
An evaluation of duplicate code detection using anti-unification

Peter Bulychev
Lomonosov Moscow State University

peter.bulychev@gmail.com

Marius Minea
Politehnica University of Timişoara

marius@cs.upt.ro

Abstract

This paper describes an algorithm for finding software
clones, which works at the level of abstract syntax trees and
is thus conceptually independent of the source language of
the analyzed programs. We use a notion of clones which
captures replacement of subtrees in the program AST, and is
formally based on the notion of anti-unification. This allows
us to capture syntactic structural similarity with increased
accuracy and express it in metrics. We have implemented
this algorithm in a tool named Clone Digger, freely avail-
able under the GPL license, and which currently supports
the Python, Java and Lua languages. We report on initial
experimental results and comparisons with similar tools.

1 Introduction

Duplicate code can occur as a result of approaches to de-
velopment and maintenance, due to language or program-
mer limitations, or simply by accident [17]. Code dupli-
cation – also called cloning – can be a significant draw-
back, leading to bad design, and increased probability of
bug occurrence and propagation. As a result, it can signif-
icantly increase maintenance cost (for instance, any bug in
the original has to be fixed in all duplicates), and form a bar-
rier for software evolution. Since the occurrence of cloning
remains widespread, with reported amounts varying from
6.4%–7.5% to 13%–20% [17], duplicate code detectors are
a valuable class of software analysis tools, and a first step in
software clone management [10].

We have developed a new algorithm for detecting soft-
ware clones. Our approach belongs to the class of methods
based on abstract syntax trees. Our main goal is to define
an accurate characterization of the structural similarity of
two code fragments, on the basis of which they are classi-
fied as code duplicates. We formalize this using the con-
cept of anti-unifier, which denotes the most specific gener-
alization of two terms. Anti-unification was first described
by Plotkin [14] and Reynolds [15]. Our approach works
in several steps, first using anti-unification to calculate the
distance between two abstract syntax trees corresponding to

code fragments, and then groups similar trees into equiva-
lence classes called clusters. Anti-unification naturally cap-
tures the most specific pattern which matches two similar
abstract syntax trees, and thus directly provides a means to
measure their structural differences. Moreover, since uni-
fication captures sharing of syntactical elements, clones in
which shared subtrees are consistently substituted [10] with
the same values are naturally classified by our approach as
closer than inconsistent substitutions.

Overall, we consider two large enough sequences of
statements as a clone if one of them can be obtained from
the other by replacing some subtrees such that the total
size of replaced subtrees is less than some given thresh-
old. To extend anti-unification-based similarity from single
statements to sequences of statements, we a use compound
three-phase algorithm. First, we partition all statements into
clusters using anti-unification distance; the result is an ab-
stract view of the code as a sequence of cluster identifiers.
Next, we find all pairs of identical subsequences of cluster
IDs. Finally, we compare the resulting pairs of statement se-
quences based on an overall similarity metric. This check is
again performed using anti-unification distance; duplicates
are reported if the distance is below a certain threshold.

Our method is closest to the fully syntactic abstraction
approach developed in [8]. Their algorithm detects a simi-
larity between, e.g., a[1] and a[x+1] by reducing them
to the pattern a[?]. This pattern can be seen as anti-
unifier of the two expressions. We extend the pattern-based
comparison approach to more complex programming con-
structs: ultimately, our algorithm performs unification on
sequences of candidate statements. Moreover we provide
metrics to assess clone similarity, whose quality increases
if the occurrences of the same variable (in the same scope)
refer to the same leaf in the abstract syntax tree.

We have implemented our algorithm in the Clone Digger
tool, available under the GPL license, written in Python and
currently supporting Python, Java and Lua as input. It can
be extended with parsing support for other languages.

This paper is a continuation of [7], where we have ini-
tially described the anti-unification based clone detection
algorithm. Here, we focus on providing an evaluation of the
CloneDigger tool on several open-source software projects.

2 Anti-unification

2.1 Definition

Anti-unification was first studied in [14, 15]. As its name
suggests, it produces a more general term that covers two
terms, rather than a more specific one as in unification.

Let E1 and E2 be two terms. Term E is a generalization
of E1 and E2 if there exist two substitutions σ1 and σ2 such
that σ1(E) = E1 and σ2(E) = E2. The most specific gen-
eralization of E1 and E2 is called anti-unifier. The process
of finding an anti-unifier is called anti-unification.

Anti-unification was originally described for trees. We
actually work with directed acyclic graphs, since leaves of
an abstract syntax tree representing the same variable refer-
ence may be merged, but anti-unification can be extended
in a straightforward way to this context. We use the anti-
unification algorithm described in [18].

The anti-unifier tree of two trees T1 and T2 is ob-
tained by replacing some subtrees in T1 and T2 by spe-
cial nodes which contain term placeholders marked with
integer labels. We represent such nodes as ?n. For ex-
ample, the anti-unifier of Add(Name(i),Name(j)) and
Add(Name(n),Const(1)) is Add(Name(?1), ?2). In
some abstract syntax tree representations, repeaded oc-
currences of the same variable refer to the same shared
leaf. Here, the anti-unifier of Add(Name(i),Name(i)) and
Add(Name(j),Name(j)) is Add(Name(?1),Name(?1)).

2.2 Anti-unification features

The anti-unifier of two trees represents their common
“skeleton”, and contains placeholders for subtrees which
differ. Anti-unification extends straightforwardly to sets:
the anti-unifier of a set of trees is the most specific pat-
tern which matches each tree in the set. It can therefore
be viewed as a common characteristic of a set of trees.
This anti-unification feature was used in [12] to discover
widespread patterns of formulas in scientific articles.

An anti-unifier captures only the common top-
level tree structure, up to the first mismatch on each
branch top-down. For instance, the anti-unifier of
the trees Add(Add(Name(a),Name(b)),Name(c)) and
Add(Name(a),Add(Name(b),Name(c))) is Add(?1, ?2).
It captures the first-level similarity but lacks details on the
second level, where subtrees have different structure.

Anti-unification leads to a natural notion of distance be-
tween two trees. Let U be the anti-unifier of two trees T1

and T2 with substitutions σ1 and σ2. Let n be the number of
placeholders in U . Then σ1 and σ2 are mappings from the
set {?1,?2, . . . ,?n} to substituting trees. Define the size
of a tree as the number of its leaves. This notion of size is
robust to the particularities of representing abstract syntax

trees because it corresponds to the number of all name and
constant occurrences. We now define the anti-unification
distance between T1 and T2 as a sum of sizes of all substi-
tuting trees in σ1 and σ2, minus the number of placeholders.

Consider the two trees Add(Name(i),Name(j)) and
Add(Name(n),Const(1)). The anti-unification substi-
tutions are σ1={i/?1, Name(j)/?2} and σ2={n/?1,
Const(1)/?2}, the sizes of trees in the substitutions are
|i| = |n| = |Name(j)| = |Const(1)| = 1. Therefore
the anti-unification distance for this example is 2.

Anti-unification distance can be seen as tree editing dis-
tance [5] with a restricted set of operations. It captures the
structural differences between two trees but prohibits per-
mutation of siblings or changing the number of child nodes.

3 Definition of clones

Our goal is to find duplicate fragments of code by discov-
ering similarities between subtrees and sequences of sub-
trees in the program’s abstract syntax tree. We use an AST-
based method because the structural nature of these ap-
proaches generally leads to higher precision, and can later
be more easily employed for corrective action. Abstract
syntax trees also allow an analysis with flexible level of
granularity: we can identify, for example, renamed iden-
tifiers or modified subexpressions.

We search for clones in sequences of statements; the
smallest unit of duplicate code we report is a statement.
We also handle definitions of classes and functions, which
are similar cases (their bodies being essentially compound
statements). We thus focus the presentation on statements,
for simplicity.

We consider a pair of statement sequences to be clones
if one of them can be obtained from the other by replacing
some subtrees with other subtrees such that the total size of
these subtrees is less than a certain threshold. (In addition,
we require the statement sequences to exceed a given length
threshold of interest). It is easily seen that the total size of
the replaced trees is equal to the anti-unification distance
between the considered code fragments.

This definition allows all structural substitutions, e.g.,
subexpressions can be replaced with arbitrary other subex-
pressions. According to the taxonomy presented in [10], our
method handles inconsistently structure-substituted clones.
In the current setting, we only treat contiguous clones, and
do not allow clones with gaps, or inserted/deleted state-
ments. This is due to the second step of our algorithm,
which after clustering similar statements and abstracting
statements to cluster IDs looks for identical sequences of
consecutive IDs. It could be conceptually extended to se-
quences with gaps, by unifying arbitrary statements with
the empty statement.

4 Duplicate code detection algorithm

Following the approach of [1, 20], we first linearize the
abstract syntax tree of the program. As a result, all se-
quences of statements and definitions are presented in the
abstract tree as sibling subtrees.

To find all clones satisfying our definition one would
need to compare every statement subsequence in the pro-
gram with every other sequence. To obtain a practical
method, we propose an approximation consisting of three
phases:

1. Identify similar statements using anti-unification and
partition them into clusters with the same anti-unifier.
After the first phase each statement is marked with the
ID of its cluster. For example, cluster 1, represented by
the anti-unifier ?1+=?2 might include the statements
i+=j and m+=2*n, while ?1++, identified as cluster
2, includes statements i++ and j++.

2. Find identical sequences of cluster IDs, correspond-
ing to statement sequences within a compound state-
ment. These statement sequences are candidates to be
reported as code clones.

3. Refine by examining the candidate sequences identi-
fied previously for overall similarity. Anti-unification
is used again to compute a similarity metric for each
pair of candidate statement sequences.

We describe these phases in more details below.

4.1 Comparing and clustering similar statements

As discussed above, the anti-unifier of a set of statements
can be viewed as its common skeleton. We implement a
simple clustering algorithm based on anti-unification dis-
tance. Each newly examined statement is compared with
the anti-unifiers of existing clusters. If one of them is suffi-
ciently close, the statement is placed in that cluster (which
potentially updates its unifier), otherwise, a new single-
statement cluster is created. More details of the algorithm
are described in [7].

4.2 Detecting pairs of identical cluster sequences

After the algorithm’s first phase, each statement is
marked with its cluster ID. In the second phase, we search
for all pairs of statement sequences statements which are
identically labeled. Only sequences with length above a
certain threshold are considered. This search is performed
using a suffix tree approach [9]. Detected pairs of statement
sequences are clone candidates.

4.3 Checking overall similarity of code sequences

The second phase of algorithm produces a set of clone
candidates. Suppose we have a candidate pair consist-
ing of the statement sequences {s1,s2,...,sn} and
{t1,t2,...,tn}. To check this pair for similarity, we
construct two new trees Block(s1,s2,...,sn) and
Block(t1,t2,...,tn) and compare them using anti-
unification distance. If the distance between them is below
a certain threshold, then this pair is reported as a clone.

This overall filtering phase is necessary, since not all
candidates found in phase 2 should be reported. Although
the statements in the two sequences may pairwise have the
same cluster IDs, the sum of their individual differences
may be too great to meaningfully regard them as clones.

Yet, the overall distance between two sequences can-
not be obtained by summing distances between corre-
sponding statements; an overall view is needed. Con-
sider the statement sequences {i=0;i+=1;f(i);} and
{j=0;j+=1;f(j);}. The distance between each pair of
corresponding statements is 1, for a sum of 3. However,
this does not account for variable sharing. Anti-unification
on the other hand returns the value 1, since a single overall
substitution is required to map between the two sequences.
Thus, our algorithm naturally classifies consistent substitu-
tions as closer than inconsistent ones.

The algorithm has a worst-case quadratic complexity
component, since phase 1 attempts anti-unification of each
statement with each potentially matching cluster (i.e., with
the same hash value for the d-cap representing the top-level
tree structure, similar to [8]). This process is repeated af-
ter creating all clusters, to obtain the closest matches, since
anti-unifiers change as clusters grow. Practical results show
confirm that the first phase dominates the overall cost.

5 Comparison with existing approaches

There is a large body of work in the duplicate code de-
tection field. An extensive survey is [17], while [4] does a
detailed comparison of experimental results.

The approach closest to our work is by Evans et al. [8],
which performs a fully structural abstraction (over arbi-
trary subtrees) rather than using lexical abstraction (which
allows parameter substitution only, e.g. for identifiers or
constants). For example, structural abstraction captures the
similarity between a[x] and a[y+1] using the tree pat-
tern a[?]. Their algorithm works in bottom-up manner,
increasing the size of detected common patterns in the ab-
stract syntax tree step-by-step, and uses several heuristics.

Anti-unifiers can also be viewed as patterns, but in addi-
tion they naturally capture shared subtrees (multiple equal
substitutions) – in principle, patterns could be enriched for
this purpose as well. In our approach, anti-unifiers are built

in top-down manner by enlarging clusters and generalizing
their anti-unifiers. The use of clusters is similar to the pio-
neering AST-based approach of Baxter et al. [1]. A linear-
time efficient implementation using abstract syntax suffix
trees is presented by Koschke et al. [11]. None of these
approaches supports substitution of arbitrary subtrees.

Recent work by Roy and Cordy [16] is flexible in its level
of abstraction, using pretty-printing as a fast hybrid between
text-based, lexical and syntactical techniques. It also groups
clones into clusters. The focus is on intentional modifica-
tions, and not on detecting consistently renamed clones.

The anti-unification approach directly induces a suitable
notion of distance between two statements, and the anti-
unifier is a reference point which captures the common
structure of the similar syntax trees. This makes the method
general and at the same time flexible to the employment of
varying similarity thresholds.

6 Duplicate code detection tool

Our duplicate code detection tool is called Clone
Digger. It is available under GNU General Pub-
lic License and can be downloaded from the site
http://clonedigger.sourceforge.net.

Clone Digger is written in Python and thus platform-
independent. We use adapters which convert source files
into an XML representation of their abstract syntax trees.
Currently there are adapters for three languages: Python,
Java 1.5 and Lua. Python abstract syntax trees are built us-
ing the standard CPython module ”compiler”. Java and Lua
trees are built using ANTLR [13]. Adapters for other lan-
guages can be created, e.g. by using parser generators or
using internal compiler representations.

Clone Digger can be run in two different ways: by invok-
ing a Python script from the shell or by using the Eclipse
plug-in which has been developed by Anatoly Zapadinsky
during Google Summer of Code 2008. Clone Digger pro-
duces a HTML file with a list of clones. Each pair is re-
ported statement by statement with color highlighting of
differences. Examples are available on the tool webpage.

7 Experimental results

We first present results of running Clone Digger on
Python projects. Since we are not aware of other AST-based
clone detection tools which support Python, we can only
compare our tool with text-based or token-based tools inde-
pendent of the programming language. We have chosen the
tool DuDe [19] as comparison point. Table 1 shows results
of running Clone Digger and DuDe on several open-source
Python projects. We searched for clones of at least 5 lines
of code and no more than 5 differences. As expected, the

quality of clone candidates reported by the AST-based tool
was better than the quality of token-based clones. For in-
stance, some of the clones reported by DuDe covered the
end of one function and the beginning of the next function;
such clones can’t be refactored. If we split them, the size
for one or both parts could be below the chosen threshold.
Another expected observation is that DuDe is significantly
faster than Clone Digger. Still, it is feasible to use Clone
Digger as an online clone detection tool for small Python
applications and as offline tool for larger ones.

Project Size Clones (%) Time
(loc) CD DuDe CD DuDe

Zope 21k 8.9 13.3 1m17s 7s
Plone 24k 12.27 15.73 2m21s 9s
NLTK 57k 10.29 15.87 9m37s 35s

BioPython 57k 11.83 10.10 31m57s 35s

Table 1. Python test results

Next, we compare Clone Digger with the commercial
AST-based detection tool CloneDRTM [1] (the Asta tool [8]
with similar structural detection to ours is not available for
download). We used an evaluation version of CloneDRTM

which reports only a subset (11 tuples) of detected clones.
Checking if CloneDRTM can detect a chosen clone can still
be done by isolating it to a new file and re-running the tool.

We performed the comparison for Java as input language
on the netbeans-javadoc project and ran CloneDRTM with
default parameters. The minimal reported clone size was 6
code lines, with maximum 5 differences. We next ran Clone
Digger with the same thresholds. All clones reported by
CloneDRTM were also found by Clone Digger, however, our
tool detected significantly (50%) more: in all, 930 clones
covering 3085 lines of code (Table 2). Full reports are avail-
able at the Clone Digger site1.

Project Size Clones (%) Time
(loc) CDig ClDR CDig ClDR

netbeans-javadoc 14K 21.48 14.82 7m57s 2m12s
eclipse-jdtcore 146K 14.24 18.09 2h43m 1h02m

Table 2. Comparison to CloneDRTM

We have identified two types of valuable additional
clones. First, CloneDRTM can only handle renamings, while
Clone Digger handles replacements of subexpressions (e.g.,
clone #3 in the report is an example. Second, Clone Digger
supports parametrization of variable names and counts sev-
eral equal renamings as one (appropriate for refactoring),
resulting in smaller clone distances (e.g., clone #49).

1http://clonedigger.sf.net/IWSC09.zip

Not all additional clones found by Clone Digger are
valuable. One reason is that the minimal size threshold
has a different meaning for the two tools. CloneDRTM sup-
ports clones made of several fragments, and a minimal de-
sired total clone size, whereas Clone Digger does not sup-
port multi-fragment clones, and its size threshold refers to
one piece. The measure of clone distance is also different.
For instance, CloneDRTM considers the difference between
f(class1.variable1) and f(class2.variable2) as 2, because it
replaces class1.variable1 with class2.variable2 as a whole.
Clone Digger considers class name and variable name sep-
arately, therefore the distance between these subtrees is 4.

Thus, to succeed in the first Java experiment, i.e., to find
all clones which were detected by CloneDRTM required a
low setting for the size threshold in Clone Digger. Pre-
dictably, this resulted in low precision: about 40% of the ad-
ditional clones reported compared to CloneDRTM are false
positives, especially among the small ones. The remaining
60% are real clones which CloneDRTM does not detect.

The goal of our second test, run on the project eclipse-
jdtcore (ten times larger), was to minimize false positives.
With the new thresholds, Clone Digger missed some clones
which were detected by CloneDRTM. However, about 25%
of the clones reported by Clone Digger are not found by
CloneDRTM. Clone Digger built 10542 clusters for the
29661 code statements. The running times are still com-
parable, with CloneDRTM faster than Clone Digger.

The results show that Clone Digger can detect clones
that CloneDRTM misses, at the price of running about three
times slower. Tests were run with Python 2.4 on a PC with
an AMD Athlon 5200+ processor and 4 GB of memory.

For netbeans-javadoc, we have also categorized clones
into different types. The largest 50 clones included 6 exact
copies, and 2 clones with replaced subtrees. The rest clones
were clones with renaming. Most of the renaming clones
were parametrized clones, i.e., there was more than one oc-
curence of one replaced name. As previously explained,
CloneDRTM doesn’t handle parametrization; some of these
clones were classified as such only because the numbers of
references to such variables was small enough.

We next evaluated Clone Digger’s recall based on the ref-
erence corpus of clones for the 4 Java projects in Bellon’s
survey [3, 2]. For the smaller projects, we used all refer-
ences, for the large projects, a subset (5%). We omitted
a few references which we did not deem true clones (e.g.
unrelated setter and getter methods). Default parameters
were a minimal clone size of 6 (as in the benchmark), and a
maximal clone distance of 7 (decreased for smaller clones).
Results are given in Table 3.

Overall, the recall rates are comparable to the tools of the
survey. In the available time, we could not perform a more
detailed quantitative analysis. The limited recall is mainly
due to clones with inserted statements (Clone Digger cur-

Project Size (loc, Clones References Recall
w/o cmt.) Found Not

netbeans-javadoc 8111 25.53% 23 23 50%
eclipse-ant 14671 10.53% 17 5 77.3%

eclipse-jdtcore 90009 31.32% 19 41 31.7%
javax-swing 95722 16.81% 19 20 48.7%

Table 3. Java test results

rently requires an exact match of statement sequences), and
the handling of object.method() calls mentioned above. For
the latter, Clone Digger should be changed to treat them
as method(object, . . .) which would expose a common top
level and decrease anti-unification distance. For the former,
step 3 of the algorithm could be changed to accept “imper-
fect” matches of statement sequences. This already happens
for statements one level below in the AST, e.g., if(...)
block1 and if(...) block2. Another factor was that
reference lengths included comments; without them, some
short clones would fall under the stated threshold of 6 lines.

For eclipse-jdtcore and javax-swing, in spite of the low
recall, Clone Digger identified most references as clones,
but paired differently than in the benchmark: since clusters
are built gradually, clones may end up in different clusters.

Precision is qualitatively very good. By limiting clone
distance for smaller clones, we found the vast majority of
the reported pairs to be suitable candidates for refactoring.

In using Clone Digger on real-life large projects, we have
found that automatically generated sources, tests and third
party libraries should be excluded from consideration. First,
the information on clones found in these files is useless for a
user. Second, automatically generated sources and tests of-
ten contain large sequences of very similar statements. All
these statements will be marked by the same cluster ID dur-
ing the first phase and the amount of clone candidates found
during the second phase will increase dramatically. Other
practical aspects are discussed in [6].

8 Conclusions

We have presented a new definition of software clones
based on anti-unification, which naturally captures syntac-
tic structural similarity with high accuracy, and an algorithm
to detect clones based on this notion. We have implemented
the algorithm in an open-source duplicate code detection
tool named Clone Digger, which supports the Java, Python
and Lua programming languages. Initial experimental re-
sults confirm that our method can identify clones which are
missed by AST-based approaches which only support pa-
rameter renaming, although this comes at a cost in running
time. We believe Clone Digger is effective and accurate
enough to be used in the software development process.

This work was supported by INTAS grant 05-1000008-
8144 and Romanian research grant 357/2007 Continuous
Quality Evaluation and Restructuring of Software.

References

[1] I. Baxter, A. Yahin, L. de Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proc. 14th

IEEE International Conference on Software Maintenance,
pages 368–377, 1998.

[2] S. Bellon. Detection of software clones. 2007,
http://www.bauhaus-stuttgart.de/clones.

[3] S. Bellon. Vergleich von Techniken zur Erkennung du-
plizierten Quellcodes. Master’s thesis, no. 1998, Universität
Stuttgart, 2002.

[4] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and evaluation of clone detection tools. Trans-
actions on Software Engineering, 33:577–591, 2007.

[5] P. Bille. A survey on tree edit distance and related problems.
Theoretical Computer Science, 337:217–239, 2005.

[6] P. Bulychev. Duplicate code detection using clone digger.
Python Magazine, Sept. 2008.

[7] P. Bulychev and M. Minea. Duplicate code detection using
anti-unification. In Proc. Spring Young Researchers Collo-
quium on Software Engineering, pages 51–54, 2008.

[8] W. Evans, C. Fraser, and F. Ma. Clone detection via struc-
tural abstraction. In Proc. of the 14th Working Conference
on Reverse Engineering, pages 150–159, 2007.

[9] D. Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997.

[10] R. Koschke. Frontiers of software clone management. In
24th IEEE International Conference on Software Mainte-
nance, pages 119–128, 2008.

[11] R. Koschke, R. Falke, and P. Frenzel. Clone detection using
abstract syntax suffix trees. In Proc. 13th Working Confer-
ence on Reverse Engineering, pages 253–262, 2006.

[12] C. Oancea, C. So, and S. M. Watt. Generalization in maple.
In Proc. Maple Conference, pages 377–382, 2005.

[13] T. Parr and R. Quong. ANTLR: A predicated-LL(k) parser
generator. Software Practice and Experience, 25:789–810,
1995.

[14] G. D. Plotkin. A note on inductive generalization. Machine
Intelligence, 5:153–163, 1970.

[15] J. C. Reynolds. Transformational systems and the algebraic
structure of atomic formulas. Machine Intelligence, 5:135–
151, 1970.

[16] C. Roy and J. Cordy. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and
code normalization. In Proc. 16th IEEE International Con-
ference on Program Comprehension, pages 172–181, 2008.

[17] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical report, Queen’s University at
Kingston, Ontario, Canada, 2007.

[18] M. H. Sorensen and R. Gluck. An algorithm of general-
ization in positive supercompilation. In Proc. International
Logic Programming Symposium, pages 465–479, 1995.

[19] R. Wettel and R. Marinescu. Archeology of code duplica-
tion: Recovering duplication chains from small duplication
fragments. In Proc. 7th Int’l. Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, 2005.

[20] W. Yang. Identifying syntactic differences between two
programs. Software Practice and Experience, 21:739–755,
1991.

