
Int J STTT (1999) 2: 279–287  1999 Springer-Verlag

State space reduction using partial order techniques
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Abstract. With the advancement of computer technol-
ogy, highly concurrent systems are being developed. The
verification of such systems is a challenging task, as their
state space grows exponentially with the number of pro-
cesses. Partial order reduction is an effective technique to
address this problem. It relies on the observation that the
effect of executing transitions concurrently is often inde-
pendent of their ordering. In this paper we present the
basic principles behind partial order reduction and its im-
plementation.
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1 Introduction

One of the main problems in automatic verification of sys-
tems is the so-called state space explosion problem. For
many types of systems, the number of possible states dur-
ing system execution grows exponentially with the size of
the system and the number of its component parts. This
quickly leads to models whose size exceeds the current ca-
pabilities of verification tools.

Partial order reduction is a technique that addresses
this problem for concurrent asynchronous systems by
constructing a smaller state space that is searched by

Correspondence to: Doron Peled
∗ This research is sponsored by the the Semiconductor Research

Corporation (SRC) under Contract No. 97-DJ-294, the National
Science Foundation (NSF) under Grant No. CCR-9505472, and
the Defense Advanced Research Projects Agency (DARPA) under
Contract No. DABT63-96-C-0071. Any opinions, findings and con-
clusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of SRC, NSF,
DARPA, or the United States Government.
∗∗ This research was partially supported by the fund for the pro-
motion of research at the Technion.

the verification (model checking) algorithms. In general,
asynchronous systems are described using an interleaving
model of computation. Concurrent events are modeled
by allowing their execution in all possible orders relative
to each other, creating a large number of possible states
and paths. However, specifications typically do not distin-
guish between all different orders. Partial order reduction
considers only a restricted set of behaviors of the system,
while guaranteeing that the ignored behaviors do not add
any new information.

In this survey we will describe a method of partial
order reduction. The main goal of this paper is to pro-
vide an intuitive description of the main ideas and present
some techniques that can be used for implementation.

Reducing the state space by using commutativity be-
tween concurrent transitions was suggested by several re-
searchers. In his Ph.D. thesis, Overman [20] suggested
a method to avoid exploring all the states of a concurrent
system. However, this method was only applied to sys-
tems without loops. Katz and Peled [16] suggested a proof
system for concurrent systems that takes the commuta-
tivity between transitions into account. The core of the
deduction system was based on using proof rules that
asserted properties of sequences which are generated by
taking certain subsets of successors from each state.

In the last decade, several researchers have developed
methods to apply reduction principles in model checking.
These techniques include the stubborn sets method of Val-
mari [24], the persistent sets method of Godefroid and
Wolper [10, 11], and the ample sets method of Peled [22].
These works contain similar ideas, although they differ
with respect to the details of the suggested reduction. We
will present here the ample sets method.

The name partial order reduction reflects a connec-
tion between the initial versions of these reductions and
partial order semantics. Roughly, a partially ordered ex-
ecution is represented by a set of events and a causality
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relation between them. The causality relation indicates
that some events must precede others, while events that
are not constrained by this relation are independent and
can happen in any order. In contrast, in a total ordering
on events, any given event must either precede or follow
any other event. Some versions of partial order reduction
guarantee that the reduced state space includes for each
such partially ordered execution at least one linearization
(completion into a total order). However, most current
methods do not maintain this relation any more.

2 Fundamental notions

The systems that we analyze are modeled as state transi-
tion graphs. If S is the set of states, a transition is a re-
lation α ⊆ S×S, i.e., it can be taken between different
pairs of states. A state transition graph is then defined as
a tuple M = (S, S0, T, L), where S0 ⊆ S is a set of initial
states, T is a set of transitions α⊆ S×S, andL : S→ 2AP

is a labeling function that assigns to each state a subset of
some set AP of atomic propositions.

A transition α ∈ T is enabled in a state s if there exists
a state s′ such that (s, s′) ∈ α (or in other words α(s, s′)
holds). If for any state s there is at most one state such
that α(s, s′), we call α a deterministic transition. In this
case we can view α as a partial function on states instead
of a relation and write s′ = α(s) instead of α(s, s′). The
following presentation considers only deterministic tran-
sitions, without further explicit mention.

We reason about execution sequences of the system,
called paths. A path in a state-transition graph M is
a finite or infinite sequence σ = s0

α0→ s1
α1→ . . . such that

si+1 = αi(si) for every i.
In asynchronous systems, the number of transitions

occurring between two events has no direct relationship
to the time delay between them. Furthermore, transi-
tions which are concurrent in the system appear serialized
in some order in the interleaving model. These observa-
tions argue for a specification which cannot distinguish
between sequences of identically labeled states on an ex-
ecution path of the system.

We call two infinite paths stuttering equivalent (Fig. 1)
if they have identical state labelings after, in each of
them, any finite sequence of identically labeled states
is collapsed to a single state. In other words, two infi-

nite paths σ = s0
α0→ s1

α1→ . . . and ρ= r0
β0→ r1

β1→ . . . are
stuttering equivalent if one can define two infinite se-
quences of integers 0 = i0 < i1 < . . . and 0 = j0 < j1 < . . .
such that ∀k ≥ 0, L(sik ) = L(sik+1) = . . .= L(sik+1−1) =
L(rjk ) = L(rjk+1) = . . .= L(rjk+1−1). The indices ik and
jk are the starting points of identically labeled subse-
quences of states in the two paths, respectively. The
stuttering equivalence relation between σ and ρ is de-
noted by σ ∼st ρ.

The temporal logic LTL [8] allows assertions about
the temporal behavior of a program. Given a finite set

hp- hp- h- hp, q

hp-
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Fig. 1. Stuttering equivalent paths

of propositions AP , the LTL formulas are defined induc-
tively as follows:

– every member of AP is a formula,
– if ϕ and ψ are formulas, then so are ¬ϕ, ϕ∧ψ, ©ϕ

and ϕ Uψ.

An interpretation of an LTL formula is an infinite
word ξ = x0x1 · · · over the alphabet 2AP , i.e., a mapping
from the naturals to 2AP . We write ξi for the suffix of ξ
starting at xi. The semantics of LTL is as follows:

– ξ |= p iff p ∈ x0, for p ∈AP ,
– ξ |= ¬ϕ iff not ξ |= ϕ,
– ξ |= ϕ∧ψ iff ξ |= ϕ and ξ |= ψ,
– ξ |=©ϕ iff ξ1 |= ϕ,
– ξ |= ϕUψ iff there is an i≥ 0 such that ξi |= ψ and
ξj |= ϕ for all 0≤ j < i.

Let false be an abbreviation for A∧¬A, and true be an
abbreviation for ¬false. We also use the following abbre-
viations: ϕ∨ψ = ¬((¬ϕ)∧ (¬ψ)), 3ϕ = trueUϕ, 2ϕ =
¬3¬ϕ.

Given a state transition graph M and an LTL for-
mula ϕ, the model checking problem for M and ϕ is to
verify that for every initial state s0 ∈ S0 and every path
ξ starting in s0, it is true that ξ |= ϕ. If this holds, we
write M |= ϕ.

An LTL formula ϕ is invariant under stuttering if for
any two paths σ and σ′ such that σ ∼st σ

′, we have σ |= ϕ
iff σ′ |= ϕ.

In general, an LTL formula can be sensitive to stut-
tering if it contains the next-time operator©. Denote by
LTL−X the subset of logic LTL that does not make use
of the next-time operator. Peled and Wilke show [23] that
an LTL property is invariant under stuttering iff it can be
expressed in LTL−X .

The notion of stuttering equivalence can be extended
from paths to state transition graphs. Two state transi-
tion graphs M and M ′ are stuttering equivalent iff the
following two symmetric conditions hold:

– for each path σ from an initial state of M there is
a path σ′ from an initial state of M ′ such that σ ∼st σ

′

– for each path σ′ from an initial state of M ′ there is
a path σ from an initial state of M such that σ′ ∼st σ.

From the definition of stuttering equivalence of state
transition graphs and the theorem about stuttering in-
variance of LTL−X formulas, one can deduce the follow-
ing result:

If M and M ′ are state transition graphs which are
stuttering equivalent, then for any LTL−X prop-
erty ϕ, M |= ϕ iff M ′ |= ϕ.
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This result justifies the use of partial order reduction by
virtue of the fact that it produces a structure that is stut-
tering equivalent to the original state transition graph.

3 Principles of partial order reduction

As mentioned in the introduction, one of the main reasons
for state space explosion in asynchronous systems is that
the interleaving model of computation must consider all
possible event orderings, in order to avoid the omission of
any particular one. However, since interleaving is intro-
duced to model concurrency, for independent transitions
this ordering is often irrelevant. On the other hand, de-
pending on the specification language, it is possible that
the property to be verified is actually able to discriminate
between behaviors that differ only by this ordering. To be
able to use partial order reduction, it is necessary to have
a specification that does not distinguish between such be-
haviors and a procedure that selects a set of behaviors
that constitutes the reduced model. If some behavior is
not present in the reduced model, an equivalent one has to
be included in order to guarantee correctness.

To illustrate the importance of reduction, consider
a system composed of n concurrent processes, P1 through
Pn. Each process Pi has a transition αi enabled in some
local state si, that changes the value of the labeling func-
tion: αi(si) = s′i, L(si) =∅, L(s′i) = {p}, for some p∈AP .
The concurrent transitions αi can be ordered in n! pos-
sible ways, producing a total of 2n different states. Yet it
is possible that the specification only needs to establish
a property that links the initial global state (s1, . . . , sn)
with the resulting state (s′1, . . . , s

′
n), irrespective of the

path taken between these. In this case, it is much more
efficient to consider only one particular ordering and the
corresponding n+ 1 states.

Typically, the reduced model is constructed by per-
forming a modified depth-first search on an explicit state
representation of the system. Model checking is done in
a separate phase, on the resulting reduced state transition
graph. It is also possible to construct the reduced model
on the fly, while performing model checking. Other varia-
tions are to use breadth-first search instead of depth-first
search, or to combine partial order reduction with sym-
bolic model checking. A common point for all variants
is that the reduced state space is constructed directly,
without ever building the full state graph. This would be
counter to the purpose of reduction, since it is likely that
the full state graph is too large to be constructed in the
first place.

Consider, for the purpose of illustration, the case of
depth-first search. A typical search that constructs the
entire reachable state space would follow all transitions
enabled at the current state in the search. With partial
order reduction, only a subset of the enabled transitions
is expanded at each state s. We will call this set ample(s).

To apply this method, we need a procedure to com-
pute a suitable set ample(s) for every state s. First, in
order to obtain a much smaller state graph, ample(s) has
to be significantly smaller than enabled(s). On the other
hand, to ensure the correctness of the reduction, ample(s)
has to include enough transitions such that for each be-
havior in the full state graph there is an equivalent be-
havior in the reduced state graph. Finally, computing an
ample set should be done with a reasonably small over-
head so that verification time is not increased compared
to full state space search.

Since the key issue in partial order reduction is to
select only a restricted number of orderings between tran-
sitions for analysis, the concept of transitions that can
be reordered has to be formalized. This can be done by
defining the key concept of independence relation be-
tween transitions. Two transitions α, β ∈ T are indepen-
dent if they satisfy the following two conditions for each
state s ∈ S:

Enabledness:
If α, β ∈ enabled(s) then α ∈ enabled(β(s))
and β ∈ enabled(α(s)).

Commutativity:
If α, β ∈ enabled(s) then α(β(s)) = β(α(s)).

The enabledness condition expresses the fact that two
independent transitions that are enabled at a given state
cannot disable each other. Note that the definition given
here allows independent transitions to enable one an-
other. The commutativity condition states that the exe-
cution of two independent transitions in any order (which
is guaranteed to be possible by the enabledness condition)
leads to the same state. Two transitions are called depen-
dent if they are not independent .

Consider the simple fragment of a state transition
graph depicted in Fig. 2. If transitions α and β are in-
dependent, a possible reduction would be consider only

the execution sequence s
α
→ s1

β
→ s′ and not the path

s
β
→ s2

α
→ s′. However, this reduction may not be neces-

sarily correct, either because the checked property can
distinguish between the intermediate states s1 and s2, or
because eliminating one of these states may cause some
of its successors (which are significant for verification) not
to be explored. Additional conditions for the correctness
of the reduction are needed, and they will be described in
the following.

To address the first of these two issues, we define what
it means for a specification to distinguish between two
states, by introducing a second key concept, of invisi-
ble transitions. Recall that L : S→ 2AP is the labeling
function that assigns to each state a set of atomic propo-

hs��1
α hs1PPqβ
PPqβ hs2

��1α
hs′

Fig. 2. Independent transitions
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sitions. The specification does not necessarily refer to the
entire set of atomic propositions; let AP ′ ⊆ AP be the
subset of atomic propositions referenced in the specifi-
cation. We call a transition α invisible with respect to
some subset AP ′ ⊆ AP if its execution between any two
states does not change the labeling with atomic proposi-
tions fromAP ′. Formally, the transition α ∈ T is invisible
with respect to AP ′ if for any two states s, s′ ∈ S such
that s′ = α(s) we have L(s)∩AP ′ = L(s′)∩AP ′. A tran-
sition is visible if it is not invisible. If the subset of atomic
propositions AP ′ is clear from the context (it is usually
the set of atomic propositions contained in the specifi-
cation), we will simply say that a transition is visible or
invisible without explicitly mentioning that this is with
respect to AP ′.

4 Partial order reduction for LTL−X

We have seen in the previous section that the properties
of independence and invisibility for transitions and stut-
tering invariance for LTL−X formulas allow us to verify
the specification for the given system on a reduced model,
and thus avoid the generation of all states. The reduced
model is constructed by selecting at each step a subset
ample(s) of the transitions which are enabled at the cur-
rent state s. We say that a node s is fully expanded if
ample(s) = enabled(s).

We need a procedure that will determine a suitable set
of ample transitions at each state. Rather than directly
give an algorithm that solves this problem, in this section
we will characterize the set ample(s) using a set of con-
ditions. The next section continues by describing various
heuristics that can be used to find ample sets that satisfy
these conditions.

The first condition is trivial and guarantees that the
search algorithm with reduction will make progress if the
normal search algorithm would:

C0 Emptiness ample(s) =∅ iff enabled(s) =∅.
The next constraint is introduced to ensure that any

path that is not included in the reduced state-transition
graph can be transformed, based on the properties of in-
dependent transitions, into a path in the reduced model,
and therefore the reduction does not omit any paths
which are essential for verification.

C1 Ample decomposition In the full state graph, on any
path starting from some state s, a transition dependent
on a transition from ample(s) cannot appear before some
transition from ample(s) is executed.

To analyze the implications of C1, consider an arbi-
trary sequence of transitions σ = α0, α1 . . . that can be
taken from some state s0 in the full state transition graph.
We outline the basic ideas of a construction that can be
used to generate a path in the reduced model that con-
tains all transitions from σ (Fig. 3). More details of the
construction and a proof for its correctness are given by
Clarke et al. [3].
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Fig. 3. Reordering of transitions based on commutativity

(a) if α0 ∈ ample(s0), then α0 can be taken from s0 in the

reduced model, and the path prefix s0
α0→ s1 belongs

to the reduced model. The construction is continued
inductively from s1.

(b) if α0 6∈ ample(s0), consider first the case where the
transition sequence σ contains some transition from
ample(s0). Let β be the first such transition appear-
ing in σ, i.e., β = αk, with k ≥ 1. Then by condi-
tion C1 all transitions αi with 0 ≤ i < k must be
independent of β, and thus commute with it. There-
fore the transition sequence βα0α1 . . . αk−1αk+1 . . .
is also a transition sequence enabled in s0 in the ori-
ginal model. Moreover, since β ∈ ample(s0), the first
transition can also be taken in the reduced model and
the construction continues form s1 = β(s0).

(c) if α0 6∈ ample(s0) and the sequence σ does not con-
tain any transition from ample(s0), let β be an ar-
bitrary transition from ample(s0). By condition C1,
none of the transitions in σ can be dependent on β.

Therefore, if s1 = β(s0), the path s0
β
→ s1 belongs to

the reduced model and the transition sequence σ is
executable after s1.

Transforming a path σ in the full state transition
graph into a path σ′ including all transitions from σ and
with a prefix that belongs to the reduced model is not suf-
ficient. We still need to know that the constructed path is
stuttering equivalent to the initial one, so that the truth
value of the specification will not be affected.

C2 Invisibility If a state s is not fully expanded, every
transition α ∈ ample(s) has to be invisible.

To analyze the effect of this condition, consider cases
(b) and (c) discussed previously in conjunction with C1
(there is no need to discuss (a), since it did not imply
any change to the path). For case (b), denote the ith

edge on σ by si
αi→ si+1, and let s′i = β(si). Since β com-

mutes with αi for i < k, it follows that s′0s
′
1 . . . s

′
k−1sk+1

is exactly the state sequence obtained by executing the
transition sequence βα0 . . . αk−1. Since β ∈ ample(s0)
but α0 6∈ ample(s0), it follows by C2 that s0 is not
fully expanded, therefore β has to be invisible. Conse-
quently, L(s′i) =L(si) ∀i≤ k. and therefore the sequences
s0s1 . . . sksk+1 . . . and s0s

′
0s
′
1 . . . s

′
k−1sk+1 . . . are stut-

tering equivalent. Case (c) is similar: Here too, β has to
be invisible and L(β(si)) = L(si) for any i, therefore the
two state sequences are stuttering equivalent.

Together, C1 and C2 still do not guarantee that
a stuttering equivalent path in the reduced model can be
found for any path in the original model. To see this, we
note that the recursive condition we have outlined is not
guaranteed to produce a path that contains all transitions
in the original path σ. For case (c), none of the original
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transitions in σ is “consumed”. Instead, an auxiliary tran-
sition β ∈ ample(s0) is appended to the beginning of σ. If
σ does not contain any ample transition from β(s0) either
and this step is repeated sufficiently often, a cycle consist-
ing of inserted ample transitions will be closed. Therefore,
the expansion of state s0 will terminate without ever con-
sidering the transition α0 which is enabled in that state.
If α0 is a visible transition, the specification may have dif-
ferent truth values in the original and reduced models. To
avoid this case, it is necessary to introduce a third condi-
tion (Fig. 4):

C3 Cycle closing condition If a cycle contains a state in
which some transition α is enabled, then it also contains
a state s such that α ∈ ample(s).

With C3, the set of conditions that have to be sat-
isfied by ample sets is complete. The next section shows
how sets of transitions satisfying these conditions can be
computed in practice.

hsk
���βk���α
hs0-β0��*
α
hs1

@@R
β1
XXzα

hs2�β2��)α

Fig. 4. Cycle-closing condition

5 Calculating ample sets

To obtain an efficient reduction procedure, it is necessary
to determine values for the ample sets at each state that
result in a significantly smaller number of successor states
and are at the same time easy to compute with small over-
head. We describe in the following how this can be done
for each of the given conditions.

Checking that an ample set is nonempty (condition
C0) is trivial. Likewise, to verify condition C2 it suffices
to examine each transition in the ample set of a state.
Condition C1, however, is more difficult. One reason is
that C1 is stated as a property of the full state transition
graph, which the reduction technique attempts to avoid
in the first place. Second, the formulation of C1 refers to
future states that may not have been yet examined in the
search. It can be shown [3] that in general checking C1 is
at least as hard as checking reachability for the full state
transition graph.

Consequently, rather than using an algorithm that
needs to check C1 for an arbitrary set of transitions, in
general we will exploit the structure of the system to pro-
duce sets of ample transitions for which condition C1 is
guaranteed to hold. The following exposition discusses
such algorithms for two different classes of concurrent sys-
tems. Common to both is the modeling of the system as
a set of processes , each with a set of transitions (that may
be common in several processes). A process has a set of
local variables that can be changed only by transitions
performed by that process. These variables are part of
the local state of the process, and the product of the local

states forms the global state of the system. A transition
that only changes the local variables of a process is called
an internal transition.

The synchronous communication model requires the
sender and the receiver to coordinate, such as for in-
stance in Communicating Sequential Processes [13] or the
rendezvous model of ADA. Since the sending and the re-
ceiving transitions happen simultaneously, they can be
considered as a common transition shared by the two pro-
cesses. We call such a transition a communication tran-
sition. Assume for the following that a system has only
local and synchronous communication transitions. When
a process Pi arrives at a communication point (a send or
receive action), the corresponding communication tran-
sition is enabled by Pi. It will only be enabled globally
when the communication partner of Pi arrives at its cor-
responding transition point. A communication transition
between two processes Pi and Pj is said to be locally en-
abled by Pi at state s if it can be executed from some state
s′ that has the same local state of Pi as s.

A conservative definition of the dependence relation
considers all local transitions within a process to be pair-
wise dependent. Therefore, a communication transition
will be dependent on local transitions from both pro-
cesses. A suitable selection of ample sets that will satisfy
C1 is the following:

For a state s, select a subset P of processes, such that
for any Pi ∈ P there is no communication locally enabled
by Pi with a process outside of P . Then select all transi-
tions enabled in state s and belonging to some process in
P as the set ample(s).

The partitioning of the processes in two sets guar-
antees that by executing transitions outside the ample
set it is not possible that a transition dependent on an
ample transition will become globally enabled and there-
fore executed before a transition in the ample set. This is
exactly the constraint imposed by C1. The new rule can
be applied in practice by initially selecting P to consist
of a single process. If the constraint is not satisfied, other
processes are added to P until it holds. In the worst case,
P is the set of all processes, which corresponds to a fully
expanded state and no reduction at all.

In the asynchronous communication model, in add-
ition to the local variables of each process, there are
shared message queues through which the communica-
tion between processes is performed. A process executing
a send operation does not have to wait for the destina-
tion process to execute the appropriate receive, unless
the message queue that would be used for communica-
tion is full (we assume a finite-state system and there-
fore finite queues). Likewise, a receiving process consumes
a message from its input queue and does not block un-
less this queue is empty. We call a send and a receive
operation matching if they share the same message queue.
For this discussion we assume the existence of a message
queue for each pair of communicating processes; different
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rules can be given for other cases (e.g., one input queue
per process).

Note that a send operation can enable a matching re-
ceive (if the queue was previously empty) and conversely,
a receive operation can enable a matching send (if the
queue was previously full). Both of these scenarios are al-
lowed for the definition of transition independence, which
merely requires that transitions do not disable each other.
Consequently, we consider the following constraint:

For a given state s, select as the set ample(s) the set of
all enabled transitions from a set of processes P satisfying
the following two conditions:

– No send transition of a process in P is blocked only
because a process outside of P has the corresponding
queue full.

– No receive transition of a process in P is blocked only
because a process outside of P has the corresponding
queue empty.

The above first condition guarantees that the following
scenario does not happen:

A sequence of transitions from processes outside
of P is executed from the current state. Among
these transitions, which are independent of those
selected, there is eventually a receive transition γ.
Its execution enables a send transition α of some
process in P , as its queue is no longer full. But α is
dependent on some transition in the selected ample
set, contradicting C1.

With the first condition above, such a transition γ cannot
exist. A similar scenario that justifies the second condi-
tion can also be shown.

As in the previous case, we can implement this rule by
starting with P consisting of an arbitrary process Pi and
selectively adding other processes until the communica-
tion conditions are satisfied.

The original formulation of C1 requires knowledge
about transitions that can be executed in the future. Ad-
ditional information gathered through preliminary static
analysis may allow more flexibility in choosing ample sets.
For instance, the condition given above for the case of
synchronous communication can be weakened. A process
from P is allowed to have a locally enabled communica-
tion transition with a process outside P if one can deter-
mine that this communication cannot actually take place
in any state reachable from the current state.

However, checking that from a given state a transition
is disabled in the future is as hard as the model checking
problem itself. Again, the solution is to use an analy-
sis that will identify some of the transitions that can no
longer become enabled starting from the current state,
rather than all of them. This can be done by performing
a separate reachability analysis for each process and tak-
ing advantage of the fact that the state space of a single
process is much smaller than the global state space. In the
example given above for synchronous communication one
could check whether the matching communication tran-

sition can be reached in the other process starting from
its local state. This analysis assumes that all communi-
cation transitions which are joint with other processes
are enabled by those processes, and is therefore conser-
vative. Moreover, it is also possible to ignore data values
(selectively or completely) and perform in the simplest
case only a static analysis of the control flow graph of
the process.

This search can be done in a preliminary stage of the
reduction algorithm. It can identify unreachable transi-
tions among those transitions that have possible depen-
dencies (synchronous/asynchronous communication, use
of global variables, etc.). During the subsequent state
search, this information can be used to identify more sub-
sets as ample sets and thus improve the efficiency of the
reduction.

6 Experience with partial order reduction

Various systems that use partial order reduction algo-
rithms have been implemented. Our experience is mainly
related to the Spin implementation described by Holz-
mann and Peled [15]. In this section we will describe vari-
ous lessons learned about the difficulty of implementation
and the efficiency of the partial order reduction.

One noticeable fact about partial order reduction is
that it is usually given as a set of principles rather than an
algorithm, which calls for an open-ended list of heuristics.
In particular, condition C1 can be satisfied by a trivial
implementation that selects all the enabled transitions
from any given state. A better implementation performs
an analysis which is based, for example, on the types of
transitions that are enabled or disabled from the current
state. By making the analysis more involved, and taking
more cases into consideration, one can obtain a better re-
duction. On the other hand, the overhead may also grow
when using a more complicated analysis.

In the Spin implementation [15], the initial deci-
sion was to provide an adequate reduction for the asyn-
chronous communication case. Spin uses the strategy for
calculating ample sets presented in Sect. 5. In particu-
lar, Spin looks for a singleton set P , i.e., one process
that satisfies these conditions. When systems that use
other concurrency mechanisms such as shared variables
or synchronous communication are verified, the reduction
might be far from optimal. Even with this restriction, the
size of the Spin code roughly doubled when the partial
order reduction was first added to it.

The effectiveness of the reduction obtained using the
partial order techniques varies considerably among dif-
ferent examples. It is immediately observable that the
method is effective only for asynchronous systems, where
commutativity between concurrent transitions can be ex-
ploited. Thus, for most hardware systems, which are usu-
ally synchronous, there is little, if any reduction. Con-
current systems, and in particular distributed programs,
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which exhibit a lot of parallelism and independency, are
the main focus of the partial order reduction. For cer-
tain examples, e.g., the distributed sieve of Eratosthenes
for calculating prime numbers, a version of concurrent
sorting and a leader election in a ring of processes, the
reduction was shown to improve exponentially with the
number of processes. Some other, more typical examples
show reduction by one order of magnitude.

A factor that greatly influences the effectiveness of
the reduction is based on the following observation: when
two transitions that are independent can both change the
truth value of predicates that appear in the checked prop-
erty (i.e., the transitions are visible), the order between
them becomes relevant, even if they may be indepen-
dent. Specifically, Condition C2 forces visible transitions
to be selected into an ample set only with all other visi-
ble transitions. A closer look shows that as a result, if an
execution is not present because of the reduction, another
execution with the same order of visible transitions will
be present in the reduced state graph. Experimentally,
the effectiveness of the reduction diminishes quickly with
the number of predicates used in the specification. For
this reason, it is useful to try to simplify the checked prop-
erties, e.g. checking separately for 3p and for 3q, rather
than 3p∧3q.

In Table 1 we present some experimental results of
using partial order reduction. The experiments where
performed on a SGI Challenge machine with 12 proces-
sors and 1.28 gigabytes of memory. The checked algo-
rithms were as follows:

sieve The distributed Sieve of Eratosthenes
algorithm for finding prime numbers

dtp A data transfer protocol
snoopy A cache coherence protocol
pftp A file transfer protocol

These examples are included in the standard bench-
mark that is distributed with the Spin model checking
system [14]. The Spin system, including its standard
example protocols, can be obtained from the web page
http://netlib.bell-labs.com/netlib/spin/whati-

spin.html.
For each of these algorithms, the property that was

checked asserted that some variable, initialized with 0,
eventually becomes 1.

The sieve of Eratosthenes shows the best reduction
among the four protocols listed. Furthermore, when
checking this protocol with a growing number of pro-
cesses, one can measure an exponential blowup in the the
number of states when the reduction is not applied, and
a linear growth with the reduction. This demonstrates an
exponential reduction. The reason for this is that all this
protocol’s executions are essentially equivalent up to re-
ordering of independently executed transitions, as there
are no nondeterministic choices in the code. The expo-
nential explosion in the state space follows entirely from
different arrangement of these transitions. In the other

Table 1. Experimental results for partial order reduction

Algorithm Reduction States Transitions Memory Time

sieve No 10 878 35 594 2 315 1.68
Yes 157 157 1 078 0.08

dtp No 251 409 648 467 34 540 32.2
Yes 16 459 17 603 3 582 1.47

snoopy No 164 258 546 805 19 979 33.57
Yes 29 796 44 145 4 614 3.58

pftp No 514 188 1 138 750 70 004 123.34
Yes 125 595 191 466 18 057 18.59

protocols checked , a more typical reduction is achieved,
as they exhibit both concurrency and nondeterminism.

7 Other partial order reduction methods

The ample sets algorithm, and similarly the persistent
sets and stubborn sets algorithms, are based on calculat-
ing a subset of successors that generates enough paths to
preserve the checked property. This is done by analyzing
the current state and the enabled and disabled transitions
of the checked system.

A different reduction principle has been suggested by
Godefroid [12]. The sleep set method , originally developed
for detecting deadlocks, generates a reduced state graph
by observing the transitions that were already explored.
For each node s expanded by the algorithm, a set of tran-
sitions sleep(s) is kept. This is the set of transitions that
one does not need to explore from s. The intuition behind
the sleep sets algorithm is as follows: If a transition α is
already explored from some node s, then when any tran-

sition s
β
→ t, with β independent of α is explored, there

is no need to explore the transition α from t and α is
added to sleep(t). This follows from the fact that when
the expansion of α is finished, enough representatives for
transitions following the execution of α (including β) are
explored, and exploring α after β would lead to the same
state as exploring β after α. Moreover, consider the case
when α need not be explored from some node s (i.e.,

α ∈ sleep(s)) and an edge s
γ
→ r with γ independent of α

is explored. Then α is added to sleep(r), since the occur-
rences of α immediately following γ can be commuted to
represent an already unnecessary sequence.

When a node is reached again during expansion, a new
sleep set is calculated for it, and is compared with the one
it had before. If the old sleep set contained some opera-
tions that are not included in the new sleep set, the node
is expanded again with a sleep set which is the intersec-
tion of the new and the old sleep set. This guarantees that
if the node is reached from two or more directions, it will
provide enough successors for all of them.

Whereas the sleep sets represents a different approach
for global states based model checking, McMillan’s un-
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folding principle [19] is based directly on the partial order
model of execution. It constructs a structure of partially
ordered local states. The order between events represents
the causal order on their execution. The unfolding al-
gorithm generates a representation of the checked sys-
tem which is sometimes called an event structure. It thus
avoids generating the global states of the system alto-
gether. The original unfolding algorithm was designed
for finding deadlocks. Extensions of this algorithm, e.g.,
by Esparza [7], were developed for checking different
properties.

In cases where partial order methods fail, other tech-
niques for reducing the state space may be more effective.
Composing different methods may result in the ability to
verify more diverse systems, or even obtaining a more sig-
nificant reduction than can be achieved by each method
separately. However, the combination does not always fol-
low trivially from the joint application of separate tech-
niques. Partial order reduction has been combined with
various other model checking methods as follows:

– Partial order can be performed with on-the-fly model
checking [18], i.e., generating the reduced state space
at the same time as checking for counterexamples for
the checked property. The construction can result in
such a counterexample before completing the gener-
ation of the entire state graph [22, 24].

– Symmetry reduction can be used to obtain a smaller
state space when dealing with systems of identical
components. Partial order reduction and symmetry
were combined in [6].

– Symbolic model checking is a very effective method,
which uses the BDD data structure for manipulat-
ing and storing the states. Although it is generally
used for synchronous hardware systems, where par-
tial order reduction is not effective, symbolic model
checking was shown to give very good results for asyn-
chronous systems, including software as well. One way
of combining this method with the partial order reduc-
tion was suggested in [1], where a reduction based on
breadth first search was used [2]. A different way of
combining these methods is suggested in [17], based on
statically resolving possible cycles of the constructed
reduced state space.

Partial order reduction can also be applied to branching
temporal logic and process algebra [9], and be used under
fairness assumptions [21]. Ongoing research on partial
order reduction seeks improved versions of the reduction,
applications for additional models, and specification for-
malisms for which reduction is more effective.
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