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Abstract 

This paper presents a general method for computing 
quantitative information about finite-state real-time sys- 
tems. We have developed algorithms that compute exact 
bounds on the delay between two speci$ed events and on 
the number of occurrences of an event in a given inter- 
val. This technique allows us to determine performance 
measures such as schedulability response time, and system 
load. Our algorithms produce more detailed information 
than traditional methods. This information leads to a better 
understanding of system behavior in addition to determin- 
ing its correctness. The algorithms presented in this paper 
are efficiently implemented using binary decision diagrams 
and have been incorporated into the SA4V symbolic model 
checker. Using this method, we have verified a model of 
an aircraft control system with lOI states. The results 
obtained demonstrate that our method can be successfully 
applied in the verification of real-time system designs. 

1 Introduction 

A number of algorithms have recently been proposed 
for verifying the behavior of finite-state real-time sys- 
tems [ 1, 4, 6, 7, 81. These algorithms assume that timing 
constraints are given explicitly in some notation like tem- 
poral logic. Typically, the designer provides a constraint on 
response time for some operation, and the verifier automati- 
cally determines if it is satisfied or not. Unfortunately, these 
techniques do not provide any information about how much 
a system deviates from its expected performance, although 
this information can be extremely useful in fine-tuning the 
behavior of the system. 
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In this paper we give algorithms to compute quanti- 
tative timing information, such as exact upper and lower 
bounds on the time between a request and the correspond- 
ing response. Our algorithms provide insight into how well 
a system works, rather than just determining whether it 
works at all. They enable a designer to determine the tim- 
ing characteristics of a complex system given the timing 
parameters of its components. This information is espe- 
cially useful in the early phases of system design, when it 
can be used to establish how changes in a parameter affect 
the global behavior of the system. 

We model a real-time system as a labeled state-transition 
graph, where each path corresponds to an execution trace 
of the actual system. This graph is implemented internally 
using binary decision diagrams(BDDs) [2], which gener- 
ally produce a very compact representation. By employing 
symbolic model-checking techniques [3, 121, we are able 
to handle extremely large state spaces with up to 103’ states 
efficiently. We show how to determine the minimum and 
maximum length of all paths leading from a set of start- 
ing states (representing the request) to a set of final states 
(representing the response). We also present algorithms 
that calculate the minimum and the maximum number of 
times a specified condition can hold on a path from a set 
of starting states to a set of final states. These algorithms 
are also extended to timed transition graphs (TTG) [4], a 
model in which transitions take more than one time unit 
to occur. We believe that the techniques developed can be 
adapted to other models of computation as well. 

Other approaches for analyzing real-time system ex- 
ist. For example, the rate monotonic scheduling theory 
(RMS) [9, 10, 131 defines a priority assignment algorithm 
that guarantees optimal response time [lo]. The RMS the- 
ory proposes a schedulability test based on total CPU uti- 
lization; a set of processes (which have priorities assigned 
according to RMS) is schedulable if the total utilization 
is below a computed threshold. If the utilization is above 
this threshold, schedulability is not guaranteed. Moreover, 
this analysis only considers certain types of processes with 
limitations, for example, on periodicity and synchroniza- 
tion. Another approach to schedulability analysis uses al- 
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gorithms for computing the set of reachable states of a 
finite-state system [7, 81. The algorithms construct the 
model with the added constraint that whenever an excep- 
tion occurs (e.g. adeadline is missed) the system transitions 
to a special exception state. Verification consists of com- 
puting the set of reachable states and checking whether the 
exception state is in this set. No restrictions are imposed on 
the model in this approach, but the algorithm only checks 
if exceptions can occur or not. 

We develop an analysis method that does not impose any 
restriction except that the system be modeled as a set of pro- 
cesses that run in parallel and are defined by state-transition 
graphs. For example, the actual functional behavior of each 
process can be modeled and analyzed. Schedulability is de- 
termined by computing the minimum and maximum execu- 
tion times for all processes. The process set is schedulable 
if and only if each process is guaranteed to finish execution 
before its next period starts. Our technique always deter- 
mines if the set of processes is schedulable or not, unlike 
RMS analysis, which may not provide any schedulability 
information if utilization is above the computed threshold. 
If the processes are not schedulable, our algorithms deter- 
mine which specific deadlines are missed and by how much. 
When no deadline is missed, the same results provide re- 
sponse times for each process, an important performance 
measure for real-time systems. 

To demonstrate how our tools work, we verify a sim- 
plified aircraft control system. We model the software 
that controls the various components of an airplane, and 
gather timing information about the system using the tools 
described above. The system consists of a set of prior- 
ity driven processes, where each process is responsible for 
a subsystem of the aircraft, such as navigation, display, 
radar and weapons. The schedulability of this process set 
is determined. Moreover the computation of quantitative 
characteristics also provides other valuable results about 
the system being modeled, such as: 

l The overhead associated with preemption by other 
processes. This information is extremely important 
for determining the amount of priority inversion in a 
system. 

l How fast a subsystem responds to an event. For ex- 
ample, in this model, pressing the fire button generates 
a complex sequence of events before the weapons are 
actually fired. We were able to determine the over- 
head imposed by the firing protocol and how it affects 
the overall response time of the system. 

The different types of properties described above show 
how versatile this approach is. Many other quantitative 
characteristics can be computed by our algorithms. More- 
over, in each case we were able to provide the user with 
insight into the behavior of the system, as opposed to only 
asserting its correctness. This information leads to a better 
understanding of system behavior and can be essential in 
improving performance. 

2 Modeling Real Time Systems 

The real-time systems we verify are modeled using 
state-transition graphs. A state ‘iT in this model can be 
thought of as a vector assigning values to the state vari- 
ablesvl,va,.. . ,u,. The transition relation N(s, 2) can be 
represented as a Boolean formula which evaluates to true 
when there is a transition in the model from the state G to 
thestateT,whereF=(wl,..., w,)andT=((vi ,..., VA). 
A path in the transition graph is defined as a sequence of 

--- 
states VO,VI,W~,... such that N(;ij;r, G) is true for every 
i 2 0. In addition, we define a set of initial states, and all 
computations are performed on states reachable from this 
set. 

A set of states can also be represented by a Boolean 
formula which evaluates to true if and only if its variables 
are assigned the values of the variables in a state in the set. 
Note that if S(S) is a formula representing a set of states and 
N(YY, 7) is a formula for the transition relation, the formula 

XJ[S(E)AN(V, a)] p re resents the set of successors to states 
in S(5). This operation can be thought of as a function 
mapping a set of states S(C) to the set of its successors 
S’(T). 

We use binary decision diagrams (BDDs) [2] to effi- 
ciently represent Boolean formulas and to manipulate them 
using the standard Boolean operations. Because of the 
close relationship between a Boolean formula, its BDD, 
and the set of states satisfying the formula, we identify 
these three entities. In particular, sets and set operations 
are more intuitive than boolean operations on formulas or 
BDD operations so we present our algorithms using sets, 
but the implementation uses BDDs and the corresponding 
BDD operations. 

3 Quantitative Timing Algorithms 

We first present the lower bound algorithm (figure 1). 
The algorithm takes two sets of states as input, start and 
jinal. It returns the length of (i.e. number of edges in) 
a shortest path from a state in start to a state in final. If 
no such path exists, the algorithm returns infinity. The 
function T(S) gives the set of states that are successors of 
some state in S. The function T, the sets of states R and 
R’, and the operations of intersection and union can all be 
easily implemented using BDDs. 

The first algorithm is relatively straightforward. Intu- 
itively, the loop in the algorithm computes the set of states 
that are reachable from star-f. If at any point, we encounter 
a state satisfyingfinal, we return the number of steps taken 
to reach the state. 

Next, we consider the upper bound algorithm (figure 2). 
This algorithm also takes srarf andfinal as input. It returns 
the length of a longest path from a state in starz to a state in 
final. If there exists an infinite path beginning in a state in 
start that never reaches a state infinal, the algorithm returns 
infinity. The function T-‘(S’) gives the set of states that 
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proc lower (start, jhal) 
i = 0; 
R =start; 
R’ = T(R) u R; 
while (R’ # R A R II final = 0) do 

i=iSl; 
R= R’; 
R’ = T(R’) u R’; 

if (R n final # 0) 
then return i; 
else return 00; 

Figure 1: Lower Bound Algorithm 

are predecessors of some state in S’. We also denote by 
notJinal the set of all states that are not injnal. As before, 
the algorithm is implemented using BDDs. 

proc upper (start, jinal) 
i = 0; 
R =TRUE; 
R’ =not&al; 
while (R’ # R A R’ f~ start # 0) do 

i=i+l; 
R= R’; 
R’ = T-‘(R’) f~ not-final; 

if (R = R’) 
then return co; 
else return i; 

Figure 2: Upper Bound Algorithm 

The upper bound algorithm is more subtle than the pre- 
vious algorithm. A backward search from the states in 
not-jinal is more convenient in this case than a forward 
search. Proofs of both algorithms can be found in [5]. 

We have also developed algorithms that calculate the 
minimum and the maximum number of times a specified 
condition cond can hold on a path from a set of starting 
states to a set of final states. For this purpose, we define 
a new state-transition system, in which the states are pairs 
consisting of a state in the original system and a positive 
integer, denoting the number of states in cond that have 
been traversed on such a path. Thus, if the original state- 
transition graph has state set S, then the augmented state 
set will be S, = S x N. The augmented transition relation 
IV, 2 S, x S, is defined in terms of the original transition 
relation N C S x S by incrementing the integer component 
k whenever a state in cond is traversed. 

N,((s, k), (s’, k’)) = 

The algorithms use the augmented transition relation and 
the value of the counter component k to produce the desired 
information. We have applied the same technique to a 
more powerful model of real-time systems, timed transition 

graphs [4], in which the time taken by a transition is defined 
by a time interval. These extensions can also be found 
in [5]. 

4 Example - An Aircraft Control System 

One of the most critical applications of real-time sys- 
tems is in aircraft control. It is extremely important that 
time bounds are not violated in such systems. Because of 
therisks involved in the failure of an aircraft, only conserva- 
tive approaches to design and implementation are routinely 
used. Many modern techniques for software design such as 
formal methods are not commonly employed. We believe 
that formal verification can be very useful in increasing the 
reliability of these systems by assisting in the validation of 
schedulability and response times of the various compo- 
nents. 

This section briefly describes an aircraft control system 
used in military airplanes. Such a control system can be 
characterized by a set of sensors and actuators connected to 
a central processor. This processor executes the software 
to analyze sensor data and control the actuators. Our model 
describes this control program and determines whether its 
timing constraints are met. The requirements used are 
similar to those of existing military aircraft, and the model 
is derived from the one described in [ 1 I]. 

The aircraft controller is divided into systems and sub- 
systems, each of which performs a specific task in control- 
ling the airplane: 

Navigation: Computes aircraft position. 
Radar Control: Receives and processes data from 
radars. It also identifies targets and target position. 
Radar Warning Receiver: This system identifies pos- 
sible threats to the aircraft. 
Weapon Control: Aims and activates aircraft 
weapons. 
Display: Updates information on the pilot’s screen. 
Tracking: Updates target position. Data from this 
system is used to aim the weapons. 
Data Bus: Provides communication between proces- 
sor and external devices. 

Timing constraints for each subsystem are derived from 
factors such as required accuracy, human response charac- 
teristics and hardware requirements. The following table 
presents the subsystems being modelled, as well as their 
major timing requirements. In order to enforce the differ- 
ent timing constraints of the processes, priority scheduling 
is used. The priority assignment has been done according 
to the RMS theory [9, lo]. 

Concurrent processes are used to implement each sub- 
system. With the exception of the weapon system, all other 
systems contain only periodic processes. The weapon sys- 
tem contains a mixture of periodic and aperiodic processes. 
It is activated when the display keyset subsystem identifies 
that the pilot has pressed the firing button. This event causes 
the weapon protocol subsystem to be activated. It then sig- 
nals the weapon aim subsystem that has been previously 



System Subsystem Per. Exec~ Bcpu Pri 
Display status update 200 3 1.50 12 

kevset 200 1 0.50 16 . 

* Weapon protocol is an aperiodic process with a deadline of 
200ms. 
** Weapon release has a period of 200ms, but its deadline is 5ms. 

blocked. Weapon aim is then scheduled to be executed ev- 
ery 50ms. It aims the aircraft weapons based on the current 
position of the target. It also decides when to fire and then 
starts the weapon release subsystem. The firing sequence 
can be aborted until weapon release is scheduled, but not 
after this point. Weapon release then executes periodically 
and fires the weapons 5 times, once per second. 

5 Verification of the Aircraft Control System 

We have implemented this control system in the SMV 
language [ 121. The SMV model checker has been used to 
verify its functional correctness, while its timing correct- 
ness has been checked using the quantitative algorithms 
described in this paper. In order to optimize response time, 
we have implemented a preemptive scheduler. However, 
preemptability is a feature that may not always be avail- 
able. Non-preemptive schedulers are easier to implement, 
and allow for simpler programs but usually increase re- 
sponse time for higher priority processes. To assess the 
effect of preemption in our system we have also imple- 
mented a non-preemptive scheduler. 

Using the model described above, we were able to com- 
pute the schedulability of the system. This is one of the 
most important properties of a real-time system. It states 
that no process will miss its deadline. In this example 
the deadlines are the same as the periods (except for the 
weapon release subsystem). We determine schedulability 
by computing the minimum and maximum execution times 
for each process and checking if they always finish before 
their deadline. The RMS theory checks for schedulability 
by computing the CPU utilization of the process set. It 
may not provide any schedulability information if the uti- 
lization exceeds a certain threshold. Our method however, 
is always able to determine schedulability. Moreover, it 

Subsystem 

Weapon release 
Radar track filter 
Contact mgmt. 
Data bus poll 
Weapon aim 

Radar target upd 
NAV update 

Display graphic 
Display hook upd 
Track target upd 
Weapon protocol 
NAV steer cmds. 
Display store upd 

Display keyset 
Display status upd 

dead 
line 

255 
25 
40 
50 
50 
50 
80 
80 

100 
200 
200 
200 
200 
200 

3 
2 
7 
1 

10 
12 
20 
10 
14 
26 

1 
35 
36 
37 
40 

recut1 
npt 
max 

5 
10 
11 
14 
19 
34 
44 
46 
51 
21 
85 
95 
96 
99 

1 Times 
no ret 

-+- mm 
3 

2 
7 
1 
2 

12 
20 
10 
14 
26 

3 
36 
37 
38 
41 

:mpt 
max 

9 
10 
15 
14 
18 
19 
27 
43 
47 
51 
46 
74 
97 
98 
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only requires that processes be modeBed as state graphs, 
while RMS imposes restrictions on their behavior. 

The following table summarizes the execution times 
computed by our algorithms for both the preemptive and 
non-preemptive scheduIers. Processes are shown in de- 
creasing order of priority. We can see from this table that 
the process set is schedulable using preemptive scheduling. 
An analysis of a similar process set using RMS showed that 
only the first eight processes were guaranteed to meet their 
deadlines [ 111. From our results we can also identify many 
important parameters of the system. For example, the re- 
sponse time is usualIy very low for best-case computations, 
but it is also good for the worst case. Most processes take 
less than half their required time to execute. This indicates 
that the system is still not close to saturation, although the 
total CPU utilization is high. 

Notice also that preemption does not have a big im- 
pact on response times. Except for the most critical 
process, all others maintain their schedulability if a non- 
preemptive scheduler is used. Moreover, we can see that 
non-preemption causes weapon release to miss its deadline, 
but by a relatively small amount. If a preemptive scheduler 
were expensive, reducing theCPU utilization slightly might 
make the complete system schedulable without changing 
the scheduler. By having such information, the designer 
can easily assess the impact of various alternatives to im- 
prove the performance, without having to change the im- 
plementation. It should be noted that an analysis of this 
type can’t be done using methods like the RMS utilization 
test or reachability computation. 

The algorithms described can be used to analyze the 
system in many different ways. For example, the effect of 
preemption on execution time can be assessed as follows. 
We have computed the maximum and minimum execution 
times for processes after they have been granted the CPU. 
If minimum and maximum are not the same, the process 
can be preempted after starting execution. For example, 
the display graphic subsystem can finish in as little as 7ms 
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and in as much as 14ms after it starts execution. In other 
words, preemption overhead can be as high as 7ms for this 
subsystem. The NAV steering subsystem has a minimum 
of lms and a maximum of 44ms. This means that other 
processes can delay it for 43ms. It is clear that NAV steering 
can be preempted for a longer time than display graphic, 
since it has lower priority. Our results, however, allow us 
to determine how much longer it can be preempted. In a 
similar fashion, we can compute the priority inversion time 
for high priority processes. This can aid in identifying the 
reasons why a system is not predictable, and help correct 
its behavior. 

We examine one more property of this particular model. 
The weapon system is critical to the aircraft. It is very 
important that it respond quickly to the pilot’s command. 
However, when a pilot presses the firing button, many sub- 
systems are involved in identifying and responding to this 
event. By computing the minimum and maximum times 
between pressing the fire button and the execution of the 
weapon release process we are able to determine if the 
weapon system responds quickly enough to satisfy the air- 
craft requirements. In our example, the minimum time is 
120ms and the maximum time is 167ms, not accounting 
for the possibility that the firing sequence may be aborted. 
Again, this type of analysis may be difficult to do with 
other tools. The RMS schedulability test cannot give tight 
bounds on specific response times for such properties, since 
its only parameter is CPU utilization. Algorithms that use 
reachability analysis are also inappropriate for such anal- 
ysis. Specific exceptions, with previously defined time 
bounds, would have to be added to the model to observe 
these characteristics. 

The finite-state model was implemented in about 600 
lines of SMV code. The final model has about lOI states, 
and the transition relation uses approximately 4600 BDD 
nodes. To compute each property described above took 
between 5 and 15 seconds using an i486 based workstation. 

6 Conclusion 

This paper proposes a general framework for computing 
quantitativecharacteristics of finite-statereal-time systems. 
We have devised algorithms that calculate exact numerical 
bounds on the delay between two specified events, as well 
as on the frequency of the occurrence of a condition within a 
given interval. Rather than just determining the correctness 
of the model, the results computed by our algorithms pro- 
vide hints about its behavior that can be useful in improving 
the performance of the system. 

Our method can be easily integrated with model check- 
ing techniques. In fact, the lower and upper bound algo- 
rithms have been added to the most recent version of the 
SMV model checking system. Using this implementation 
we demonstrate the practical importance of our approach by 
analyzing a model of an aircraft control system. We have 
been able to obtain stronger results than those produced 
using traditional methods for real-time system verification. 

We have found this approach to be very flexible. We 
have shown how quantitative characteristics can be com- 
puted for state-transition graphs. In addition, we have ex- 
tended the algorithms to models in which transitions may 
take more than one time unit. We also plan to investi- 
gate the application of these techniques to other models of 
computation. 

We believe that the quantitative information that our 
method provides can be extremely useful to designers dur- 
ing the development of real-time systems. We are confident 
that these techniques will prove practical in the verification 
of a variety of other realistic designs. 
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