URL: http://www.elsevier.nl/loca{:e/entcs/volume23.htxﬁl 13 pages

Model Checking Semi-Continuous Time Models
Using BDDs

Sérgio Campos, * Marcio Teixeira, * Marius Minea, P

Andreas Kuehlmann, ¢ Edmund Clarke?

& Univ. Federal de Minas Gerais, Dept. de Ciéncia da Computacao, Brasil
{scampos,mto}@dcc.ufmg.br

b Carnegie Mellon University, School of Computer Science, USA
{marius, emc}@cs.cmu.edu

¢ IBM T.J. Watson Research Center, USA

kuehlQuwatson.1bm.com

Abstract

The verification of timed systems is extremely important, but also extremely diffi-
cult. Several methods have been proposed to assist in this task, including extensions
to symbolic model checking. One possible use of model checking to analyze timed
systems is by modeling passage of time as the number of taken transitions and ap-
plying quantitative algorithms to determine the timing parameters of the system.
The advantage of this method is its simplicity and efficiency. In this paper we
extend this technique in two ways. First, we present new quantitative algorithms
that are more efficient than their predecessors. The new algorithms determine the
number of occurrences of events in all paths between a set of starting states and a
set of final states. We then use these algorithms to introduce a new model of time,
in which the passage of time is dissociated from the occurrence of events. With this
new model it is possible to verify systems that were previously thought to require
dense time models. We use the new method to verify two such examples previously
analyzed by the HyTech tool: a steam boiler example and a fuel injection controller.

1 Introduction

Computers are frequently used in applications where failures can have severe
consequences, such as in the control of industrial machinery or transportation
equipment. In these applications, the computer system must not only produce
the correct result, but must do so in timely fashion. For example, a command
to apply the brakes of a car or to turn an airplane to a certain direction cannot
be late, otherwise an accident may occur. Such failures cannot be tolerated,
making the correctness of these systems an extremely important issue.

(©1999 Published by Elsevier Science B. V.

75

AN LRAIVALL VY U WU

However, verification of such systems is a very complex problem, made
even harder by timing requirements. Several methods have been proposed
to accomplish this task. One method that has obtained significant success is
model checking [7,8]. In this technique the system being verified is modeled as
a state-transition graph and properties of the system are expressed as temporal
logic formulas. The verification procedure consists of a search on the state
space of the graph to determine which states satisfy the properties.

Original model checkers were not designed to verify timing characteristics.
Several extensions have been proposed to express and verify such properties.
The first and simplest is to associate each transition with the passage of one
time unit and to determine elapsed time by counting the number of transitions
between events. This technique assumes a discrete time model. The main ad-
vantage is its simplicity and extremely efficiently implementation, particularly
in BDD-based symbolic model checkers such as SMV [16] or Verus [4].

Another approach is to use a continuous time model, in which events can
happen at any moment in the dense time domain, e.g., timed automata [1,10].
Since in this case the state space is inherently infinite, model checking entails
constructing a finite equivalent model, the complexity of which can be quite
high. These models, as well as the verification algorithms are considerably
more complex than in the discrete time case. Initial tools were unable to
handle models with more than hundreds or thousands of states. Current tools
are significantly more efficient [11,15,18], but verifying timed automata is still
much more expensive than the verification of discrete time models.

However, discrete time models have one major disadvantage over contin-
uous time models: their limitation in expressing the semantics of event se-
quences that happen in short periods of time. For example if the occurrence
of an event a triggers an alarm b and an immediate response ¢ we can model
these events as happening simultaneously or taking at least two time units
to occur. This may not correspond to reality, however. It may be the case
that after event a has occurred but before alarm b another event d occurs
that would change response c¢. But if a, b and ¢ happen at the same time this
possibility would not be present. On the other hand, if it takes 1 time unit
between a and b it would not be possible for d to occur between a and b. For
this reason discrete time models cannot be used in some applications where
accuracy is essential.

The proposed method overcomes this problem by using zero-length transi-
tions to model the occurrences of events without time passing. The passage
of time then occurs in discrete steps using unit-length transitions. The advan-
tage of this new model is that it removes the limitation on event orderings for
the discrete time model. For example, it is now possible to let events a,b, ¢
and d described previously occur in time zero preserving their order, and only
let time elapse after all events have occurred. We argue that this enables
the verification of many systems that have been previously thought to require
dense time models.

76

AN LRAIVALL VY U WU

In order to determine the time between events in the semi-continuous time
model we use quantitative timing analysis as described in [6,3,4]. Of partic-
ular interest are the condition counting algorithms that count the minimum
and maximum number of occurrences of a specific event in a given set of in-
tervals. In this work these algorithms are used to count the minimum and
maximum number of unit transitions on paths of interest, computing the time
elapsed between events. We propose new condition counting algorithms that
are significantly more efficient than the previous ones. These algorithms allow
verification to be done as efficiently as for the simple discrete time case. They
are similar to the fixpoint computation used in model checking for untimed
systems, and as such can be implemented efficiently using BDDs.

To demonstrate the expressive power and efficiency of the method we have
verified two examples of systems in which high accuracy is necessary to achieve
the correct results. The first is the steam boiler example described in [14]. This
example, while small, demonstrates that the proposed model can be used to
verify systems which are not usually considered in the realms of discrete time.
We have then verified an automotive engine controller developed for Magneti-
Marelli that has been previously verified by HyTech [17]. We have modeled
the controller that identifies that the driver has released the accelerator and
regulates the reduction of fuel injection. This identification is a complex time
critical function of the position of several sensors. If the timing of the events
that take place during its execution is wrong, the algorithm may not converge
and the controller can malfunction. We have verified both examples using
Verus, demonstrating the effectiveness of the proposed method.

2 Related Work

A precursor to the presented analysis method has been developed in the real-
time model checker Verus [4]. This tool implements quantitative timing analy-
sis algorithms that determine the timing characteristics of a system by count-
ing the time between events or the number of occurrences of events in given
intervals. The method has been used to verify large and complex timed sys-
tems such as an aircraft controller [6], a robotics controller [5] and the PCI
local bus [3]. However, the condition counting algorithms used in that context
require the augmentation of the state space with a additional integer time vari-
able which added a significant overhead to verification. The new algorithms
do not require this construct and are efficiently implemented using BDDs.
The occurrence of events without the passage of time has been discussed
in [9]. But that work does not consider a symbolic implementation using BDDs
and is not as efficient. It also does not use quantitative analysis algorithms
and cannot generate the same type of information as the method proposed.
A significant body of research exists on continuous-time models. One of
the most widely used models are the timed automata [1], which add real-valued
clock variables to represent time. Clocks evolve at the same rate, modeling

77

AN LRAIVALL VY U WU

passage of time, and formulas can refer to the value of the clocks to express
timing properties. Verification is then performed on a finite-state quotient
model, such as the region graph [1] or the zone automaton [13]. However,
the expressive accuracy comes with a significant increase in complexity, and a
significant effort in the development of continuous-time model checkers [18,15]
has been devoted to dealing with the state explosion problem.

The expressiveness and efficiency trade-offs between discrete and continu-
ous time raise the question when a discrete-time approximation is sufficient to
model all continuous-time behaviors of a system. This problem is analyzed,
e.g., in [12]. This work introduces the notion of digitizability and proves that
such a reduction is possible for timed transition systems, for verification of
properties such as time-bounded invariance and time-bounded response. More
recent work [2] shows that a reduction to discrete time can be performed for
acyclic combinational circuits, but not for all cyclic ones. These can only be
reduced under the constraint that no strict inequality is used in their design.

3 Condition Counting Algorithms

Our method relies on the ability to count some transitions on a path but not
necessarily all of them. In order to accomplish this, we use the algorithms
described in this section. The original algorithms used in our method to
verify real-time systems determine the length of a path leading from a set of
starting states to a set of final states [6,3,5]. But to verify semi-continuous
time models we also need to compute the minimum and maximum number
of times a given condition holds on any path from start to final. In [6] we
have presented algorithms that compute this information. However, these
algorithms required an augmentation of the state space with a counter to store
intermediate results. This made the algorithms very expensive in some cases.
The algorithms described in this section do not suffer from this limitation.

We require that every state of the model has at least one outgoing tran-
sition. We also assume that any path beginning in start reaches a state in
final in a finite number of steps. This is necessary so that the minimum and
maximum are well-defined. It can be checked using the maximum algorithm
described in [6]. We also consider only reachable states, which can be achieved
by intersecting start with the set of reachable states computed a priori.

Minimum Condition Counting

The minimum condition count algorithm computes the minimum number of
states satisfying a given condition cond over all paths that start in a state in
start and end in a state in final. Any paths starting in start, but which do not
reach final in a finite number of steps are excluded from this computation. In
particular, if no path from start ever reaches final, the algorithm will return
the special value NOPATH.

78

AN LRAIVALL VY U WU

The algorithm looks for paths beginning in start that have an increasing
number of occurrences of cond. Each iteration consists of two phases: The first
is a forward traversal through states that do not satisfy cond. This traversal
is performed until all states (not satisfying cond) reachable from the current
frontier are found. If final has not been reached yet, the frontier is expanded by
one step to states that satisfy cond and the condition counter is incremented.
The algorithm iterates until final is found, or all reachable states are visited.

The algorithm must differentiate between states that do not satisfy cond
and those that do, and similarly, between transitions leading to these states.
We use subscripts 0 and 1 respectively for the two types of states and transi-
tions. For example, start, is the set of initial states that do not satisfy cond,
and start, is the set of initial states that satisfy cond:

starty = start N —~cond start, = start N cond

Furthermore, if N(s, s") is the transition relation, we denote by T, (S) and
T1(S) the set of transitions from a state in S that lead to states not satisfying
cond and to states satisfying cond, respectively:

To(S)={s"| s € S.N(s,s") AN s' & cond}
Ti(S)={s"| ds € S.N(s,s') A s' € cond}

The argument about the correctness of the algorithm follows from invari-
ants stating that R’ at the 7'" iteration contains the set of all states that can be
reached as endpoints of finite intervals starting in start, have no state in final
(except perhaps the last one), and having i or less states satisfying condition.
The proof can be found in the full version of the paper.

Mazimum Condition Counting

The maximum condition count algorithm computes the maximum number of
states satisfying a given condition cond over all paths that begin in a state in
start and end in a state in final without previously traversing a state in final.
If there is a path beginning in start that goes through cond infinitely often
without reaching final, the algorithm returns infinity. The basic idea behind
the algorithm is to find paths with increasing condition count whose states
are all within —final. The condition count of the longest path satisfying this
condition and starting in start is the desired maximum.

Similarly to the mincount algorithm, we consider transitions into states
that satisfy cond and that do not satisfy cond separately. This algorithm,
however, performs a backward search, and uses the reverse image of the tran-
sition relation. In this case By(S’) is the set of states satisfying neither cond
nor final that lead to a state in S’ in one step. Similarly, B;(S’) is the set
of states satisfying cond but not final that lead to a state in S’ in one step.
Note that final only appears implicitly in the algorithm, in the definitions of
By and B;.

By(S") ={s|3s'" € S'".N(s,s') N s & final A s & cond}
Bi(S")y={s|3s" € S'".N(s,s') AN s & final A s € cond}

79

AN LRAIVALL VY U WU

proc mincount(start, cond, final)
i =0; R=0; R = starty;

do
do
if (R' N final # () return i;
R =R

R = Ty(R') U R’;
while (R’ # R);
R =Ti(R)U R’
if (i = 0)R' = R' U starty;
1 =14 1;
while (R’ # R);
return NOPATH;

proc maxcount(start, cond, final)

i =0; R = cond,
do
Ry = R;
do
R =R

R' = R'UBy(R);

while (R’ # R);

if (R' N start = () return i;

R = By(R);

1 =14 1;
while (R # R;);
return oo;

Fig. 1. Minimum and maximum condition count algorithms

Again, we argue the correctness of the algorithm using an invariant similar
to the previous one. It states that at the i'* iteration R’ is the set of all states
that are the start of a finite path which has no states in final (except possibly
the last one), and which has i + 1 states that belong to cond. The proof can
be found in the full version of the paper.

4 Semi-Continuous Time

The basic idea of the proposed method is to allow zero-length transitions
that model the occurrence of events without time passing, thus making the
occurrence of events independent of the passage of time. To allow zero-length
transitions we have created a special variable ¢ in the model of the system
being verified. Time passage is controlled by enabling unit-length transitions
only when ¢ is true, and enabling zero-length transitions only when ¢ is false.

Parallel composition of processes under the new model is defined as fol-
lows. Unit transitions have to occur synchronously, that is, all processes must

80

AN LRAIVALL VY U WU

execute a unit transition in order for time to elapse. Zero-length transitions,
on the other hand occur asynchronously. When a process performs a zero-
length transition all other processes are not executing. As a consequence of
this, zero-length transitions are always enabled. Unit transitions however, are
only enabled when there is at least one unit transition enabled in each process.
This parallel composition model satisfies one important invariant: passage of
time is identical in all processes.

A symbolic implementation of this parallel composition model is straight-
forward given the traditional parallel composition algorithms used in BDD-
based tools: conjunction of transition relations for synchronous composition
and disjunction for asynchronous composition.

Under the new model we must first differentiate between unit and zero-
length transitions. Given TR, we define TR0, (T'R1,) as the transition re-
lation for zero-length (unit) transitions in P,. We can then define the global
transition relation for a model with processes P, and P, as:

TR = (TR1, ANTR1,) V (TR0, V TR0y,)

From this expression we can see that whenever unit transitions are enabled
in all processes they are also enabled in the composed model. The expression
also guarantees that zero-length transitions enabled in some process are also
always enabled in the composed model. The only other condition that must
be imposed in this model is that time eventually change. This can be ensured
by forbidding zero-length loops, which can be enforced by a syntactic check.

To determine how much time has elapsed between events, we use the con-
dition counting algorithms. For example, mincount|a,t = true, b| determines
the minimum time between events a and b. Similarly the maxcount algorithm
can be used to determine the longest time between a and b.

5 Expressive Power of the Proposed Method

The proposed method does not have the same expressive power as a dense
time model. Our method uses a different “discretization” of dense time, but
the final model is still discrete. It has been proven [2] that there exist systems
which cannot be discretized without changing their behavior. In [2] it is
shown that the following circuit has behaviors that cannot be captured by
any discretization. It has four signals xg, x1, s and 3, and transitions which
assign values to them as: x; = —xg, xro = -y and x3 = —xy. Each transition
takes time between 0 and 1 units to occur. Let 1, and ¢3 be the times
when each transition occurs. A possible behavior of the circuit could have
transitions times satisfying 0 < t; < t5 < t3 < 1. In a discrete time model the
only values allowed for ¢; are 0 or 1, it is impossible to assign three different
values for ¢, t, and t3. This behavior cannot exist in a discrete model.

The result of [2] is that only models without strict inequalities can be
guaranteed to be discretized correctly. Only a weaker notion of behavior
preservation can be maintained during discretization: It is possible that events

81

AN LRAIVALL VY U WU

that occur at different time instants in the dense time model occur at the same
time instant in the discretized model. This is also true for our model. It is
frequently argued that because of this problem systems modeled using discrete
time cannot capture the essential properties of a design. We argue, however,
that the key feature is not an arbitrary accuracy for the representation of ¢, ¢,
and t3, but rather an appropriate discretization together with their ordering.
In fact, in the commonly used continuous-time models, the constants used in
specifying properties can only be integers, and exact values for the timepoints
t; are not expressible.

With the use of transitions that take zero time to occur, our method pro-
vides a way of preserving the same ordering of events as dense time models.
We claim then that the essential properties of a design are preserved by our
method in a similar way as by methods that use dense time. For example,
one property that would capture the behavior above can be written in CTL
augmented with the freeze operator “.” described in [9] as (where e; is the
event corresponding to the transition of signal x;):

z.(ey = EF y.(eg > EF z.(e3 N0 <z <y < z<1)))
This can be expressed in our method by the property:
(61 A _|€2) — E[ﬁt U (62 N —ez A=t A E[ﬁt U 63])]
where ¢ is true in unit-length transitions, and false in zero-length ones.

Frequently, the fact that the total time elapsed is less than one time unit

is not encoded in the formula. In this case the formula can be simplified to
(e1 A —eg) = EF(eg A —eg A EFe3)

One important consideration is that this property can be verified using dis-
crete time models by simply doubling the time quantum. This is implemented
by changing all transitions into two consecutive ones, that is, one transition
in the new model takes half a unit, instead of one unit. This however, has
two serious problems. One it adds a significant overhead to verification. The
second one is that it is not possible to know by how much we should decrease
the time quantum, because in general there is no way to find out when events
that happened in different times have been considered simultaneous by the
model. Because of this we cannot determine when the results of a verification
using discrete time would be different if the model was refined. Our method
does not suffer from these problems. There is no significant overhead added,
since only one additional variable is created in the model, and all possible
ordering of events are represented in the model, making refinements in the
time quantum unnecessary.

6 Examples

6.1 Steam Boiler

In order to demonstrate the expressive power of our method we have verified
the steam boiler example described in [14]. Steam boilers are mostly used in

82

AN LRAIVALL VY U WU

thermoeletrical power plants. It is extremely important to keep a steam boiler
working correctly since any malfunction may cause an accident with serious
consequences. The system modeled consists of a water tank, two pumps, and
sensors that measure the pumping rates, the steam evacuation rate and the
water level. A controller oversees the operation of the system. The controller
must guarantee that the water level is always between two values M; and
M, at all times, and should try to maintain water level between the normal
operating levels N; and N, as much as possible. The controller and the phys-
ical plant communicate in discrete intervals, once every A seconds. During
each communication phase, all units send information to the controller, which
responds by sending messages to the units. All communication takes place
instantaneously.

The controller decides to turn the pumps on or off based on the water
level w. The two pumps need five seconds to start pumping water in the
tank because of the high pressure inside the tank. The pumps are turned off
immediately after receiving a message to stop pumping from the controller.
Four values are used by the controller to decide how many pumps should be
active. Depending on these values and the current water level the controller
turns one or both valves on or off (details about the system can found in [14]).
We have modeled the high-level interactions between discrete control decisions
and the continuous aspects of the underlying physical plant. We concentrate
on the continuous aspects of the system and their modeling with the method
described in the previous section.

We have set the values of the system constants as follows: sampling time
A = 5 seconds, maximal steam rate W = 6 liters per second, pumping capacity
P = 4 liters per second, interval of normal water levels [N; = 100, Ny = 150]
liters, interval of acceptable water levels [M; = 25, My = 200] liters. These
constants have the same values as in [14], allowing direct comparison of results.
In our model unit transitions model the passage of one second, and zero-length
transitions are used to model nondeterministic events and decisions taken by
the controller. Notice that verification can be performed very accurately, even
though we use a coarse discretization of time.

The most important property of the steam boiler is that the water level is
always between M; and M,. We also require that the emergency-stop mode is
never entered. Therefore, the unsafe states are those that satisfy the formula
(w < My) V (w > My)Vemergency_stop. Using Verus, we have been able to
verify that the controller maintains the water level within the required bounds.
This result is the same obtained in [14]. The verification took 2.3 seconds and
1.1 MBytes of memory on a Pentium II system.

We have also verified other properties of the steam boiler using the min-
count and mazcount algorithms. For example, an important parameter of the
system is the size of A, the frequency of communication between controller
and plant. Using Verus we have been able to determine that A = 6 also sat-
isfies the safety requirements, but A = 7 does not. If communication between

83

AN LRAIVALL VY U WU

controller and units is delayed by up to one second, safety is maintained, but
longer delays can cause safety problems. Several other parameters have been
identified, including, e.g., the minimum and maximum times needed for water
to go from the minimum to the maximum level. The interval is [20, o] sec-
onds, meaning that the water may never reach the maximum water level from
the minimum water level, but it never takes less then 20 seconds.

6.2 Automotive Engine Controller in Cutoff Model

In order to demonstrate the efficiency of the method we have verified an au-
tomotive engine controller in cutoff mode described in [17] and verified by
HyTech. We have studied the cutoff mode, where we consider control of the
engine once the driver has released the accelerator pedal. The system must
then guarantee that the engine will deliver zero torque within a certain time.
The control objective is to reach injection cutoff while minimizing acceleration
discomfort. If fuel injection is abruptly cut off, the vehicle may exhibit very
undesirable acceleration oscillations. If fuel injection remains on for a long
time the car does not decelerate. In order to minimize these problems, the
controller makes intelligent decisions about when and how to cut off fuel.

The system consists of the engine, which includes the driveline and the
cylinders, and its controller. The engine has four cylinders, each of which
cycles in lockstep through four phases in the following order: intake (I), com-
pression (C), expansion (E), and exhaust. The controller must make its deci-
sion on injection (modeled by the binary output variable j) at the beginning
of the preceding exhaust phase. If fuel is injected into a cylinder, the cylinder
produces torque on its next expansion phase. Thus the driveline does not
react to a control decision until three phases later.

The controller sets the value of j at each phase change, with the function
F modeling the decision to inject fuel or not. The function F is defined over a
transformed state space (over the variables x1, z9, x3, x4) that helps isolate the
fundamental modes related to acceleration oscillations. Powertrain oscillations
are due to the pair of complex conjugate poles, which are related to x5 and x3
components. Thus, our analysis concentrates on the x5 — x3 subspace, where
the encirclements of the origin correspond to oscillations (more details about
the system can be found in [17]).

The automotive engine controller should meet the requirement that for a
given initial condition the state is close to the origin (injection cutoff) within
a bounded number of phases (convergence). To show the convergence re-
quirement using the same parameters described in [17] we have computed the
maximum time from an initial state until a trajectory is close to the origin.

We have used Verus to verify the requirements. The code for the example
has been generated automatically from the HyTech original code using a perl
script written for this purpose. We have divided the x5 — x3 state space into
25 x 25 partitions increasing the accuracy of the rectangular approximations.

84

AN LRAIVALL VY U WU

In our model, phase changes occur in unit time, and all other events happen in
time zero. We have determined that the maximum time until a trajectory is
close to the origin is 29 steps, the same result obtained by HyTech. Verification
was performed very efficiently, but at the same time it has shown a limitation
of our method. The source file for this example is extremely large, it has more
than 250,000 lines of Verus code! It is, to the authors’ knowledge, the largest
example verified by symbolic model checking. It took Verus several hours to
compile this code into a transition graph representing the system. Once the
model was generated, however, verification was performed in only 18 seconds.

The reason for the long compilation time seems to be related to the fact
that for systems which involve large constants, discretization can lead to a
large state space representation even when using BDDs. This is caused by
the binary encoding of integer values used. In some of these cases, continuous
time models may be more efficient, since the representation is less dependent
on time granularity. However, for models whose timing constants are well-
behaved, a discrete-time model with a uniform BDD-based representation can
present significant gains in efficiency. In this case it seems that both effects
were present. The values represented for x, and x3 are well behaved, but
their values are large, as well as the number of operations that have to be
performed on them, making the generation of the model slow, but possible.
Verification, on the other hand, was performed extremely fast, showing that
the complexity is related to the manipulation of large integer values, not to
the representation of time.

7 Conclusions

In this work we propose a new algorithm to perform quantitative timing analy-
sis of models that is more efficient than its predecessor. This algorithm, called
condition counting, counts the minimum and maximum number of occurrences
of events between two events start and final. The algorithm is used to imple-
ment an alternative method to represent time which enables the verification of
systems that were previously considered to require dense time models. Verifi-
cation under the new model can be performed as efficiently as for discrete time
models. The proposed method has been implemented in Verus, but it can be
used in most BDD-based symbolic model checkers. Two examples that had
previously been verified by the dense-time tool HyTech have been modeled
and verified in Verus. Future work includes a more accurate characterization
of the expressive power of the method.

Acknowledgments

We would like to thank Howard Wong-Toi for the many useful discussions
about the examples that have been verified in HyTech.

85

AN LRAIVALL VY U WU

References

[1] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-
time systems. In Proc. 5th Annual IEEE Symp. on Logic in Computer Science,
pages 414-425, Philadelphia, PA, USA, June 1990. IEEE Press.

[2] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in
timed automata and digital circuits. In D. Sangiorgi and R. de Simone, editors,
CONCUR’98: Concurrency Theory. 8" Int. Conf. Proc., volume 1466 of LNCS,
pages 470-484, Nice, France, September 1998. Springer.

[3] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verifying the performance
of the PCI local bus using symbolic techniques. In Proc. IEEE Int. Conf. on
Comput. Design, pages 72-78, Austin, TX, USA, October 1995. IEEE Press.

[4] S. V. Campos. A Quantitative Approach to the Formal Verification of Real-
Time Systems. PhD thesis, School of Computer Science, Carnegie MellonUniv.,
1996.

[5] S. V. Campos, E. M. Clarke, W. Marrero, and M. Minea. Timing analysis of
industrial real-time systems. In Proc. Workshop on Industrial-strength Formal
Specification Techniques, pages 97-107, Boca Raton, FL, April 1995. IEEE
Press.

6] S. V. Campos, E. M. Clarke, W. Marrero, M. Minea, and H. Hiraishi.
Computing quantitative characteristics of finite-state real-time systems. In
Proc. 15" IEEE Real-Time Systems Symp., pages 266-270, San Juan, Puerto
Rico, December 1994. IEEE Press.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logic of Programs: Workshop,
volume 131 of LNCS, pages 5271, Yorktown Heights, NY, USA, 1981. Springer.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

[9] H. De-Leon and O. Grumberg. Modular abstractions for verifying real-time
distributed systems. Formal Methods in System Design, 2:7-43, 1993.

[10] David L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Proceedings of the International Workshop on
Automatic Verification Methods for Finite State Systems, volume 407 of LNCS,
pages 197-212, Grenoble, France, June 1989. Springer.

[11] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HyTECH: the next generation. In
Proc. 16th IEEE Real-Time Systems Symp., pages 56-65, Pisa, Italy, December
1995. IEEE Press.

[12] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital
clocks ? In W. Kuich, editor, Automata, Languages and Programming. 19"

86

AN LRAIVALL VY U WU

International Colloquium Proceedings, volume 623 of LNCS, pages 545-558,
Wien, Austria, July 1992. Springer.

[13] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. In Proc. 7th Annual IEEE
Symp. on Logic in Computer Science, pages 394—406, Santa Cruz, CA, USA,
June 1992. IEEE Press.

[14] Thomas A. Henzinger and Howard Wong-Toi. Using HYTECH to synthesize
control parameters for a steam boiler. In Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control, volume
1165 of LNCS, pages 265—-282. Springer, 1996.

[15] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model-
checking of real-time systems. In Proc. 16th IEEE Real-Time Systems Symp.,
pages 7687, Pisa, Italy, December 1995. IEEE Press.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[17] Tiziano Villa, Howard Wong-Toi, Andrea Balluchi, Joerg Preussig, Alberto
Sangiovanni-Vincentelli, and Yosinori Watanabe. Formal verification of an
automotive engine controller in cutoff mode. In CDC98: IEEE Conference on
Decision and Control, Tampa, Florida, December 1998.

[18] S. Yovine. Kronos: A verification tool for real-time systems. Springer
International Journal of Software Tools for Technology Transfer, 1, October
1997.

87

