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Abstract. We study probabilistic information flow from a property-
specific viewpoint. For a given property of interest, specified as set of
traces, we examine whether different low-level observations imply differ-
ent probabilities for the occurrence of the property. Quantifying over all
properties in a given class (e.g., high-level traces, or high-level sequences
separated by low-level events) we obtain different notions of information
flow. We give characterizations of systems that are secure according to
these definitions. We consider both properties that are expressed over
whole traces and those that distinguish between past and future given
a reference point. In this framework, we can express several classical
definitions of possibilistic security, as well as giving a more detailed,
quantitative measure of information flow.

1 Introduction

Several classical treatments of information flow exist in the literature. Trace-
based approaches assume a set of observable low-level events L and a set of
(not directly observable) high-level events H . The question is whether observing
a certain low-level trace can give information about the occurrence of high-
level events, either in a possibilistic sense (the possibility or impossibility of a
certain high-level interleaving) or in a probabilistic sense, yielding quantitative
information about high-level activity.

It is generally accepted that there is no single all-encompassing definition
of information flow. Different notions are noninterference [5], generalized nonin-
terference [11], noninference [14], generalized noninference and separability [13],
depending on the kind of information about high-level behavior considered rele-
vant. In these possibilistic approaches, information flow is prevented if the trace
set corresponding to a low-level observation contains “enough” traces to make
inferences about high-level behavior impossible. Indeed, there can be no infor-
mation flow if all high-level behaviors of interest are possible, i.e., included in
the set of traces corresponding to a low-level observation. Precisely which traces
must be present depends on the individual notion of information flow.
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Subsequently, various frameworks for information flow [13,18,10], have been
developed, attempting to unify the various existing definitions. McLean’s intro-
duction of selective interleaving functions [13] provides a way to reason about
the relative strength of different security properties and their preservation under
composition. Zakinthinos and Lee [18] propose “perfect security” as the weakest
property on trace sets which guarantees absence of information flow (in a rather
informally defined sense). In contrast, Mantel [10] argues the need for variety
and modularity, and provides a library of basic security predicates from which
common notions of security properties can be constructed.

In the same view, that an analysis of information flow must be flexible enough
to be adapted to the specific features and needs of the considered application,
we propose a parameterized view of information flow that develops a quantita-
tive, probabilistic approach sketched in [17]. We define information flow with
respect to a property (a set of system traces, possibly abstracted in its low-level
part) which is deemed important for the system under scrutiny. The system has
information flow with respect to the given property if there exist two low-level
observations for which the chosen property has different probabilities of occur-
rence. In this case, the quantitative, probabilistic knowledge about the given
property is sensitive to the observation which can be made, and so there is
information flow in the system with respect to this property.

From this starting point, we define several generic notions of information
flow, corresponding to different classes of properties of interest. These include
high-level information flow, in which properties are sets of sequences of high-level
events, and sequential information flow, in which properties can describe not only
sequences of high-level events but also how these sequences are interrupted by
the low-level, following the view of [12].

In examining information flow, we consider two views on the sequence of
events in a trace. In the first, a global view, properties are simply sets of traces
(infinite sequences of events). Alternatively, in a relativized view, the present
timepoint splits a trace into a pair: a finite sequence of past events and an
infinite sequence of future events. In this way, we can express properties that
link the past behavior with the future behavior of the system; we have absence of
information flow if such a behavior set is equiprobable regardless of the low-level
observation up to the current timepoint. For instance, a property may state that
if the last event before the time point is a then the next event is a′ and if the
last event before the time point is b then the next event cannot be a′.

We then give characterizations of systems that are secure according to these
views of information flow, describing the structure of their trace sets in terms of
high/low-level events and their probabilities.

Using this framework, and choosing appropriate sets of properties, we can
express several classical definitions of possibilistic security: generalized noninter-
ference [11], noninference [14], and separability [13]. At the same time, by sup-
porting a user-defined choice of properties, we allow a finer granularity for the
definition of information flow than previous approaches. In addition, for systems
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that are not secure according to one of these notions, the probabilistic approach
allows us to give a quantitative measure of the appearing information flow.

An important issue when defining security properties is deciding what kinds
of information flow are acceptable. In some existing definitions of information
flow, such as noninference [14] or the perfect security property [18], covert chan-
nels already existent in the description of a system are allowed, such as auditing
or copying low-level events on a high-level. Such definitions take a causal view,
defining information flow as the fact that high-level behavior influences low-level
behavior. Conversely, this means that viewing a string of low-level events may
allow us to deduce something about the high-level events that have occurred in
the past, prior to these observations.

In contrast, we take a purely observational view. Thus, if a low-level obser-
vation is compatible only with an interleaving of high-level events, but not with
another, this constitutes information flow, regardless whether this knowledge is
already present in the description (trace set) of the system. Indeed, the proba-
bility of a given interleaving of high-level events depends in this situation on the
low-level observation, which corresponds to our definition of information flow.

Related Work

Work on tailoring security properties to the system under consideration orig-
inates with the string of different definitions for information flow [5,11,14,13].
Following the recognition that security is a property of trace sets rather than
traces (e.g., [13]), in [18], security properties are defined uniformly by specifying
a predicate that the low-level equivalent bunch of a trace has to satisfy. The ap-
proach is taken further in [10] by defining basic security predicates in terms of a
restriction and a closure requirement on a trace set. The parameterization in the
latter paper is given by the variants in which the basic operations of inserting
and deleting high-level events in a trace (to keep their absence and presence,
respectively, confidential) can be performed.

Probabilistic information flow has naturally been more difficult to treat than
the possibilistic version. McLean [12] introduces the flow model which distin-
guishes mere correlation from actual causal influence. Gray [7] introduces prob-
abilistic interference in a context of finite state machines and gives a more general
information-theoretic framework, including probabilistic channel capacity [6].
Sabelfeld and Sands [16] define probabilistic noninterference in the context of
schedulers for multithreaded programs, based on the concept of probabilistic
bisimulation, and show compositionality properties. Lowe [9] treats quantita-
tive information flow distinguishing probabilistic aspects from nondeterminism,
which is handled from an adversarial worst-case perspective; the treatment is
done in a discrete-time context, considering also the rate of information flow. A
probabilistic process-algebraic approach is given in [1], focused on noninterfer-
ence, generalizing the possibilistic variant and allowing formal reasoning about
the amount of information flow.

All these approaches, whether possibilistic or probabilistic, treat general,
system-independent notion of information flow. A framework which parameter-
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izes information flow is defined in [8] by giving a definition of secrecy in multi-
agent systems, using a modal logic of knowledge in a state-based model. This
generalizes several existing approaches and can be extended to probabilistic se-
curity. Their parameterization stems from defining formulas (knowledge) of what
must be kept secret, thus providing a fine-grained way of characterizing security
requirements. Since the approach is state-based, our model appears complemen-
tary in that it can talk about both past and future evolution of the system.

Other perspectives on information flow include that of [2] which offers a
variety of characterizations of non-interference, expressed in Hoare logics and
CTL; however, the variety is not given by parameterization, but language as-
pects such as sequential vs. concurrent, or termination sensitivity. Closer to a
parametric view is the approach of [4], where the parameter is an observable
property (an abstraction) of the public observations of a program. Thus, the at-
tacker is a data-flow analyzer, and can be specified in an abstract interpretation
framework. Both approaches deal with much more specific systems, described in
particular programming languages, and the class of expressed properties, though
parameterized to some extent, is not as general.

Beyond the possibilistic approaches, [3] analyzes quantitative information
flow for a simple imperative language from a semantic point of view, whereas [15]
replace indistinguishability in the formalization of non-interference by similarity
based on the notion of distance, in a process-algebraic setting. In comparison,
we also define quantity of information flow based on the distance between the
probability of a property given an observation.

Our approach to parameterization allows properties that range from the gen-
eral to the entirely system-specific. Thus we can select the granularity (a partic-
ular trace set or even a single trace) with respect to which information flow is
analyzed. Alternatively, quantifying over classes of such properties, we can still
obtain and reason about several of the classic definitions of information flow.

Paper Outline. We first introduce the mathematical model of probabilistic event
systems which we use throughout the paper. Section 3 gives property-based de-
finitions for three classes of probabilistic information flow, and theorems char-
acterizing systems that conform to these notions. These results are extended in
Section 4 to properties which distinguish between past and future with respect
to the reference point defined by the observation. Section 5 shows how some of
the classic definitions of information flow can be expressed in this formalism.

2 Probabilistic Event Systems

Notations

Given a finite alphabet A, we let A∗ (resp. Aω) denote the set of finite (resp.
infinite) sequences (or traces) over this alphabet. The set A∞ is the union of A∗

and Aω . The empty sequence is denoted ε. Given a sub-alphabet A′ ⊂ A and a
trace λ, λ|A′ denotes the projection of λ onto this sub-alphabet. If λ is a finite
non-empty trace, last(λ) denotes the last letter of λ.
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Let λ be a (finite or infinite) trace. We denote by Pref (λ) the set of finite
prefixes of λ. More generally, if Tr is a set of traces, Pref (Tr) =

⋃
λ∈Tr Pref (λ).

Let u, v ∈ (A∗)n, u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn). We denote by
u ⊗ v the simple interleaving of u and v defined as u ⊗ v = x1y1x2y2 . . . xnyn.

If U, V ⊂ (A∗)n, we denote by U ⊗ V the set: U ⊗ V = {u ⊗ v|u ∈ U, v ∈ V }.
If U, V ⊂ (A∗)ω, the definition of U ⊗ V is extended in a standard way.
The interleaving of two sequences x, y, denoted by interl(x, y) is the set of

sequences: {x1y1x2y2...xnyn | x = x1x2...xn, n ∈ N, y = y1y2...yn, xi, yi ∈ A∗}.
This extends to sets of sequences: interl(X, Y ) = {interl(x, y)| x ∈ X, y ∈ Y }.

Probabilistic Event System

The execution of a system is modeled by its set Tr of traces which are finite or
infinite sequences of atomic events from a set E. A particular atomic event τ is
distinguished which represents the halting of the system. For example, if λ is a
sequence of atomic events, it is useful to distinguish between “λ has occurred but
the system still executes”, and “λ has occurred and the system has stopped”.
The latter case is modeled by the event λτ . To unify the presentation, it is
convenient to use only infinite sequences, writing λτω instead of λτ . Then, from
now on, Tr is a set of infinite sequences which do not contain any occurrence of
τ except when they are of the form λτω where λ contains no occurrence of τ .

The set of atomic events E is divided into two disjoint sets, the set H of high-
level atomic events and the set L of low-level ones. Depending on the situation,
the stop event τ can be considered as a low-level or a high-level event. In this
paper, we only consider the case when the low-level user can observe that the
system has stopped, i.e., τ ∈ L.

The set of traces Tr is equipped with a probability measure µ over the σ-
algebra generated by the cylinders λEω , λ ∈ E∗, such that Tr is µ-measurable.
The measure µ(X) of a measurable set X is denoted as Prµ(X), or shortly
Pr(X). Thus if we consider the infinite tree T built from Tr with edges labeled
by atomic events, each edge of the tree is equipped with a non-zero probability.
(We assume that every prefix of a trace in Tr has a non-zero probability).

Traditionally, an event is a measurable set in the theory of probabilities, so
to avoid confusion, the atomic events of the system will be called actions.

We use the customary notation for conditional probabilities: if P and Q are
two measurable events and Pr(Q) �= 0, the conditional probability Pr(P |Q) is
Pr(P ∩Q)/Pr(Q). Since we are interested only in traces of the system S we deal
only with conditional probabilities relative to Tr . Thus, for each measurable
event X we denote by PrS(X) the probability Pr (X |S) (assuming Pr(S) > 0).

Definition 1. An event system S is a tuple (E, H, L,Tr , µ) where E = H ∪ L,
and H (resp. L) is the set of high-level (resp. low-level) actions, Tr is the set of
traces of the system, and µ is a probabilistic measure on Tr.

We assume that only low-level actions are observable on the low-level, i.e.,
for a trace λ the projection λ|L is observable by low-level users. More precisely,
a finite prefix of λ|L is observable. Thus, from the observation of u ∈ L∗, the
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low-level user who is supposed to know the entire system can construct the bunch
BS(u) = {λ ∈ Tr | u is a prefix of λ|L} and possibly deduce some information
about what happened or what will happen at the high-level. When there is no
ambiguity, we will write B(u) instead of BS(u). For every u such that B(u) is
non empty, B(u) is supposed to be measurable and without lost of generality
the measure PrS(B(u)) is supposed to be positive. A projection u ∈ L∗ such
that B(u) is non empty is called possible.

3 Global Information Flow

Depending on the level of information we are interested in, we introduce an
abstraction function φ : L → L′ ∪ {ε}, where L′ is some set with |L′| ≤ |L| and
express properties as sets of infinite traces on (H ∪ L′)ω . We extend φ on H as
the identity, and then on Eω in a classical way. Notice that it is possible that an
infinite trace of Eω has an image which is finite.

A property of abstraction level φ is a subset of (H ∪ L′)∞. We consider only
properties P such that φ−1(P ) ∩ Tr is a measurable subset of Tr . By abuse
of notation we write PrS(P ) =df PrS(φ−1(P ) ∩ Tr), and write P instead of
φ−1(P )∩Tr everytime we compute probabilities, e.g., in Pr(P ∩A) or Pr(P |A).

Definition 2. Given a system S, the quantity of information flow for a prop-
erty P of abstraction level φ is the value IF (P, S) = maxu,v|PrS(P |B(u)) −
PrS(P |B(v))| for all possible u, v ∈ L∗.

A system S is without information flow for a property P of abstraction level
φ if IF (P, S) = 0.

We can also consider a “qualitative” version of this definition:

Definition 3. A system S is without qualitative information flow for a prop-
erty P of abstraction level φ if for every u ∈ L∗ such that B(u) is non-empty,
PrS(P ) �= 0 → PrS(P |B(u)) �= 0.

Definition 4. A system is without information flow for a given abstraction level
if it is without information flow for all properties of this level.

We will consider three abstraction functions which are of interest in an ob-
vious way. If L = L′ and φ is identity, i.e., there is no abstraction, we will speak
of general information flow. If L′ is a singleton {l}, and φ(li) = l for every
li ∈ L, a trace on (H ∪ L′)ω expresses what happens on the high-level, as well
as whether two high-level events have been separated by a low-level event or
not (the identity of this low-level event does not matter). In this second case we
speak of sequential information flow. Finally, if L′ = {τ} and φ(τ) = τ , φ(li) = ε
for every li ∈ L \ {τ}, that is we are interested only in the projection on the
high-level of a trace, we will speak of high-level information flow.

The intuition behind this hierarchy of abstractions stems from the fact that
we may be interested whether an event x is followed by an event y, in other
words, in the presence of the pattern xy in a system trace.
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If x and y are both high-level events, this property cannot be expressed
using the definition of high-level information flow, since any intervening low-
level events are projected out by the abstraction. However, it can be expressed
as a sequential property: (H ∪ {l})∗xy(H ∪ {l})ω.

If one of the events (say x) is low-level and the other one high-level, the
property can no longer be expressed by a sequential property, since the identity
of y is lost by abstraction to l. However, the presence of the pattern xy can still be
expressed as a general property: (H ∪L)∗xy(H ∪L)ω. This motivates considering
properties which preserve full information for both high- and low-level events.

Another example to motivate our framework is the following. Consider a
program where variables are classified as low (observable by low level users) or
high. The system consists of the set of executions of the program. A regular
property like ”during every time duration t (the duration is measured by the
number of events and t is a fixed integer), the high level variable x is updated
at least once”, in other words, it is impossible that there exists a time duration
t without an update of variable x can be of interest, and one can require that
the system does not suffer information flow for this property.

Let L0 = L \ {τ}.
We write E = (H ∪L0)ω ∪(H ∪L0)∗τω for the set of all infinite words formed

by actions from H and L. This is a superset of the set of system traces: Tr ⊆ E .
In the following, low level actions are denoted a, b, ..., sequences of low-level

actions u, v, ..., sequences of high-level actions α, β, ... and traces λ,λ
′, ....

Let S = (E, H, L,Tr , µ) be a system and T be the associated probabilistic
tree. We define:

Hn(Tr) = {(α1, ..., αn) ∈ (H∗)n|∃a1...an ∈ L α1a1α2a2...αnan ∈ Pref (Tr)}.
Hω

n (Tr) = {(α1, ..., αn) ∈ (H∗)n−1Hω|∃a1...an−1 ∈ L α1a1α2a2...αn ∈ Tr}.
Ln(Tr) = {(a1, ..., an) ∈ Ln|∃ α1 . . . αn ∈ H∗ α1a1α2a2...αnan ∈ Pref (Tr)}.
Trn = {α1a1α2a2 . . . αnan ∈ Pref (Tr )| αi ∈ H∗, ai ∈ L}.

We give below a characteristic property for a system S to be without sequen-
tial information flow. For this we need to introduce some technical terms related
to the probabilistic tree T .

We color edges labeled by a high-level action black and edges labeled by
a low-level action red. We are interested in the set of sequences of high-level
actions (including the empty word) which can occur starting from a node x. To
make this set of sequences more explicit we build for each such node x a ”black”
probabilistic tree Tx in the following way: we keep only the black edges reachable
in T from x, and for each node y (including x) accessible from x by a black path,
we add a node y′ and an edge (y, y′) labelled by ε and with a probability equal
to the sum p of the probabilities of red edges starting from y in T . The tree Tx

is a probabilistic tree which has the following meaning: the probability of a path
in Tx starting from x labelled by α (without ε labels) is exactly the probability
that the sequence of high-level actions α occurs from x; the probability of a path
in Tx starting from x labelled by α and ending in a leaf is the probability that
from x the sequence of actions α followed by a low-level action occurs.
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A node has the color of the edge ending in this node. The root is red.
Two red nodes x and x′ of T are H-equivalent if there exists an integer n

such that the labels of the paths from the root to x and x′ are respectively
α1a1α2a2...αnan and α1b1α2b2...αnbn where αi ∈ H∗ and ai, bi ∈ L.

We also need to state an equivalence property on L. Two nodes x and x′

of T are L-equivalent if there exists an integer n such that the labels of the
paths from the root to x and x′ are respectively α1a1α2a2...αn−1an−1αnan and
β1a1β2a2...βn−1an−1βnan where αi, βi ∈ H∗ and ai ∈ L.

A tuple (x, x′, y, y′) of red nodes of the tree T is H, L-compatible if x and
x′ are H-equivalent, y and y′ are H-equivalent, x and y are L-equivalent and
x′ and y′ are L-equivalent, i.e., there exist (α1, ..., αn), (β1, ..., βn) ∈ Hn, and
(a1, ..., an), (b1, ..., bn) ∈ Ln such that the paths from the root to x, x′, y, y′ are
labeled respectively by α1a1...αnan, α1b1...αnbn, β1a1...βnan and β1b1...βnbn.

Let p1, ..., pn, q1, ..., qn be the probabilities of edges labeled by a1, ..., an on
the path from the root to x (resp. y). Let p′1, ..., p

′
n, q′1, ..., q

′
n be the probabilities

of edges labeled by b1, ..., bn on the path from the root to x′ (resp. y′).
A H, L-compatible tuple (x, x′, y, y′) is perfect if for every i = 1, ..., n we have

pi/qi = p′i/q′i.
The systems we consider are supposed to satisfy:

(1) Tr is a closed subset of E
(2) For each measurable subset X of Tr , the closure X̄ is measurable and

PrS(X) = PrS(X̄).

We start by characterizing sequential information flow, where the identity
of low-level events is abstracted out, and only their position in the sequence of
events is preserved.

Theorem 1. A probabilistic system S such that Tr �⊂ Hω is without sequential
information flow iff

(1) ∀n > 0 Trn = Hn(Tr ) ⊗ Ln(Tr).
(2) Every H, L-compatible tuple of the tree T is perfect.
(3) For every pair of H-equivalent nodes x, x′ of T , the probabilistic trees Tx and

Tx′ are isomorphic.
(4) For every n > 0 (Ln(Tr ) �= ∅ → PrS(Tr ∩ (H∗L)n−1Hω) = 0).

The intuition behind this characterization is the following: we don’t want the
low-level traces to give any information on the interleavings with the high level.
Then, if a sequential high-level trace is possible, this trace can occur whatever
the trace on the low level is. Point (4) states that observing that k low-level
actions have occurred doesn’t give any additional information, since all traces
of Tr have the same number of low-level events. Points (2) and (3) state that
probabilities of certain subtrees have to be equal or in equal ratios.

We give here only a sketch of the proof.
If the system has no information flow, then we prove (1), (4) and, by con-

tradiction, the existence of the same edges in Tx and Tx′ in (2). For the latter,
we exhibit properties for which, if one edge is not in T then for some u, v,
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Pr(P |B(u)) > 0 and Pr(P |B(u)) = 0. The probabilistic parts of (2) and (3)
are proven by contradiction as well, assuming that there exist nodes with dif-
ferent ratios, considering the pair of nodes with the highest ratio and obtaining
information flow for some property.

The converse is proven by considering basic cylinders for which it is possible
to show that there is no information flow. Then we define measurable subsets Pn

which are disjoint unions of cylinders and we prove that there is no information
flow for these sets. Taking the limit of these sets we show that the absence of
information flow follows for P .

Next, we characterize general information flow, which turns out to be a very
strong property:

Theorem 2. The only systems with Tr �⊂ Hω which are without general infor-
mation flow are those which have a projection on L reduced to a single trace.

Proof. Suppose that the projection of Tr on L is a trace w. Since Tr �⊂ Hω

this trace w is different from ε and the finite non-empty low-level words u such
that B(u) �= ∅ are the finite prefixes of w. Moreover for such a trace u, we have
B(u) = Tr and in this case, the system is without general information flow.

Conversely, suppose that the projection on L of the trace set Tr contains two
different traces w and w′, and let u be their longest common prefix. Let a ∈ L
such that ua is a prefix of w′. Let P be the property which consists of the infinite
sequences in Tr whose projection on L is equal to w. We have PrS(P | B(u)) > 0
and PrS(P | B(ua)) = 0. Therefore S has general information flow. �

To our knowledge, there is no simple characterization of systems which are
without high-level information flow. It is immediate that any system without
sequential information flow is without high-level information flow, since the de-
finition of the latter has a coarser abstraction function. Also directly from the
definition, it follows that the projection of any nonempty bunch B(u) onto H
must be the same, otherwise, for a high-level sequence α ∈ H∗ distinguishing
between B(u) and B(v) we can take P = αHω and we have PrS(P |B(u)) �=
Prbs(P |B(v)), since one is zero and the other one not.

4 Relativized Information Flow

The definitions of the previous section capture information flow, but provide
no specific information about the time moment of the low-level observation and
the events whose occurrence are linked to it. For a more refined and relativized
view, one may wish to introduce the moment of observation in the property under
consideration. For example a question of interest could be: observing some partial
low-level trace at the current moment, what is the probability that the potential
trace satisfies some past or future or more generally some relativized property?
For example, what is the probability that starting from the current time, there
is still one high-level action which will occur? Or, what is the probability that
at current time, an event has occurred in the past, and will never occur in the
future?



A Probabilistic Property-Specific Approach to Information Flow 215

In this case, properties we are interested in are called relativized properties
and are defined as subsets of (φ(H∪L))∗×(φ(H∪L))ω , where φ is the abstraction
function. The first component represents the past, and the second one the future.

A property P is a past property (resp. future property) if P = R×φ((H∪L)ω)
(resp. P = φ((H ∪ L)∗) × R) where R ⊂ φ((H ∪ L)∗) (resp. R ⊂ φ((H ∪ L)ω)).

We state the definition of information flow in this relativized situation.
Let u ∈ L+ with B(u) �= ∅. For a relativized property P we define PrS(P, u)=

PrS({γ ∈ Tr | γ = γ1γ2, γ1|L = u, last(γ1) = last(u), (γ1, γ2) ∈ P})/PrS(B(u)).
The event {γ ∈ Tr | γ = γ1γ2, γ1|L = u, last(γ1) = last(u), (γ1, γ2) ∈ P}

corresponds to the situation when the low-level user observes u and the last
action which occurred is a low-level action. We assume that P is well-behaved
such that this event is a measurable set for every u ∈ L+.

We can give now a definition of relativized information flow:
Definition 5. A system S is without relativized information flow for a rela-
tivized property P of abstraction level φ if for every u, v ∈ L+ such that BS(u)
and BS(v) are nonempty, PrS(P, u) = PrS(P, v).

Definition 6. A system is without relativized information flow for a given ab-
straction level if it is without relativized information flow for all relativized prop-
erties of this level.

Again, one can use different levels of abstraction depending on the type of the
events whose occurrence is of interest. For instance, consider the high-level event
sequence xy, and assume one wishes to express that it occurs without any low-
level event intervening after the last event of the low-level observation u. This can
be expressed by the sequential relative property (H ∪{l})∗×H∗xy(H ∪{l})ω. (A
sequential property is needed to express the fact that x and y are not separated
by low-level events). If now one of the interesting events (say y) is low-level, we
need a general relative property so the identity of y is not abstracted away. For
instance, (H ∪ L)∗ × (H ∪ L)2xy(H ∪ L)ω expresses that xy will occur with two
intervening events after the last low-level event of the given observation.

Theorem 3. The only systems such that Tr �⊂ Hω which are without relativized
general information flow are those which have a projection on L equal to τω.

Proof. Suppose that the projection of Tr on L is equal to τω , then the only
finite sequences u �= ε such that B(u) is non-empty are τn, n > 0, and in that
case PrS(P, τn) = PrS(P, τm) for all positive integers m, n for every relativized
general property P . We conclude that the system S has no relativized general
information flow.

Conversely, suppose that the projection of Tr on L contains a trace w �= τω .
Then the first action a of w is different from τ , otherwise w would be equal
to τω . Consider the property P = {(γ1a, γ2) ∈ E∗ × Eω | γ1|L = ε}. We have
PrS(P, a) > 0 and PrS(P, τ) = 0. Therefore S has a relativized general infor-
mation flow. �

The next theorem characterizes the systems without relativized sequential
information flow. Recall that in this case the abstraction function φ collapses all
the low-level actions into a single one, the action l.
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Theorem 4. The only systems with Tr �⊂ Hω which are without relativized se-
quential information flow are those which satisfy one of the following conditions:

(1) the projection of Tr on L is reduced to τω

(2) the projection of Tr on L is a subset M of L and Tr = U ⊗ (M ×{ε}) where
U = {(α1, α2) |α1lα2 ∈ φ(Tr )} and and for every pair of H-equivalent
nodes x, x′ of T , of depth one, the probabilistic trees T (x) and T (x′) are
isomorphic.

Proof. If the system S satisfies condition (1) it is easy to conclude like in
Theorem 3 that S is without relativized sequential information flow.

If the system S satisfies condition (2), the only finite non-empty traces u ∈ L+

such that the bunch B(u) is non-empty are actions the a ∈ M . Clearly for every
relativized sequential property P , PrS(P, a) = PrS(P, b) for a, b ∈ M .

Conversely, let S be a system without relativized sequential information flow.
Suppose that the projection of Tr on L is not reduced to τω. We have to prove
that S satisfies (2). The projection of Tr on L cannot contain a trace w with
more than one action and different from τω . Indeed suppose that w = abw′,
a, b ∈ L. Then Tr contains a trace αaβbλ, where α, β ∈ H∗, and λ ∈ (H ∪ L)ω.
Consider now the relativized sequential property P = {αl} × {βl}(H ∪ {l})ω.
We have PrS(P, a) �= 0 and PrS(P, ab) = 0. Contradiction. So the projection of
Tr on L is a subset M of L. Let us prove that Tr = U ⊗ (M × {ε}). Suppose
that there exists α1lα2 ∈ φ(Tr ) and some a ∈ M such that α1aα2 �∈ Tr . Then
there is information flow for the property P = {αl} × (H ∪ {l})ω: PrS(P, a) = 0
and there exists b ∈ M such that PrS(P, b) �= 0. Proving the other conditions of
(2) is straightforward, following steps of the proof of Theorem 1. �

The absence of relativized sequential information flow is a very strong prop-
erty, and as seen from the conditions in Theorem 4, very few probabilistic event
systems have this property. This stems from the fact that, in expressing the
property P , a trace is split into two parts, just after the occurrence of a low-
level event. If it is possible to observe more or fewer low-level actions in a trace
than specified in the property, there is information flow.

But it is still interesting to consider low-level traces of the same length n,
and examine if they give some additional high-level information (besides the fact
that n low-level events have occurred). We are then interested in a weaker notion
of “no information flow” for a relativized sequential property, namely:

Definition 7. A system S is without information flow at each fixed step for a
relativized property P if PrS(P, u) = PrS(P, v) for every u, v ∈ L+ such that
|u| = |v| and B(u), B(v) are non-empty.

In order to characterize the systems without sequential relativized information
flow at each fixed step we need to introduce a new definition. In the probabilistic
tree T of the system, the red depth of a node is the number of red edges on the
path from the root to it.

Theorem 5. A system S such that Tr �⊂ Hω is without sequential relativized
information flow at each fixed step iff
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(1) ∀n > 0 Trn = Hn(Tr ) ⊗ Ln(Tr).
(2) ∀n > 0, all nodes of red depth n with outgoing red edges are equivalent
(3) For every H-equivalent nodes x, x′ of T (S), the probabilistic trees Tx and Tx′

are isomorphic.

The proof of this theorem is based on the lemma given below which links
sequential relativized information flow at each fixed step with sequential rela-
tivized information flow. Then we can reuse the proof of Theorem 1.

Lemma 1. Let RE ′ be a sequential property on traces where R ⊂ (H ∪ l)∗ and
E ′ = (H ∪ l)ω ∪ (H ∪ l)∗τω . Then, for PR = {(γ1, γ2) | |γ1|L | = n, last(γ1) =
l, γ1γ2 ∈ RE ′}, for every u of length n we have PrS(PR, u) = PrS(RE ′|B(u)).

5 Comparison with Some Classical Security Properties

In this section we restrict ourselves to finite systems, for which Tr ⊆ (H ∪L)∗τω ,
and we suppose that τ ∈ L. Denote by E0 the set H ∪ L0, where L0 = L \ {τ}.

We identify an element of Tr with its shortest prefix ending with the action τ .
Given a trace λ and a system S, the low-level user observing λ|L0τ can construct
the set of system traces which correspond to the same observation, the low-level
equivalent set [18] of λ:

For λ ∈ E∗
0{τ}, LLES(λ, S) = {β ∈ Tr | λ|L0 = β|L0}.

We will show that separability, noninterference and noninference can be ex-
pressed in our framework and correspond to the absence of information flow for
some classes of properties.

1. Noninference
Noninference is a security property which was introduced by O’Halloran [14].

It requires that every trace λ of the system admits in its low-level equivalent set
its projection λ|L0 . As a consequence a low-level user cannot deduce from an
observation the existence of any occurrence of a high-level action:

Noninference(S) ≡ ∀λ ∈ Tr ∃u ∈ LLES(λ, S) u ∈ L∗
0τ .

Consider the property NonInf = L∗
0τ ⊂ (H ∪ L0)∗τ . A trace satisfies this

property iff it does not contain high-level actions. Thus this property exactly
focuses on the (non) existence of a high-level activity. It turns out that nonin-
ference can be expressed in terms of information flow for the property NonInf .

Theorem 6. For a probabilistic system S, Noninference(S) holds iff
PrS(NonInf ) �= 0 and there is no qualitative general information flow for the
property NonInf .

Proof. Suppose PrS(NonInf ) �= 0 and there is no qualitative general in-
formation flow for the property NonInf . Let λ be a trace ∈ Tr . Consider the
projection u = λ|L. Since B(u) is non-empty, PrS(NonInf ) �= 0 and there is
no qualitative general information flow for the property NonInf . So we have
PrS(NonInf , u) �= 0. It proves that u ∈ Tr because B(u)∩NonInf = {u}. Thus,
Noninference(S) is true.
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Conversely, suppose that Noninference(S) holds. Let λ ∈ Tr , and u = λ|L.
Then PrS(NonInf ) �= 0, since u is also in Tr . Suppose there exists some v ∈ L∗

such that PrS(NonInf , v) = 0 and B(v) is non-empty. There exists some λ′ in
B(v), and the projection w of λ′ on L belongs to Tr and v is a prefix of w. So,
PrS(NonInf , w) > 0, but PrS(NonInf , v) > PrS(NonInf , w), a contradiction.
No qualitative general information flow for the property NonInf can occur. �

Moreover, we can quantify the degree of noninference by measuring the maxi-
mal value of |PrS(NonInf )−PrS(NonInf |B(u))| for all non-empty B(u), u ∈ L∗.

2. Separability
Separability is aimed to express a complete independence between the se-

quences of actions at high and low level:
Separability(S) ≡ ∀λ ∈ Tr ∀λ′ ∈ Tr interl(λ|L0 , λ

′
|H)τ ∈ Tr .

Again this security property can be expressed in terms of qualitative sequen-
tial information flow for some set of properties. For each ξ1, ..., ξn ∈ H∗, let
Sepξ1,...,ξn be the following predicate defined on (H ∪ {l})∗:

Sepξ1,...,ξn(λ) holds iff λ = ξ1lξ2l...ξplξp+1ξp+2...ξnl for some p ≤ n.

Theorem 7. For a probabilistic system S, Separability(S) holds iff for any prop-
erty Sepξ1,...,ξn, where ξ1...ξn ∈ Tr |H , PrS(Sepξ1,...,ξn) �= 0 and there is no
qualitative sequential information flow for these properties.

Proof. Suppose Separability(S) holds. Consider the property Sepξ1,...,ξn for
some ξ1, ..., ξn ∈ Tr |H . Suppose PrS(Sepξ1,...,ξn) = 0. Let v = a1a2...ap be the
projection on L of some trace in Tr . If p ≥ n then ξ1a1ξ2a2...ξnanan+1...ap ∈ Tr ,
and if p < n then ξ1a1ξ2a2...ξpapξp+1...ξn ∈ Tr . The two cases contradict
PrS(Sepξ1,...,ξn) = 0. Suppose that for some ξ1...ξn ∈ Tr|H , there is qual-
itative sequential information flow for property Sepξ1,...,ξn . This means that
PrS(Sepξ1,...,ξn) �= 0 and there exists u ∈ L+ with PrS(Sepξ1,...,ξn | B(u)) = 0
and B(u) is non-empty.

Let v = a1a2...ap be the projection on L of some trace in B(u). If p ≥ n then
ξ1a1ξ2a2..., ξnanan+1...ap ∈ Tr which contradicts PrS(Sepξ1,...,ξn | B(u)) = 0. If
p < n then ξ1a1ξ2a2..., ξpapξp+1...ξn ∈ Tr which contradicts again the fact that
PrS(Sepξ1,...,ξn | B(u)) = 0.

Conversely, suppose there is no qualitative sequential information flow for
any property Sepξ1,...,ξn , where (ξ1, ..., ξn) ∈ Hn(Tr) and there exists λ, λ′ ∈ Tr
and ν ∈ interl(λ|L0 , λ

′
|H)τ such that ν �∈ Tr .

The trace ν can be written ξ1a1ξ2a2...ξn−1an−1ξnτ , where ξ ∈ H∗, and ai ∈
L0. Thus PrS(Sepξ1,...,ξn | B(a1a2...an−1τ)) = 0 with B(a1a2...an−1τ) non-
empty since a1a2...an−1τ = λ′

|H . Therefore PrS(Sepξ1,...,ξn) must be equal to
zero since there is no information flow for this property. �

3. Noninterference
Noninterference is a security property introduced by Goguen and Meseguer

[5] and generalized by McCullough [11]. It demands that a low-level user cannot
infer that any sequence of high-level inputs has (not) occurred. Let HI ⊂ H (resp.
HO) is the set of high-level input (resp. output) actions. We have HI ∩HO = ∅.
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∀λ ∈ Tr ∀γ ∈ interl(HI∗, λ|L0)∃δ ∈ LLES(λ, S) γ = δ|L0∪HI

For each µ1, ..., µn ∈ HI∗ let Noninterµ1,...,µn = interl(HO∗, µ1lµ2l...µnl)×
(H ∪ l)ω. In a similar way to Theorem 7, one can prove

Theorem 8. For a given probabilistic system S, Noninterference(S) holds iff
for each n, for each µ1, ..., µn ∈ HI∗ PrS(Noninterµ1,...,µn , u) �= 0 for every
u ∈ Ln such that B(u) is non-empty.

6 Conclusion

We have studied probabilistic information flow from a point of view parame-
terized by user-specified properties of interest. A property is a set of system
traces, possibly viewed through an abstraction function. Our definitions support
a range of property classes, e.g., referring to high-level events only, or high-level
sequences separated by low-level events. We also allow specifications where a
distinction is made between the past and future fragments of a trace. In this
way, we can define (absence of) information flow for a given property, or for an
entire set of properties of a given class.

We have given theorems that characterize the structure of systems for which
absence of information flow according to these notions is guaranteed: for instance,
a certain isomorphism between probabilistic trees is needed for properties which
can distinguish subsequences of high-level events separated by low-level ones. We
have also shown how several classic notions of possibilistic information flow (non-
inference, noninterference and separability) can be expressed using qualitative
versions of our definitions.

We believe that this property-specific fashion of characterizing information
flow is useful because it can be adapted to the particularities of the system
under analysis. In many cases, a mere division into high- and low-level events
and a single definition of information flow policy may not be enough, whereas
our approach allows for a finer granularity of reasoning depending on the
property.

An issue for future research is to apply this framework in the case where
systems and properties are explicitly given as Markov chains and regular lan-
guages, respectively, and to investigate the decidability of the above notions of
information flow in this setting.

Acknowledgements. We are grateful to Anatol Slissenko for the numerous and
fruitful discussions of the approach studied in this paper.
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