r
eL1, eL2
ppppppppppp p p p p p p p p p p pLeadA‖

-leadB: B

-obstA: B

-switchB: B

-leftA: B

-rightA: B

-leadA: B

-switchA: Br
xL
p p p p p p p p p p p p p

� �
�
reMppppppppppp MoveA+

� �
�
reSW
rxSWSwitcherA

� �
�
reS1 reS2 p p p p p p p p p p prxS p p p p p p p p p p pStraightA

� �
�
rxTreTTurnA

Fig. 4. Component LeadA

For hybrid modules, we need to break the circularity of the rule, by relaxing
one assumption, say, B2, to allow arbitrary flows at all hidden locations. We
write rlax (B2) for the component that results from B2 by (1) replacing every
flow predicate in B2 by true, and (2) serially composing every hidden location
a of B2 which is not the origin location of any flow, with an atomic continuous
component that permits all flows from origin a to destination a.

Theorem 2. Let C[◦, •] be a context whose arguments are not in the scope of
any variable or location hiding. Suppose that all input variables of C[A2, B2] are
variables of C[A1, B1], and that within C[A2, B2] the context arguments are not
within the scope of any nondeterministic serial composition. If C[A1, rlax (B2)]
refines C[A2, rlax (B2)], and C[A2, B1] refines C[A2, B2], then C[A1, B1] refines
C[A2, B2].

Linear components If all flows are specified by linear differential equations,
and no degenerate flows of 0 duration can be enforced, then the existence of
unique solutions allows us to strengthen the assume-guarantee rule. In this case,
we can make circular assumptions about the flows. An open linear condition on a
set V of real-valued variables is a conjunction of boolean variables and strict (<
or >) comparisons between linear combinations of the variables in V . Consider
a flow action F (consult the appendix for a definition). The atomic continuous
component A(F) is linear if (1) all variables in VA(F) have the type R, and
(2) the flow predicate ϕflow

F has the form α(XF)∧ (ŻF = β(XF , ẎF)), where α is
an open linear condition, called invariant, on the source variables XF , and β is a
set of linear combinations, one for the derivative ż ∈ ŻF of each controlled flow
variable, of the source variables XF and the derivatives ẎF of the uncontrolled
flow variables. A component is linear if (1) all its atomic continuous components
are linear, and (2) all its serial compositions are flow-deterministic. Let rlax ′ be
defined like rlax , with the difference that only the invariants rather than the
flow predicates are replaced with true.

Theorem 3. Let C[◦, •] be a context whose arguments are not in the scope of
any variable or location hiding. Suppose that C[A1, B1] and C[A2, B2] are linear
components, that all input variables of C[A2, B2] are variables of C[A1, B1],
and that within C[A2, B2] the context arguments are not within the scope of any
nondeterministic serial composition. If C[A1, rlax ′(B2)] refines C[A2, rlax ′(B2)],
and C[A2, B1] refines C[A2, B2], then C[A1, B1] refines C[A2, B2].

X � �

�

StraightA

-obstA: B

-leftA: B

-rightA: B

-leadA: B

-switchA: B
reS1, eS2 -

left′A=T

∧right′A=T

∧lead′A=T

∧switch′A=F
r���BBNBBBN ¬obstA

-true rxS
� �

�

TurnA

-obstA: B

-leftA: B

-rightA: B

-leadA: B

-switchA: B
reT -true r -

0≤clkt′A≤Tt
∧left′A=F

∧right′A=T

∧lead′A=T

∧switch′A=F r
�HY

clktA=0 ∧ obstA

�
��B
BN
B
BBN

clktA>0∧
˙clktA=−1

-clktA=0

∧¬obstA

rxT
Fig. 5. Components StraightA and TurnA

4 A Two-Robot Example

We continue the presentation of the two-robot system whose overall view was
given in Section 2. Robot A (Figure 1) starts out as the leader. After a while
it may move from LeadA to FollowA, as indicated by the dotted line connecting
location xL (with an unsatisfiable entry condition, which is not shown) and lo-
cation eF . It may then move back to lead mode (line xF –eL2). Robot B has the
same structure, except that it starts out in follow mode. Within the subcom-
ponent MoveA (Figure 4), the robot can execute in StraightA arbitrarily long
while there is no obstacle. Upon sensing an obstacle, control is passed to the
component TurnA, which commands the robot to rotate for an amount of time
given by timer variable clktA. Control then returns to the component StraightA.
The sequence of straight moves and turns continues until robot B switches to
leading status. This event is modeled by the boolean signal switchB , which is
monitored by the component SwitcherA. We require the switcher unit to preempt
execution of the lead mode within a specified amount of time Tsw after the other
robot has signaled its intention to lead. Once LeadA is exited, control enters the
component FollowA, which samples the values of leftB and rightB and drives
its own motor signals leftA and rightA. The robot may stay in the follow mode
arbitrarily long, provided that obstA is false. At any time it may also issue the
signal switchA, exit the component FollowA and switch back to lead mode.

We now present a robot implementation that contains a modified component
LeadIA, which does not continuously observe the switch signal (Figure 7). Instead,
the implementation samples the leading indicators of both robots with a period
Ted, as measured by the global clock clk . If both robots are leading, a correction
is made by the component ErrordetectA. The new state depends on the last
sampled values of the leading signals: the robot that had been leading before
now switches to follow mode.

We wish to show that when composed together, two robot implementations
refine the parallel composition of two robot specifications, provided that Ted <
Tsw. The specification of robot A is ControlA||MotorA, and the implementation
of robot A is ControlIA||MotorA, where ControlA = (LeadA+FollowA)\eL2\eF and
ControlIA = (LeadIA + FollowA)\eL2\eF . Robot B is specified and implemented
symmetrically. Denoting the parallel composition with the motor by the context
CA[·] = ·||MotorA, and similarly for CB , we wish to prove that

CA[ControlIA]||CB [ControlIB] refines CA[ControlA]||CB [ControlB].

XI

� �

�
SwitcherA

-switchB: B reSW -�
����
�
��

¬switchB

switchB∧
clksw′A=0

r���BBNBBBN
clkswA<Tsw

∧ ˙clkswA=1

-true rxSW
� �

�

FollowA-leftA: B

-rightA: B

-obstA: B

-leftA: B

-rightA: B

-leadA: B

-switchA: B

reF -
left′A= leftB

∧right′A= rightB

∧lead′A=F

∧switch′A=F

r���BBNBBBN
clkfA<Tt
∧¬obstA
∧ ˙clkfA=1

�
�� B
BBM clkfA=Tf
∧¬obstA
∧clkf ′A=0

∧left′A= leftB ∧ right′A= rightB

-lead′A=switch′A=T rxF

Fig. 6. Components SwitcherA and FollowA

Note that CA[ControlIA] does not refine CA[ControlA], because a robot imple-
mentation meets the specification only when composed with a symmetric robot.
This is where assume-guarantee reasoning helps. All continuous components in
the system are linear. Hence by Theorem 3, it suffices to discharge the simpler
assertions

CA[ControlIA]||CB [Control′B] refines CA[ControlA]||CB [Control′B]
CA[ControlA]||CB [ControlIB] refines CA[ControlA]||CB [ControlB],

where Control′B = rlax ′(ControlB). We simplify further using compositionality
(Theorem 1), and are left to prove that

ControlIA ‖ Control′B refines ControlA ‖ Control′B
ControlA ‖ ControlIB refines ControlA ‖ ControlB ,

two proof obligations that involve simpler components than the original one.
The power of the assume-guarantee rules of Theorems 2 and 3 stems from the
fact that they can be applied to components arbitrarily deep in the design hier-
archy, creating proof obligations which have smaller differences between the two
components which are supposed to refine each other.

Acknowledgments We thank Rajeev Alur, Radu Grosu, and Edward Lee for
many stimulating discussions.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hy-
brid systems. Theoretical Computer Science, 138:3–34, 1995.

[AG00] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines. In
Principles of Programming Languages, pp. 390–402, ACM Press, 2000.

[AGH+00] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification
of hybrid systems in Charon. In Hybrid Systems: Computation and Control, LNCS
1790, pp. 130–144, Springer-Verlag, 2000.

[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In
Concurrency Theory, LNCS 1243, pp. 74–88, Springer-Verlag, 1997.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15:7–48, 1999.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on
Programming Languages and Systems, 17:507–534, 1995.

[BRJ98] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

XII � �

�

r
eLI
ppppppppppp p p p p p p p p p p pLeadIA‖-clkA: R

-leadB: B

-obstA: B

-switchB: B

-leftA: B

-rightA: B

-leadA: B

-switchA: BrxLIppppppppppp p p p p p p p p p p p
� �
�
r

eM

rxMMoveA

� �
�
r

eED

rxEDErrordetectA

� �

�

ErrordetectA
-clk: R

-leadA: B

-leadB: B

reED -true r���BBNBBBN
clk>0

�
�� B
BBM clk =0
∧leadA 6= leadB
∧prevld′A = leadA

-

clk =0
∧leadA= leadB
∧prevld′A=Tr -

prevld′A=F
rxED

Fig. 7. Components LeadIA and ErrordetectA

[DGH+99] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Overview
of the Ptolemy project. Tech. Rep. UCB/ERL M99/37, University of California,
Berkeley, 1999.

[DGV97] A. Deshpande, A. Göllü, and P. Varaiya. Shift: A formalism and a program-
ming language for dynamic networks of hybrid automata. In Hybrid Systems, LNCS
1273, pp. 113–134, Springer-Verlag, 1997.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231–274, 1987.

[Hen96] T.A. Henzinger, The theory of hybrid automata. In Logic in Computer Sci-
ence, pp. 278–292, IEEE Computer Society Press, 1996.

[Hen00] T.A. Henzinger. Masaccio: A formal model for embedded components. In
Theoretical Computer Science, LNCS 1872, pp. 549–563, Springer Verlag, 2000.

[LSVW96] N.A. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg. Hybrid I/O
Automata. In Hybrid Systems, LNCS 1066, pp. 496–510, Springer-Verlag, 1996.

[McM97] K.L. McMillan. A compositional rule for hardware design refinement. In
Computer-aided Verification, LNCS 1254, pp. 24–35, Springer-Verlag, 1997.

[MC81] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transac-
tions on Software Engineering, 7:417–426, 1981.

[TAKB96] S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions
of timed systems. In Concurrency Theory, LNCS 1119, pp. 546–562, Springer-Verlag,
1996.

[US94] A.C. Uselton and S.A. Smolka. A compositional semantics for Statecharts using
labeled transition systems. In Concurrency Theory, LNCS 836, pp. 2–17, Springer-
Verlag, 1994.

Appendix: Formal Definition of Masaccio

Let V be a set of typed variables. For a variable x ∈ V , denote by x′ its primed version,
and denote by ẋ its dotted version. The type of x′ is the same as the type of x. The type
of ẋ is R if the type of x is R, and {0} otherwise. This is because on types other than R,
we assume that only the constant functions are differentiable. Let V ′ = {x′ | x ∈ V }
be the set of primed versions of the variables in V , and let V̇ = {ẋ | x ∈ V } be the set
of dotted versions of the variables in V . Let [V] be the set of type-conforming value
assignments to the variables in V : if x ∈ V and q ∈ [V], let q(x) be the value assigned
by q to x.

The interface of a component The interface of a component A consists of:

– A finite set V iA of typed input variables.

XIII

– A finite set V oA of typed output variables, such that V iA∩V oA = ∅. Let VA = V iA∪V oA
be the set of I/O variables. The value assignments in [VA] are called I/O states.

– An dependency relation ≺A ⊆ VA×V oA between I/O variables and output variables,
such that the transitive closure ≺∗A is asymmetric. A set U ⊆ VA of I/O variables
is dependency-closed if x ≺A y and y ∈ U implies x ∈ U .

– A finite set LA of interface locations.
– For each location a ∈ LA, a predicate ψjumpA (a) on the variables in VA∪V i

′
A , called

jump entry condition, and a predicate ψflowA (a) on the variables in VA, called flow
entry condition.

The executions of a component A jump of a component A is a pair (p, q) ∈ [VA]2

of I/O states. The I/O state p is the source of the jump, and q is the sink. A flow of
A is a pair (δ, f) consisting of a nonnegative real δ ∈ R≥0, and a function f : R→ [VA]
from the reals to I/O states which is differentiable, with time derivative f ′, on the
compact interval [0, δ] ⊂ R. The real δ is the duration of the flow, the I/O state f(0) is
the source, and f(δ) is the sink. A step of A is either a jump or a flow of A. The step
w is successive to the step v if the sink of v is equal to the source of w. An execution
of A is either a pair (a,w) or a triple (a,w, b), where a, b ∈ LA are interface locations,
and w = w0 · · ·wn is a finite, nonempty sequence of steps of A such that (1) every
step wi, for 1 ≤ i ≤ n, is successive to the preceding step wi−1, and (2) the first step
w0 satisfies the entry conditions of location a: if w0 = (p, q) is a jump, then ψjumpA (a)
is true if each I/O variable x ∈ VA is assigned the value p(x), and each primed input

variable y′ ∈ V i
′
A is assigned the value q(y); if w0 = (δ, f) is a flow, then ψflowA (a) is

true if each I/O variable x ∈ VA is assigned the value f(0)(x). The location a is the
origin of the execution, the sequence w is the trace, and the location b (when present)
is the destination. Given a trace w and a set U ⊆ VA of I/O variables, we write w[U]
for the projection of w to the variables in U ,

Atomic discrete components An atomic discrete component is specified by a jump
action. A jump action J consists of a finite set XJ of source variables, a finite set YJ of
uncontrolled sink variables, a finite set ZJ of controlled sink variables disjoint from YJ ,
and a predicate ϕjump

J on the variables in XJ ∪ Y ′J ∪ Z′J , called jump predicate. The
jump action J specifies the component A(J). The interface of the component A(J) is
defined as follows:

– V iA(J) = (XJ \ ZJ) ∪ YJ .
– V oA(J) = ZJ .
– y ≺A(J) z iff y ∈ YJ and z ∈ ZJ .
– LA(J) = {from, to}.
– ψjumpA(J) (from) = (∃Z′J)ϕjump

J and ψflowA(J)(from) = false.

– ψjumpA(J) (to) = ψflowA(J)(to) = false.

The executions of the component A(J) are defined as follows. The pair (a,w) is an
execution of A(J) iff a = from and the trace w consists of a single jump (p, q) such
that ϕjump

J is true if each source variable x ∈ XJ is assigned the value p(x), and each
primed sink variable y′ ∈ Y ′J ∪ Z′J is assigned the value q(y). The triple (a,w, b) is an
execution of A(J) iff the pair (a,w) is an execution of A(J), and b = to.

Atomic continuous components An atomic continuous component is specified by
a flow action. A flow action F consists of a finite set XF of source variables, a finite set
YF of uncontrolled flow variables, a finite set ZF of controlled flow variables disjoint

XIV

from YF , and a predicate ϕflow
F on the variables in XF ∪ ẎF ∪ ŻF , called flow predicate.

The flow action F specifies the component A(F). The interface of the component A(F)
is defined as follows:

– V iA(F) = (XF \ ZF) ∪ YF .
– V oA(F) = ZF .
– y ≺A(F) z iff y ∈ YF and z ∈ ZF .
– LA(F) = {from, to}.
– ψjumpA(F) (from) = false and ψflowA(F)(from) = (∃ẎF , ŻF)ϕflow

F .

– ψjumpA(F) (to) = ψflowA(F)(to) = false.

The executions of the component A(F) are defined as follows. The pair (a,w) is an
execution of A(F) iff a = from and the trace w consists of a single flow (δ, f) such that
the following holds: if δ = 0, then (∃ẎF , ŻF)ϕflow

F is true if each source variable x ∈ XF
is assigned the value f(0)(x); if δ > 0, then for all ε ∈ [0, δ], the flow predicate ϕflow

F is
true if each source variable x ∈ XF is assigned the value f(ε)(x), and each dotted flow
variable ẏ ∈ ẎF ∪ ŻF is assigned the value f ′(ε)(y). The triple (a,w, b) is an execution
of A(F) iff the pair (a,w) is an execution of A(F), and b = to.

Parallel composition Two components A and B can be composed in parallel if their
interfaces satisfy the following conditions:

– V oA ∩ V oB = ∅.
– There are no two variables x ∈ V oA and y ∈ V oB such that both x ≺∗B y and y ≺∗A x.
– For all a ∈ LA, if ψjumpA (a) or ψflowA (a) is satisfiable, then a ∈ LB . For all a ∈ LB ,

if ψjumpB (a) or ψflowB (a) is satisfiable, then a ∈ LA. For all a ∈ LA ∩ LB , the
projections of the entry conditions of a in A and B to the common variables are
equivalent: (∃VA \ VB)(∃V i

′
A \ V i

′
B)ψjumpA (a) is equivalent to (∃VB \ VA)(∃V i

′
B \

V i
′
A)ψjumpB (a), and (∃VA \ VB)ψflowA (a) is equivalent to (∃VB \ VA)ψflowB (a).

The interface of A||B is defined from the interfaces of A and B:

– V iA||B = (V iA \ V oB) ∪ (V iB \ V oA).
– V oA||B = V oA ∪ V oB .
– ≺A||B = ≺A ∪ ≺B .
– LA||B = LA ∪ LB .

– If a ∈ LA ∩LB , then ψjumpA||B (a) = ψjumpA (a)∧ψjumpB (a) and ψflowA||B(a) = ψflowA (a)∧
ψflowB (a). If a ∈ LA \ LB or a ∈ LB \ LA, then ψjumpA||B (a) = ψflowA||B(a) = false.

The executions of A||B are defined from the executions of A and B. The pair (a,w) is
an execution of A||B iff (a,w[VA]) is an execution of A and (a,w[VB]) is an execution
of B. The triple (a,w, b) is an execution of A||B iff either (a,w[VA], b) is an execution
of A and (a,w[VB]) is an execution of B, or (a,w[VB], b) is an execution of B and
(a,w[VA]) is an execution of A.

Serial composition Two components A and B can be composed in series if V oA = V oB .
The interface of A+B is defined from the interfaces of A and B:

– V iA+B = V iA ∪ V iB .
– V oA+B = V oA = V oB .
– ≺A+B = ≺A ∪ ≺B .
– LA+B = LA ∪ LB .

XV

– If a ∈ LA ∩LB , then ψjumpA+B (a) = ψjumpA (a)∨ψjumpB (a) and ψflowA+B(a) = ψflowA (a)∨
ψflowB (a). If a ∈ LA \ LB , then ψjumpA+B (a) = ψjumpA (a) and ψflowA+B(a) = ψflowA (a). If

a ∈ LB \ LA, then ψjumpA+B (a) = ψjumpB (a) and ψflowA+B(a) = ψflowB (a).

The executions of A+B are defined from the executions of A and B. The pair (a,w)
is an execution of A+ B iff either (a,w[VA]) is an execution of A, or (a,w[VB]) is an
execution of B. The triple (a,w, b) is an execution of A + B iff either (a,w[VA], b) is
an execution of A, or (a,w[VB], b) is an execution of B.

Variable renaming The variable x ∈ VA can be renamed to y in component A if y
has the same type as x, and either y is not an I/O variable of A, or x and y are both
input variables; that is, if y ∈ VA, then x, y ∈ V iA. The interface of the component
A[x := y] is defined from the interface of A. If x ∈ V iA, then V iA[x:=y] = (V iA \{x})∪{y}
and V oA[x:=y] = V oA; if x ∈ V oA, then V iA[x:=y] = V iA and V oA[x:=y] = (V oA \ {x}) ∪ {y}. In

either case, let LA[x:=y] = LA, and let ≺A[x:=y] and ψjumpA[x:=y] and ψflowA[x:=y] result from

renaming x to y, and x′ to y′, in ≺A and ψjumpA and ψflowA , respectively. The executions
of the component A[x := y] result from renaming x to y in the traces of the executions
of A.

Location renaming The interface location a ∈ LA can be renamed to b in component
A if either b is not an interface location of A, or the entry conditions of a and b are
disjoint; that is, if b ∈ LA, then both ψjumpA (a)∧ψjumpA (b) and ψflowA (a)∧ψflowA (b) are
unsatisfiable. The interface of the component A[a := b] is defined from the interface
of A: let V iA[a:=b] = V iA; let V oA[a:=b] = V oA; let ≺A[a:=b] = ≺A; let LA[a:=b] = (LA \
{a})∪{b}; let ψjumpA[a:=b](b) = ψjumpA (a)∨ψjumpA (b) and ψflowA[a:=b](b) = ψflowA (a)∨ψflowA (b)

if b ∈ LA, let ψjumpA[a:=b](b) = ψjumpA (a) and ψflowA[a:=b](b) = ψflowA (a) if b 6∈ LA, and let

ψjumpA[a:=b](c) = ψjumpA (c) and ψflowA[a:=b](c) = ψflowA (c) for all locations c ∈ LA \ {a, b}. The

executions of the component A[a := b] result from renaming a to b in the origins and
destinations of the executions of A.

Variable hiding The variable x ∈ VA can be hidden in the component A if x ∈ V oA. The
interface of the component A\x is defined from the interface of A: let V iA\x = V iA; let
V oA\x = V oA \ {x}; let ≺A\x be the intersection of the transitive closure ≺∗A with VA\x×
V oA\x; let LA\x = LA; let ψjumpA\x (a) = (∃x)ψjumpA (a) and ψflowA\x (a) = (∃x)ψflowA (a)

for all locations a ∈ LA. The executions of the component A\x are defined from the
executions of A. The pair (a,w) is an execution of A\x iff (a,w[VA\x]) is an execution
of A. The triple (a,w, b) is an execution of A\x iff (a,w[VA\x], b) is an execution of A.

Location hiding The interface location c ∈ LA can be hidden in the component A if
the jump entry condition ψjumpA (c) is equivalent to true. The interface of the component
A\c is defined from the interface of A: let V iA\c = V iA; let V oA\c = V oA; let ≺A\c = ≺A;

let LA\c = LA\{c}; let ψjumpA\c (a) = ψjumpA (a) and ψflowA\c (a) = ψflowA (a) for all locations

a ∈ LA\c. The executions of the component A\c are defined from the executions of A.
The pair (a,w) is an execution of A\c iff c 6= a and either (a,w) is an execution of A,
or there is a finite sequence w1, . . . ,wn of traces, n ≥ 2, such that w = w1 · · ·wn

and the following are executions of A: the triple (a,w1, c), the triples (c,wi, c) for
1 < i < n, and the pair (c,wn). The triple (a,w, b) is an execution of A\c iff c 6∈ {a, b}
and (a,w, b) is an execution of A, or there is a finite sequence w1, . . . ,wn of traces,
n ≥ 2, such that w = w1 · · ·wn and the following are executions of A: the triple
(a,w1, c), the triples (c,wi, c) for 1 < i < n, and the triple (c,wn, b).

