
Computing Quantitative Characteristics
of Finite-State Real-Time Systems *

S. Campos, E. Clarke, W. Marrero, M. Minea
School of Computer Science
Carnegie Mellon University

H. Hiraishi
Dept. of Information and Communication Sciences

Kyoto Sangyo University

Abstract

This paper presents a general method for computing
quantitative information about finite-state real-time sys-
tems. We have developed algorithms that compute exact
bounds on the delay between two speci$ed events and on
the number of occurrences of an event in a given inter-
val. This technique allows us to determine performance
measures such as schedulability response time, and system
load. Our algorithms produce more detailed information
than traditional methods. This information leads to a better
understanding of system behavior in addition to determin-
ing its correctness. The algorithms presented in this paper
are efficiently implemented using binary decision diagrams
and have been incorporated into the SA4V symbolic model
checker. Using this method, we have verified a model of
an aircraft control system with lOI states. The results
obtained demonstrate that our method can be successfully
applied in the verification of real-time system designs.

1 Introduction

A number of algorithms have recently been proposed
for verifying the behavior of finite-state real-time sys-
tems [1, 4, 6, 7, 81. These algorithms assume that timing
constraints are given explicitly in some notation like tem-
poral logic. Typically, the designer provides a constraint on
response time for some operation, and the verifier automati-
cally determines if it is satisfied or not. Unfortunately, these
techniques do not provide any information about how much
a system deviates from its expected performance, although
this information can be extremely useful in fine-tuning the
behavior of the system.

*This research was sponsored in part by the National Science Foun-
dation under grant no. CCR-9217549, by the Semiconductor Research
Corporation under contract 92-DJ-294. and by the Wright Laboratory,
Aeronautical Systems Center Air Force Materiel Command, USAF, and
the Advanced Research Projects Agency (ARPA) under grant number
F33615.93. I-1 330. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied of the U.S. government.

In this paper we give algorithms to compute quanti-
tative timing information, such as exact upper and lower
bounds on the time between a request and the correspond-
ing response. Our algorithms provide insight into how well
a system works, rather than just determining whether it
works at all. They enable a designer to determine the tim-
ing characteristics of a complex system given the timing
parameters of its components. This information is espe-
cially useful in the early phases of system design, when it
can be used to establish how changes in a parameter affect
the global behavior of the system.

We model a real-time system as a labeled state-transition
graph, where each path corresponds to an execution trace
of the actual system. This graph is implemented internally
using binary decision diagrams(BDDs) [2], which gener-
ally produce a very compact representation. By employing
symbolic model-checking techniques [3, 121, we are able
to handle extremely large state spaces with up to 103’ states
efficiently. We show how to determine the minimum and
maximum length of all paths leading from a set of start-
ing states (representing the request) to a set of final states
(representing the response). We also present algorithms
that calculate the minimum and the maximum number of
times a specified condition can hold on a path from a set
of starting states to a set of final states. These algorithms
are also extended to timed transition graphs (TTG) [4], a
model in which transitions take more than one time unit
to occur. We believe that the techniques developed can be
adapted to other models of computation as well.

Other approaches for analyzing real-time system ex-
ist. For example, the rate monotonic scheduling theory
(RMS) [9, 10, 131 defines a priority assignment algorithm
that guarantees optimal response time [lo]. The RMS the-
ory proposes a schedulability test based on total CPU uti-
lization; a set of processes (which have priorities assigned
according to RMS) is schedulable if the total utilization
is below a computed threshold. If the utilization is above
this threshold, schedulability is not guaranteed. Moreover,
this analysis only considers certain types of processes with
limitations, for example, on periodicity and synchroniza-
tion. Another approach to schedulability analysis uses al-

266
1052~8725/94 $04.00 0 1994 IEEE

gorithms for computing the set of reachable states of a
finite-state system [7, 81. The algorithms construct the
model with the added constraint that whenever an excep-
tion occurs (e.g. adeadline is missed) the system transitions
to a special exception state. Verification consists of com-
puting the set of reachable states and checking whether the
exception state is in this set. No restrictions are imposed on
the model in this approach, but the algorithm only checks
if exceptions can occur or not.

We develop an analysis method that does not impose any
restriction except that the system be modeled as a set of pro-
cesses that run in parallel and are defined by state-transition
graphs. For example, the actual functional behavior of each
process can be modeled and analyzed. Schedulability is de-
termined by computing the minimum and maximum execu-
tion times for all processes. The process set is schedulable
if and only if each process is guaranteed to finish execution
before its next period starts. Our technique always deter-
mines if the set of processes is schedulable or not, unlike
RMS analysis, which may not provide any schedulability
information if utilization is above the computed threshold.
If the processes are not schedulable, our algorithms deter-
mine which specific deadlines are missed and by how much.
When no deadline is missed, the same results provide re-
sponse times for each process, an important performance
measure for real-time systems.

To demonstrate how our tools work, we verify a sim-
plified aircraft control system. We model the software
that controls the various components of an airplane, and
gather timing information about the system using the tools
described above. The system consists of a set of prior-
ity driven processes, where each process is responsible for
a subsystem of the aircraft, such as navigation, display,
radar and weapons. The schedulability of this process set
is determined. Moreover the computation of quantitative
characteristics also provides other valuable results about
the system being modeled, such as:

l The overhead associated with preemption by other
processes. This information is extremely important
for determining the amount of priority inversion in a
system.

l How fast a subsystem responds to an event. For ex-
ample, in this model, pressing the fire button generates
a complex sequence of events before the weapons are
actually fired. We were able to determine the over-
head imposed by the firing protocol and how it affects
the overall response time of the system.

The different types of properties described above show
how versatile this approach is. Many other quantitative
characteristics can be computed by our algorithms. More-
over, in each case we were able to provide the user with
insight into the behavior of the system, as opposed to only
asserting its correctness. This information leads to a better
understanding of system behavior and can be essential in
improving performance.

2 Modeling Real Time Systems

The real-time systems we verify are modeled using
state-transition graphs. A state ‘iT in this model can be
thought of as a vector assigning values to the state vari-
ablesvl,va,.. . ,u,. The transition relation N(s, 2) can be
represented as a Boolean formula which evaluates to true
when there is a transition in the model from the state G to
thestateT,whereF=(wl,..., w,)andT=((vi ,..., VA).
A path in the transition graph is defined as a sequence of

states VO,VI,W~,... such that N(;ij;r, G) is true for every
i 2 0. In addition, we define a set of initial states, and all
computations are performed on states reachable from this
set.

A set of states can also be represented by a Boolean
formula which evaluates to true if and only if its variables
are assigned the values of the variables in a state in the set.
Note that if S(S) is a formula representing a set of states and
N(YY, 7) is a formula for the transition relation, the formula

XJ[S(E)AN(V, a)] p re resents the set of successors to states
in S(5). This operation can be thought of as a function
mapping a set of states S(C) to the set of its successors
S’(T).

We use binary decision diagrams (BDDs) [2] to effi-
ciently represent Boolean formulas and to manipulate them
using the standard Boolean operations. Because of the
close relationship between a Boolean formula, its BDD,
and the set of states satisfying the formula, we identify
these three entities. In particular, sets and set operations
are more intuitive than boolean operations on formulas or
BDD operations so we present our algorithms using sets,
but the implementation uses BDDs and the corresponding
BDD operations.

3 Quantitative Timing Algorithms

We first present the lower bound algorithm (figure 1).
The algorithm takes two sets of states as input, start and
jinal. It returns the length of (i.e. number of edges in)
a shortest path from a state in start to a state in final. If
no such path exists, the algorithm returns infinity. The
function T(S) gives the set of states that are successors of
some state in S. The function T, the sets of states R and
R’, and the operations of intersection and union can all be
easily implemented using BDDs.

The first algorithm is relatively straightforward. Intu-
itively, the loop in the algorithm computes the set of states
that are reachable from star-f. If at any point, we encounter
a state satisfyingfinal, we return the number of steps taken
to reach the state.

Next, we consider the upper bound algorithm (figure 2).
This algorithm also takes srarf andfinal as input. It returns
the length of a longest path from a state in starz to a state in
final. If there exists an infinite path beginning in a state in
start that never reaches a state infinal, the algorithm returns
infinity. The function T-‘(S’) gives the set of states that

267

proc lower (start, jhal)
i = 0;
R =start;
R’ = T(R) u R;
while (R’ # R A R II final = 0) do

i=iSl;
R= R’;
R’ = T(R’) u R’;

if (R n final # 0)
then return i;
else return 00;

Figure 1: Lower Bound Algorithm

are predecessors of some state in S’. We also denote by
notJinal the set of all states that are not injnal. As before,
the algorithm is implemented using BDDs.

proc upper (start, jinal)
i = 0;
R =TRUE;
R’ =not&al;
while (R’ # R A R’ f~ start # 0) do

i=i+l;
R= R’;
R’ = T-‘(R’) f~ not-final;

if (R = R’)
then return co;
else return i;

Figure 2: Upper Bound Algorithm

The upper bound algorithm is more subtle than the pre-
vious algorithm. A backward search from the states in
not-jinal is more convenient in this case than a forward
search. Proofs of both algorithms can be found in [5].

We have also developed algorithms that calculate the
minimum and the maximum number of times a specified
condition cond can hold on a path from a set of starting
states to a set of final states. For this purpose, we define
a new state-transition system, in which the states are pairs
consisting of a state in the original system and a positive
integer, denoting the number of states in cond that have
been traversed on such a path. Thus, if the original state-
transition graph has state set S, then the augmented state
set will be S, = S x N. The augmented transition relation
IV, 2 S, x S, is defined in terms of the original transition
relation N C S x S by incrementing the integer component
k whenever a state in cond is traversed.

N,((s, k), (s’, k’)) =

The algorithms use the augmented transition relation and
the value of the counter component k to produce the desired
information. We have applied the same technique to a
more powerful model of real-time systems, timed transition

graphs [4], in which the time taken by a transition is defined
by a time interval. These extensions can also be found
in [5].

4 Example - An Aircraft Control System

One of the most critical applications of real-time sys-
tems is in aircraft control. It is extremely important that
time bounds are not violated in such systems. Because of
therisks involved in the failure of an aircraft, only conserva-
tive approaches to design and implementation are routinely
used. Many modern techniques for software design such as
formal methods are not commonly employed. We believe
that formal verification can be very useful in increasing the
reliability of these systems by assisting in the validation of
schedulability and response times of the various compo-
nents.

This section briefly describes an aircraft control system
used in military airplanes. Such a control system can be
characterized by a set of sensors and actuators connected to
a central processor. This processor executes the software
to analyze sensor data and control the actuators. Our model
describes this control program and determines whether its
timing constraints are met. The requirements used are
similar to those of existing military aircraft, and the model
is derived from the one described in [1 I].

The aircraft controller is divided into systems and sub-
systems, each of which performs a specific task in control-
ling the airplane:

Navigation: Computes aircraft position.
Radar Control: Receives and processes data from
radars. It also identifies targets and target position.
Radar Warning Receiver: This system identifies pos-
sible threats to the aircraft.
Weapon Control: Aims and activates aircraft
weapons.
Display: Updates information on the pilot’s screen.
Tracking: Updates target position. Data from this
system is used to aim the weapons.
Data Bus: Provides communication between proces-
sor and external devices.

Timing constraints for each subsystem are derived from
factors such as required accuracy, human response charac-
teristics and hardware requirements. The following table
presents the subsystems being modelled, as well as their
major timing requirements. In order to enforce the differ-
ent timing constraints of the processes, priority scheduling
is used. The priority assignment has been done according
to the RMS theory [9, lo].

Concurrent processes are used to implement each sub-
system. With the exception of the weapon system, all other
systems contain only periodic processes. The weapon sys-
tem contains a mixture of periodic and aperiodic processes.
It is activated when the display keyset subsystem identifies
that the pilot has pressed the firing button. This event causes
the weapon protocol subsystem to be activated. It then sig-
nals the weapon aim subsystem that has been previously

System Subsystem Per. Exec~ Bcpu Pri
Display status update 200 3 1.50 12

kevset 200 1 0.50 16 .

* Weapon protocol is an aperiodic process with a deadline of
200ms.
** Weapon release has a period of 200ms, but its deadline is 5ms.

blocked. Weapon aim is then scheduled to be executed ev-
ery 50ms. It aims the aircraft weapons based on the current
position of the target. It also decides when to fire and then
starts the weapon release subsystem. The firing sequence
can be aborted until weapon release is scheduled, but not
after this point. Weapon release then executes periodically
and fires the weapons 5 times, once per second.

5 Verification of the Aircraft Control System

We have implemented this control system in the SMV
language [121. The SMV model checker has been used to
verify its functional correctness, while its timing correct-
ness has been checked using the quantitative algorithms
described in this paper. In order to optimize response time,
we have implemented a preemptive scheduler. However,
preemptability is a feature that may not always be avail-
able. Non-preemptive schedulers are easier to implement,
and allow for simpler programs but usually increase re-
sponse time for higher priority processes. To assess the
effect of preemption in our system we have also imple-
mented a non-preemptive scheduler.

Using the model described above, we were able to com-
pute the schedulability of the system. This is one of the
most important properties of a real-time system. It states
that no process will miss its deadline. In this example
the deadlines are the same as the periods (except for the
weapon release subsystem). We determine schedulability
by computing the minimum and maximum execution times
for each process and checking if they always finish before
their deadline. The RMS theory checks for schedulability
by computing the CPU utilization of the process set. It
may not provide any schedulability information if the uti-
lization exceeds a certain threshold. Our method however,
is always able to determine schedulability. Moreover, it

Subsystem

Weapon release
Radar track filter
Contact mgmt.
Data bus poll
Weapon aim

Radar target upd
NAV update

Display graphic
Display hook upd
Track target upd
Weapon protocol
NAV steer cmds.
Display store upd

Display keyset
Display status upd

dead
line

255
25
40
50
50
50
80
80

100
200
200
200
200
200

3
2
7
1

10
12
20
10
14
26

1
35
36
37
40

recut1
npt
max

5
10
11
14
19
34
44
46
51
21
85
95
96
99

1 Times
no ret

-+- mm
3

2
7
1
2

12
20
10
14
26

3
36
37
38
41

:mpt
max

9
10
15
14
18
19
27
43
47
51
46
74
97
98

101

only requires that processes be modeBed as state graphs,
while RMS imposes restrictions on their behavior.

The following table summarizes the execution times
computed by our algorithms for both the preemptive and
non-preemptive scheduIers. Processes are shown in de-
creasing order of priority. We can see from this table that
the process set is schedulable using preemptive scheduling.
An analysis of a similar process set using RMS showed that
only the first eight processes were guaranteed to meet their
deadlines [111. From our results we can also identify many
important parameters of the system. For example, the re-
sponse time is usualIy very low for best-case computations,
but it is also good for the worst case. Most processes take
less than half their required time to execute. This indicates
that the system is still not close to saturation, although the
total CPU utilization is high.

Notice also that preemption does not have a big im-
pact on response times. Except for the most critical
process, all others maintain their schedulability if a non-
preemptive scheduler is used. Moreover, we can see that
non-preemption causes weapon release to miss its deadline,
but by a relatively small amount. If a preemptive scheduler
were expensive, reducing theCPU utilization slightly might
make the complete system schedulable without changing
the scheduler. By having such information, the designer
can easily assess the impact of various alternatives to im-
prove the performance, without having to change the im-
plementation. It should be noted that an analysis of this
type can’t be done using methods like the RMS utilization
test or reachability computation.

The algorithms described can be used to analyze the
system in many different ways. For example, the effect of
preemption on execution time can be assessed as follows.
We have computed the maximum and minimum execution
times for processes after they have been granted the CPU.
If minimum and maximum are not the same, the process
can be preempted after starting execution. For example,
the display graphic subsystem can finish in as little as 7ms

269

and in as much as 14ms after it starts execution. In other
words, preemption overhead can be as high as 7ms for this
subsystem. The NAV steering subsystem has a minimum
of lms and a maximum of 44ms. This means that other
processes can delay it for 43ms. It is clear that NAV steering
can be preempted for a longer time than display graphic,
since it has lower priority. Our results, however, allow us
to determine how much longer it can be preempted. In a
similar fashion, we can compute the priority inversion time
for high priority processes. This can aid in identifying the
reasons why a system is not predictable, and help correct
its behavior.

We examine one more property of this particular model.
The weapon system is critical to the aircraft. It is very
important that it respond quickly to the pilot’s command.
However, when a pilot presses the firing button, many sub-
systems are involved in identifying and responding to this
event. By computing the minimum and maximum times
between pressing the fire button and the execution of the
weapon release process we are able to determine if the
weapon system responds quickly enough to satisfy the air-
craft requirements. In our example, the minimum time is
120ms and the maximum time is 167ms, not accounting
for the possibility that the firing sequence may be aborted.
Again, this type of analysis may be difficult to do with
other tools. The RMS schedulability test cannot give tight
bounds on specific response times for such properties, since
its only parameter is CPU utilization. Algorithms that use
reachability analysis are also inappropriate for such anal-
ysis. Specific exceptions, with previously defined time
bounds, would have to be added to the model to observe
these characteristics.

The finite-state model was implemented in about 600
lines of SMV code. The final model has about lOI states,
and the transition relation uses approximately 4600 BDD
nodes. To compute each property described above took
between 5 and 15 seconds using an i486 based workstation.

6 Conclusion

This paper proposes a general framework for computing
quantitativecharacteristics of finite-statereal-time systems.
We have devised algorithms that calculate exact numerical
bounds on the delay between two specified events, as well
as on the frequency of the occurrence of a condition within a
given interval. Rather than just determining the correctness
of the model, the results computed by our algorithms pro-
vide hints about its behavior that can be useful in improving
the performance of the system.

Our method can be easily integrated with model check-
ing techniques. In fact, the lower and upper bound algo-
rithms have been added to the most recent version of the
SMV model checking system. Using this implementation
we demonstrate the practical importance of our approach by
analyzing a model of an aircraft control system. We have
been able to obtain stronger results than those produced
using traditional methods for real-time system verification.

We have found this approach to be very flexible. We
have shown how quantitative characteristics can be com-
puted for state-transition graphs. In addition, we have ex-
tended the algorithms to models in which transitions may
take more than one time unit. We also plan to investi-
gate the application of these techniques to other models of
computation.

We believe that the quantitative information that our
method provides can be extremely useful to designers dur-
ing the development of real-time systems. We are confident
that these techniques will prove practical in the verification
of a variety of other realistic designs.

References

[ll

[21

[31

[41

[51

[61

[71

[81

[91

[lOI

[ill

1121

1131

270

R. Alur and T. A. Henzinger. Logics and models of real-time:
a survey. In Lecture Notes in Computer Science, Real-Time:
Theory in Practice. Springer-Verlag, 1992.

R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8),
1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and J. Hwang. Symbolic model checking: 10’” states and
beyond. In LICS, 1990.

S. V. Campos and E. M. Clarke. Real-time symbolic model
checking for discrete time models. In First AMAST Inter-
national Workshop in Real-7ime Systems, 1993.

S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and
H. Hiraishi. Computing quantitative characteristicsof finite-
state real-time systems. Technical Report CMU-CS-94-147,
Carnegie Mellon University, 1994.

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan.
Quantitative temporal reasoning. In Lecture Notes in Com-
puter Science. Springer-Verlag, 1990.

A. N. Fredette and R. Cleaveland. RTSL: a language for real-
time schedulability analysis. In IEEE Real-Time Systems
Symposium, 1993.

R. Gerber and I. Lee. A proof system for communicating
shared resources. In IEEE Real-Kme Systems Symposium,
1990.

J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda.
Fixed priority scheduling theory for hard real-time systems.
In Foundations of Real-Time Computing - Scheduling and
Resoure Management. Kluwer Academic Publishers, 199 1.
C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment. Journal
oftheACM, 20(l), 1973.

C. D. Locke, D. R. Vogel, and T. J. Mesler. Building a
predictable avionics platform in Ada: a case study. In IEEE
Real-nme Systems Symposium, 1991.

K. L. McMillan. Symbolic model checking - an approach
to the state explosion problem. PhD thesis, SCS, Carnegie
Mellon University, 1992.
L. Sha, M. H. Klein, and J. B. Goodenough. Rate monotonic
analysis for real-time systems. In Foundations of Real-
Time Computing -Scheduling and Resource Management.
Kluwer Academic Publishers, 1991.

