
Guiding Random Test Generation for Intra-Class
Dataflow Coverage

Petru Florin Mihancea, Edit Mercedes Mera-Batiz, Marius Minea
LOOSE Research Group

Politehnica University of Timis, oara, Romania
Email: petrum, marius@cs.upt.ro

Abstract—Automatic generation of a good test suite is diffi-
cult, especially for object-oriented software. Feedback-directed
random test generation is an approach that can achieve good
branch coverage and has been used as a basis to systematically
construct suites for testing realistic Java programs. We augment
this random test generation method to create tests suites that
satisfy an intra-class data-flow coverage criterion which is highly
relevant for object orientation, although little addressed or
achieved by tools in practice. We show that our approach can
be used on real object-oriented software and that the technique
for guiding test generation produces an increase in coverage.

Keywords-testing object-oriented programs; dataflow coverage;

I. INTRODUCTION

Generating tests (manually or automatically) is usually
subject to satisfying certain coverage criteria. While control-
flow criteria are employed more frequently and supported by
more coverage measurement tools, dataflow criteria capture a
different set of potential errors. In essence, dataflow coverage
(in particular, the all-uses criterion) aims to check that each use
of a variable has been exercised for every possible statement
(i.e., distinct computation) that may produce the used value.

Dataflow testing can be particularly effective for object-
oriented software, which is characterized by short methods
and many method calls which interact. In particular, it can
detect various anomalies due to improper method overriding.

The simplest automated test generation approach is random;
however, this is not always effective in achieving high cov-
erage. Moreover, it is often difficult to generate meaningful
random tests for object-oriented programs, since objects need
to be created with certain constraints, and method calls must
observe preconditions on data or relative sequencing.

We build on the RANDOOP tool [1] which implements
feedback-directed random test generation. This means step-
wise extension of tests (i.e., sequences of method calls) that
run without errors, using objects and arguments constructed
by previous method calls, but selecting methods and data
at random. Our insight is that guiding the creation of new
tests to use objects and methods in view of covering def-
use pairs has the potential to achieve higher coverage of the
desired dataflow criterion. Our contribution is to propose an
approach that systematically guides random test generation
towards satisfying intra-class dataflow coverage, and to show
that it is effective, achieving higher coverage in shorter time.

II. BACKGROUND

We start by presenting in brief the idea of intra-class
dataflow testing [2] followed be the random test generation
technique implemented in the RANDOOP tool [1]. These
notions will be exemplified based on the code in Listing 1.

Listing 1: Sample Illustrative Java Source Code
1 public class SomeClass {
2 private int x;
3 public SomeClass() {
4 x = 0;
5 }
6 public int a() {
7 return x;
8 }
9 public void b() {

10 x = x + 1;
11 }
12 public boolean c(SomeClass y) {
13 return y != null;
14 }
15 public int d() {
16 return 1;
17 }
18 }

A. Intra-Class Dataflow Testing

Intra-class dataflow testing [2] is a white-box unit testing
method for classes using the notion of intra-class def-use pair.

In an intra-class context, a def is an assignment of a value to
an instance variable of the class. Similarly, a use is a program
point where the value of an instance variable is accessed.
Finally, an intra-class def-use pair is defined as a def of some
value and a successive use of that value with respect to the
same instance variable, where the def and the use must be
performed in different activations of the involved object. In
other words, the def and the use should be executed as a result
of different invocations from a sequence of calls to interface
methods of the object/class. For example, in Listing 1, all the
intra-class def-use pairs are (def line4 − use line7), (def line4 −
use line10), (def line10 − use line7) and (def line10 − use line10).

Many different dataflow testing criteria could be used to
cover these def-use pairs with tests. One of the most practical
approaches, as stated in [2], is the all-uses criterion, requiring
each feasible def-use pair to be executed by a test. For the class
SomeClass, this means the four pairs listed above. Because of
its practical usage and simplicity, we also adopt this criterion
for our automatic test generation for intra-class testing.



B. Random Test Generation with RANDOOP

In RANDOOP [1] a test si is represented as a sequence of
method invocations of the form vi,1 = mi,1, vi,2 = mi,2, . . . ,
vi,n = mi,n

1. The arguments of an invocation mi,k are
predefined primitive values, null or references produced by
previous invocations in the sequence.

RANDOOP records all sequences produced during the ran-
dom test generation procedure. More importantly, all tests
executed without errors (i.e., observing a set of predefined
runtime constraints) are included in a special set seqs from
where they can be selected for generating other new sequences.

In essence, until a specified time limit is reached, RANDOOP
iteratively applies the following procedure:

• a public method from the system is selected randomly
• for each method argument having a primitive type, a value

is selected from a predefined set of values
• for each reference argument of the method (including the

target object if needed) the tool chooses at random i)
to use null ii) to select from the set seqs a sequence sj
producing a value vj,k of appropriate argument type or
iii) to use a value vj,l from a sequence already selected
in step 2 for a previous argument

• finally, all sequences selected to provide values for
method arguments are concatenated and the new method
invocation is appended to this new sequence. The test is
run and, in the conditions mentioned at the beginning of
this section, it may be added to the seqs set to contribute
in turn to generating new longer tests.

As an example, suppose we use RANDOOP to generate tests
for the class in Listing 1. In a first iteration of the previous
procedure, assume that the method a is randomly chosen.
Since seqs is empty, we cannot find a target object to invoke
the method. Consequently, in this iteration, we cannot create
any test. In a second iteration, suppose the constructor of the
class is selected. Since its invocation does not require any
argument, the first sequence is created containing only the
constructor invocation (see the first test in Listing 2). Next,
the sequence is executed and added to the seqs set.

Listing 2: Test Generated with RANDOOP

//Test 1
SomeClass var0 = new SomeClass();

//Test 2
SomeClass var0 = new SomeClass();
SomeClass var1 = new SomeClass();
var0.c(var1);

Suppose that in the third iteration, method c is randomly
chosen. RANDOOP searches in the sequences from seqs a
reference on which to invoke the method and another one to be
used as the argument value. The only possible reference is var0
generated in the previous iteration. Thus, a new test is created
by duplicating (once for the target object and once for the
argument) the sequence of the first test. Next, the duplicated
sequences are concatenated and, at the end, an invocation to

1If a method returns void the assignment is not included

method c is added (see the second test in Listing 2). Finally, the
sequence is executed and added to the seqs set. This iterative
process continues until an upper time limit is reached.

C. The Problem
Although RANDOOP has proved to be efficient in generating

tests for object-oriented programs, it does not keep track of any
coverage criterion for the resulting tests, nor does it attempt to
satisfy any such criterion. The choice of a method to extend a
test is purely random. It does not take into consideration what
defs have been executed by a particular invocation sequence,
what methods containing some uses should be selected to
extend a sequence in order to access the values assigned by
the executed defs, etc.

Consequently, our idea described subsequently is to guide
RANDOOP’s method selection, extending the already built tests
in a way that increases the likelihood of covering more intra-
class def-use pairs and achieving better dataflow coverage.

III. GUIDING RANDOOP FOR INTRA-CLASS ALL-USES
CRITERION

To guide RANDOOP aiming to produce tests that comply
faster to the all-uses criterion for intra-class def-use pairs, we
had to change the normal test generation procedure of the
tool, described in II-B and on the left-hand side of Figure 1.
In essence, we try to bypass the pure random selection of the
method and target object for the creation of a new test. Instead,
we keep track of available objects within a test and of the defs
executed on them and try to extend that test with invocations
to methods containing defs and/or uses not yet executed.

Randoop 
selects randomly  
a public method

Empty 
waitingQueue?

Randoop 
randomly selects 
the target object 

(if necessary)

Empty 
noargConstructor

Queue?

YES

Poll the next no-
arg constructor

Guiding test generation 

Normal 
execution ?

Schedule tuples in 
the waitingQueue

YES

NO

Poll a tuple and  
force a call to the 
specified method 

and target

NO

1

3

4

YES

NO

Randoop 
Run the resulted 

sequence

randomly selects 
the remaining 

arguments and 
produces the new 

sequence

Capture runtime 
information about 

tests

2

Fig. 1: Integrating the Guiding Procedure in RANDOOP



A. Intra-Class Def-Use Pair Representation

In the guiding procedure that we propose in this paper we
represent an intra-class def-use pair by a tuple of the form
(mdef ,muse , F, C) in which:

• C is a concrete class from the tested system
• F is a field from class C
• mdef is a method of C containing a definition of field F
• muse is a method of C containing a use of field F

Although this is an approximation (i.e., a method may
contain several distinct defs / uses of the same field) we
adopt it because it simplifies both the description and the
implementation of the guiding procedure and it is sufficient to
evaluate the advantage of our approach over unguided random
test generation with respect to intra-class all-uses coverage.

B. The Guiding Procedure

The approach maintains a waitingQueue of tuples of the
form (si, vi,j , (mdef ,muse , F, C), selector) in which:

• si is a sequence of method invocations from the tested
system (like the sequences produced by RANDOOP)

• vi,j represents a reference value produced by the jth

invocation from si
• (mdef ,muse , F, C) represents an intra-class def-use pair

as previously explained
• selector is the symbolic value forceDef or forceUse mean-

ing that the method mdef (respectively, muse ) should be
invoked on reference vi,j

When the waitingQueue is not empty, the first tuple is
extracted and our guiding procedure tries to produce a new test
by forcing the invocation of the corresponding method on the
corresponding target according to the tuple description. More
details regarding this task are presented in Section III-B4. The
reason and the manner in which a new tuple is added to the
waitingQueue are described in Section III-B3.

On the other hand, when the waitingQueue is empty, it
means that no tuple awaits processing and control should be
returned to the original RANDOOP procedure (i.e., randomly
select a method to be invoked). However, we have also added
another heuristic that is described in the following.

1) Invoke No-Arg Constructors: Instance variables stay at
the heart of an intra-class def-use pair. Consequently, we
should try to create objects early in the random test generation
process. Unfortunately, this is not an easy task: creating an
object might require the existence of some other instances to
be passed as arguments to the object constructor. To balance
these requirements we decided to only enforce the instantiation
of the classes having a no-arg constructor.

Consequently, we search for all no-arg constructors in
the analyzed program and place them in a noargConstruc-
torQueue. When this queue is empty we return control to the
original RANDOOP procedure (i.e., randomly select a method
to be invoked). However, if the noargConstructorQueue is
not empty, we extract the first constructor and we pass it to
RANDOOP as if it had been randomly chosen.

As an example, consider the code from Listing 1. When the
guiding procedure is initialized, the content of the noargCon-
structorQueue is determined. In this case, the single element
of the queue is the SomeClass constructor. When RANDOOP
invokes the test generation procedure, the waitingQueue will
be empty (because no tuple has been identified yet). However,
the noargConstructorQueue is not empty and thus, the only
constructor is extracted from the queue and returned to RAN-
DOOP as if it had been selected randomly. As a consequence,
a first test is immediately created (see Listing 3).

Listing 3: Creating Sequences to Invoke No-Arg Constructors
//Test1
SomeClass var0 = new SomeClass();

2) Collecting Information About Test Execution: An es-
sential step in the RANDOOP test generation procedure is to
run the generated test in order to identify tests that could be
extended with invocations to new methods. We take advantage
of this execution to identify runtime information such as:

• for each object produced during a test execution, we
determine which method mdef executed the last definition
of a field F of that instance of class C

• when a use is detected for a field F in an instance of class
C, we determine the muse method performing the access;
next, based on the previous information, we identify the
method mdef performing the last definition of F from
class C on the same object; consequently, in a simplified
manner, we can determine which (mdef ,muse , F, C) pair
has been covered

• for each object produced during a test execution, we
record (in their execution order) a list of methods per-
forming a def or a use of some field of the object

This information is used further to guide the test generation
procedure and is obtained by instrumenting the tested code.
In essence, we capture the execution of bytecode instructions
related to the definition and usage of a field together with
the method performing the access and the target object. Based
on this primary information we can derive all the previously
mentioned knowledge regarding the execution of the tests.

As an example, after the execution of the single test from
Listing 3, our guiding procedure will record that the last
definition of the field x from class SomeClass has been
performed by the mdef method (more precisely, constructor)
SomeClass. Second, it will be also recorded that no intra-class
def-use pair has been covered by the test. Finally, it will be
determined that, on the created instance, only the initialization
operation has performed a definition of some field.

3) Scheduling Enforced Method Invocations: As mentioned
earlier, our idea is to try to bypass the random method selection
performed by RANDOOP to create a new test. For this purpose,
we maintain a queue of tuples containing information about
interesting target objects and methods to be invoked in order to
cover more intra-class def-use pairs. In this section we show
how we determine these interesting instances and methods.

Basically, after a successful execution of a newly generated
test sk of the form vk,1 = mk,1, vk,2 = mk,2, ..., vk,n = mk,n



we analyze the collected runtime information and add new
elements to the waitingQueue using the following two steps.

a) Try Forcing a Use: As we have mentioned, each
intra-class def-use pair is represented as a tuple of the form
(mdef ,muse , F, C). Clearly, this information can be computed
statically for all classes of the tested program.

Assume now that the test sk has executed successfully. As
explained in Section III-B2, for each object created during
a test execution, we know what method performed the last
definition of each field of that object. Consequently, for an
object of class C referred by a reference vk,l from sk we
know the method mdef that performed the last definitions of
the field F . Thus, for the object vk,l of class C we can try
to force an invocation to any method muse of C containing a
use of the field F . In other words, we try to invoke a method
muse that might access the last value set for F and thus cover
the intra-class def-use pair (mdef ,muse , F, C).

As a result of this step, several tuples having the form
(sk, vk,l, (mdef ,muse , F, C), forceUse) will be added to the
waitingQueue. Continuing with the example based on the class
from Listing 1, as explained at the end of the previous section,
by executing the single test available until now (see Listing 3),
the last definition of field x on the instance var0 of SomeClass
has been performed by the class constructor. It is easy to
see that all def-use pairs in which the first method contains
a definition of field x and the second method contains
a use of that field are: (SomeClass, a, x,SomeClass),
(SomeClass, b, x,SomeClass), (b, a, x,SomeClass), and
(b, b, x,SomeClass). Thus, in order to cover new intra-class
def-use pairs, we should try to generate a test in which
we invoke method a on var0 and another one in which
we should try to invoke method b on the same reference.
Consequently, two tuples are added to the waitingQueue:
(test1, var0, (SomeClass, a, x,SomeClass), forceUse) and
(test1, var0, (SomeClass, b, x,SomeClass), forceUse).

The execution of this selection step is controlled by several
constraints described in the following:

1) a tuple is added to the waitingQueue if and only if the
corresponding (mdef ,muse , F, C) is not yet covered; the
rationale is that if an intra-class def-use pair has been
covered we should not try to cover it again;

2) if the executed sequence sk has been obtained by
our guiding procedure, a new tuple is added to the
waitingQueue only if the sequence was not created by
the same Try Forcing a Use step. The reason is that
part of sequence sk has been already used by this
step, and reapplying the step will likely duplicate tests.
However, there is an exception from this constraint:
if sk has covered new intra-class def-use pairs, we
allow reapplying the same step because some uses might
become reachable (e.g., an use in an object may alter the
state of an object component, enabling the execution of
another use in that object).

b) Try Forcing a Def: While the purpose of the previous
step is to try to exercise invocations of methods performing
new uses of some fields of the target objects, the purpose of

the second step is to call methods in the hope of executing
new definitions of some fields.

As mentioned, we can statically compute all tuples
(mdef ,muse , F, C) representing the intra-class def-use pairs
for every class C. Moreover, during the execution of our
modified random test generation, we know which tuples
(mdef ,muse , F, C) have already been covered. Consequently,
for each reference vk,l from a sequence sk pointing to an
object of type C, we can easily determine which tuples
(mdef ,muse , F, C) have not been covered yet and thus, which
methods mdef we should try to invoke on the object vk,l.

As a result of this step, several tuples of the form
(sk, vk,l, (mdef ,muse , F, C), forceDef ) are added to
the waitingQueue. Recall that the intra-class def-use
pairs for Listing 1 are (SomeClass, a, x,SomeClass),
(SomeClass, b, x,SomeClass), (b, a, x,SomeClass), and
(b, b, x,SomeClass). Moreover, as shown at the end
of section III-B2, during the execution of the single test
available so far (see Listing 3), we have a single object of class
SomeClass referred by var0 and no intra-class def-use pair
has been covered yet. To increase the likelihood of covering
these pairs we should try to execute the definitions of these
pairs. Thus, we should generate tests which invoke method b
on var02. As a result, the following tuples are added to the
waitingQueue: (test1, var0, (b, a, x,SomeClass), forceDef )
and (test1, var0, (b, b, x,SomeClass), forceDef ).

Like the previous step, forcing a def is also controlled by
several constraints described in the following:

1) a tuple is added to the waitingQueue if and only if the
corresponding (mdef ,muse , F, C) has not been already
covered; the reason is that we should not force another
execution of the same intra-class def-use pair since it
has been already executed;

2) if the executed sequence sk has been obtained by our
guiding procedure we do not permit the execution of the
Try Forcing a Def step; the reason is that sk may already
contain a sub-sequence that has been already processed
by this step and thus, reapplying it would result in highly
duplicated tests;

3) a tuple is added to the waitingQueue if and only if the
corresponding (mdef ,muse , F, C) is not already present
in another tuple from the waitingQueue; the primary
rationale is that the test might have performed the def
from mdef but not also the use from muse . In this case,
forcing an invocation to mdef is not needed since only a
use should be forced trying to cover the pair. However,
forcing the muse invocation has already been done by
the Try Forcing a Use step.

4) Produce a Guided Test: As we have mentioned at the
beginning of the guiding procedure description, when RAN-
DOOP starts trying to generate a new test, we try to bypass the
random selection of a method to be invoked. For that purpose,
the waitingQueue is fed with information as described in the

2Since a constructor can be executed only at the object creation time, the
def methods from the first two tuples are ignored in this step



previous paragraphs. If the waitingQueue is empty, we usually
let RANDOOP produce a test in its normal manner3. Otherwise,
the first tuple from the queue is processed. We remind that this
tuple has the form (si, vi,j , (mdef ,muse , F, C), selector).

The selector has the symbolic values forceDef or forceUse
and is used to choose which method to invoke: mdef or muse .
The target reference of the invocation will be vi,j from the
sequence si. For the remaining arguments of the invocation
we perform exactly the same actions as RANDOOP, e.g., for a
reference parameter, a compatible value vx,y from the test sx is
randomly chosen as the actual value of the parameter. Finally,
all selected tests/sequences are concatenated (including si) and
the invocation to mdef /muse on vi,j is appended at the end.
As can be seen, a test is produced in a very similar way to
RANDOOP but we explicitly mention the invoked method and
the target reference to increase the likelihood of covering intra-
class def-use pairs according to the all-uses criterion.

To exemplify the generation of a new test, we return to the
code in Listing 1. While explaining the guiding procedure, we
have seen that after the execution and analysis of the test in
Listing 3, the waitingQueue contains the following tuples:
(test1, var0, (SomeClass, a, x,SomeClass), forceUse),
(test1, var0, (SomeClass, b, x,SomeClass), forceUse),
(test1, var0, (b, a, x,SomeClass), forceDef ) and
(test1, var0, (b, b, x,SomeClass), forceDef ).
The first tuple is extracted and the first test (i.e., Test1) is
duplicated to provide a reference (e.g., var0) on which to
invoke method a (i.e., the method containing an use that should
be executed). Since the method has no additional arguments,
the new test (i.e., Test2) can be produced and it is shown in
Listing 44. Here, the execution of the second test immediately
covers an intra-class def-use pair: the definition of the instance
variable x from the constructor and its use inside method a.

Listing 4: Producing a New Test
//Test1
SomeClass var0 = new SomeClass();

//Test2
SomeClass var0 = new SomeClass();
int var1 = var0.a();

To avoid generating unnecessary tests we add some con-
straints that guard the test construction:

1) If all intra-class def-use pairs of class C corresponding
to the current working tuple have been covered, the test
construction is useless and no test is produced;

2) As mentioned in Section III-B2, for each instances we
record the list of operations performing a def or an use to
some field of the object. Consequently, when we force a
call to a method mdef / muse on an object, we can check
to see if the resulting sequence of invocations have not
already been performed on another object of the same
class. If such an object exists, then we do not create a

3The single exception is described in Section III-B1
4We mention that RANDOOP eliminates subsumed tests and thus the final

jUnit test suite will not contain the first test

new test. The reason is that the two objects might have
the same state and thus, applying our guiding procedure
on them would likely have the same effect, resulting in
duplicated tests. Moreover, if our guiding procedure fails
to cover some def-use pair using an object, reapplying
the procedure on an object with a similar state would
probably also fail to cover that def-use pair.

IV. EVALUATION

To evaluate the proposed approach we have created a modi-
fied version of RANDOOP that includes our guiding technique.
For this, we have used the ASM framework [3] and the
CODEPRO analysis tool [4]. In this section we describe the
conducted case study and we discuss the results.

A. Scenario
For our evaluation we have selected the JUNG network/graph

framework5, implemented in Java. From this system we have
eliminated some irrelevant classes that are usually not targeted
by testing activities (e.g., the implementations of other tests,
etc.). Moreover, since we aim to interact with concrete objects,
we have prepared for testing with the original/modified RAN-
DOOP tool only the concrete non-nested/non-inner accessible
classes. Consequently, 250 classes from the JUNG system
remained to be used for our evaluation.

The main goal of our case study was to establish if the
proposed guiding technique can improve the intra-class def-
use pair coverage compared to the random test generation
technique implemented in RANDOOP, and whether the ob-
tained coverage increases faster. Consequently, we have gen-
erated tests using i) the original RANDOOP and ii) the modified
RANDOOP including the proposed guiding approach. For each
test suite obtained, we have estimated the intra-class def-use
pair coverage and we have compared the results.

This process has been repeated for different time execution
limits. In each execution we used the default RANDOOP
options including the randomization seed (the single excep-
tions being the time limit and the list of tested classes as
previously described). Moreover, to limit the influence of non-
determinism6, we have repeated each execution 3 times and
we have reported and compared the averages.

To ensure a proper comparison, we have included in the
maximum execution time the extra time required by the oper-
ations from our guiding procedure (e.g., code instrumentation
time, etc.). All test generations have been performed on the
same computer, with a 2.5 GHz Intel i5 processor, 8 GB of
RAM, 128 GB of SSD and running Mac OS X 10.8.5. For
each run, the JVM has been configured with a heap of 4 GB.

B. Results
Table I gives the numerical results of our experiments, while

Figure 2 shows a visual summary for easier comparison.

5http://jung.sourceforge.net/
6The original RANDOOP should be deterministic since it uses the same

default randomization seed. However, the tested code may introduce non-
determinism, the garbage-collector might influence the real execution time,
the modified RANDOOP contains some non-deterministic implementation
particularities e.g., the “order” of elements when iterating over a set, etc.

http://jung.sourceforge.net/


20.1	  

32.6	  

42.5	  

45.7	   47.4	  
48.5	  

25.3	   30.8	  

35.9	  
37.5	  

39.7	   40.8	  

0.0	  

5.0	  

10.0	  

15.0	  

20.0	  

25.0	  

30.0	  

35.0	  

40.0	  

45.0	  

50.0	  

400.0	   800.0	   1200.0	   1600.0	   2000.0	   2400.0	   2800.0	   3200.0	   3600.0	   4000.0	   4400.0	  

pe
rc
en

t	  

seconds	  

Not	  Guided	  

Guided	  

(a) Intra-Class Def-Use Pair Coverage

2777.0	  

4647.0	  

6863.3	  

10136.7	  

11628.0	  

13780.3	  

2091.3	  

3254.7	  

5176.0	  

6905.3	  

8693.0	  

9238.0	  

0.0	  

2000.0	  

4000.0	  

6000.0	  

8000.0	  

10000.0	  

12000.0	  

14000.0	  

400.0	   800.0	   1200.0	   1600.0	   2000.0	   2400.0	   2800.0	   3200.0	   3600.0	   4000.0	   4400.0	  

te
st
s	  

seconds	  

Not	  Guided	  

Guided	  

(b) Number of Generated Tests

Fig. 2: Experimental Results

Time Limit Non-Guided Guided Non-Guided Guided
(sec.) Coverage Coverage Tests Tests

(% avg.) (% avg.) (avg.) (avg.)
400 25.3 20.1 2 091.3 2 777.0
800 30.8 32.6 3 254.7 4 647.0
1600 35.9 42.5 5 176.0 6 863.3
3200 37.5 45.7 6 905.3 10 136.7
4000 39.7 47.4 8 693.0 11 628.0
4400 40.8 48.5 9 238.0 13 780.3

TABLE I: Experimental Results

As can be observed, for small execution time limits (e.g.,
400 seconds), our guiding procedure temporarily achieves
lower intra-class def-use coverage than the original RAN-
DOOP. However, this is expected: the guiding procedure per-
forms many additional actions (e.g., code instrumentation, de-
termining the def-use pairs in a concrete class, capturing run-
time information, etc.) especially at the beginning of the test
generation process. For a fair comparison, the time allocated to
the modified RANDOOP includes these actions and thus its real
time limit for test generation is actually smaller. Nevertheless,
by inspecting our code during evaluation, we have identified
potential ways to speed up these additional tasks and lower
their overhead on the test generation procedure.

At about 800 seconds, our guiding procedure starts showing
its advantage, see Figure 2(a). For longer time limits, the
test suites produced with our guided approach achieve better
coverage, by 6.4% on average. For the largest time limits
employed, the improvement appears to stabilize at about 8%.

Another observation is that the guiding procedure tends
to increase coverage faster that the pure random approach
(see the improvement rate between 800 and 1600 seconds in
Figure 2(a)). This is consistent with the expected behavior:
each time an object of a class containing not yet covered
by intra-class def-use pairs is detected in a test, the guiding
procedure attempts to immediately extend that test by calling
the required methods on that object to improve the coverage.
Thus, this suggests that the improvements are the results of the
guiding procedure itself and that they are not circumstantial.

We should also emphasize that for a time limit greater
than 1600 seconds, the coverage improvement rate appears
to be similar for the guided and for the unguided RANDOOP.

This might be a sign that beyond this threshold the coverage
improvement is actually done by the “unguided part” of the
modified RANDOOP exposing a limitation of the proposed
technique. Intuitively, such a situation may appear when cover-
ing an intra-class def-use pair requires complex object protocol
conditions for invoking the methods containing the targeted
defs/uses (e.g., not simply invoking a method containing a use
after a method containing a def to the same field).

We also present in Table I and Figure 2(b) the number
of tests produced by the modified and unmodified RANDOOP
for each time limit, averaged over the three runs. In essence,
executing our guiding procedure generates a larger number
of tests, by 40% on average. Since more tests are produced
in order to increase the coverage with an average of 6.4%,
this might be perceived as a disadvantage of our approach.
However, this is not necessarily true, because it depends on
the actual result revealed by a generated test. For instance, if
it exposes an error or an object protocol requirement (e.g., a
method must always be invoked before another one) that is
not observed by the test, then the additional test is extremely
valuable. However, at this time, we have not performed a
manual analysis of these tests and thus, we cannot draw a
conclusion with respect to this issue.

Evaluating the results for this experiment, we argue that our
guiding technique can augment the feedback-directed random
test generation in order to more quickly produce better tests
with respect to the intra-class def-use testing quality criterion.
Although the gain might be considered relatively small at this
time, we point out that it was obtained with an unoptimized
adaptation as discussed at the beginning of this section.

C. Threats to Validity

In terms of external validity, we have used only one system
and thus we cannot reliably generalize the conclusion. How-
ever, the analyzed program is real (i.e., not fabricated) which
should increase the relevance of our results.

In terms of construct validity, our guiding procedure aug-
ments the RANDOOP source code. To the best of our under-
standing, the results should not depend on other interactions
besides the intended guiding procedure, however, this cannot
completely be excluded.



Another issue regarding construct validity comes from the
way in which we approximate def-use pairs by identify-
ing them using the methods containing the corresponding
statement. However, we consider that this approximation is
acceptable for the current state of our work.

V. RELATED WORK

Our paper aims to automatically generate a test suite
with good dataflow coverage. Applying dataflow testing to
object-oriented programs was first investigated by Harrold and
Rothermel [2]. They distinguish between def-use pairs at three
levels: intra-method, inter-method (when exercised within a
call to a single public method), and intra-class (resulting from
calls to an arbitrary pair of public methods). We focus on intra-
class testing as being the most comprehensive (and needed
especially to test libraries).

Finding precise def-use relations can be problematic itself;
the algorithm presented in [5] takes into account the typical
obstacles in object-oriented analysis (dynamic dispatch, im-
precise concrete types, aliasing, exceptions) and can be used
in test generation. Our prototype uses an approximation by
considering method pairs that define and use the same field.
A more precise def-use analysis would avoid generating tests
that try to exercise infeasible def-use pairs; at the same time,
the reported coverage would be higher, being measured relative
to a smaller set of def-use pairs to be covered. Tsai et al. [6]
show that dataflow anomalies have to be considered in order
to obtain a complete set of relevant test cases and do this in
a preliminary stage before test case generation.

Several studies provide empirical evidence that dataflow
coverage criteria are useful in testing object-oriented software.
A test strategy that combines the all-bindings and all du-pairs
criteria is presented in [7]. It is shown that more than 80%
of object-oriented faults can be detected, although def-use
relations are tracked only per object rather than at the level
of individual fields. In [8], def-use coverage is employed
also for inter-class (integration) testing, by using contextual
information to test state-dependent behavior; this is shown to
be effective for detecting seeded mutants.

An approach to detect state-dependent failures is con-
structed in [9] by augmenting dataflow analysis (which merely
produces du-pairs) with symbolic execution to achieve the
necessary conditions and automated deduction that generates
call sequences conforming to the needed pre- and postcon-
ditions. While the combination is supposed to fall back on
just dataflow analysis in case of complex programs, it is only
illustrated on a simple case study. In comparison, by adapting
RANDOOP we have chosen a more light-weight approach, but
which is shown to work on a real program of significant size.

To increase coverage, evolutionary algorithms have been
employed. Tonella [10] uses genetic algorithms to generate
test sequences; relevant features include the methods to invoke
and the created objects to use for these invocations, which
are also used in our approach to guiding test generation. A
genetic algorithm aimed specifically at dataflow testing is
presented in [11]; it also achieves a higher coverage than

random testing, using a smaller test suite. A large-scale case
study, implementing dataflow criteria for the EVOSUITE tool,
is reported in [12]. The coverage level achieved (54% of def-
use pairs) is comparable to our results; despite the relatively
low value, achieving a higher mutation score than for branch
coverage confirms the benefits of dataflow testing.

VI. CONCLUSION

We have presented in this paper an approach to guide a
well-known random test generation technique in order to more
quickly produce better test suites with respect to the intra-class
def-use coverage testing criterion for object-oriented programs.
We have also presented our initial evaluation of the approach
emphasizing its potential. Although the identified gain might
be considered relatively small, it proves that it deserves
investing work in optimizing some implementation details that
might improve the current results. Consequently, this would
be one of the main directions for future work. At the same
time, we would like to identify other test generation guiding
approaches to address other object-oriented dataflow testing
criteria. Last but not least, we should also investigate the
advantages of producing test suites according to the previous
criteria in order to find defects within the tested applications.

REFERENCES

[1] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in 29th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2007, pp. 75–84.

[2] M. J. Harrold and G. Rothermel, “Performing data flow testing on
classes,” in Proceedings, 2nd ACM SIGSOFT Symposium on Foundations
of Software Engineering (FSE). ACM, 1994, pp. 154–163.

[3] INRIA and France Telecom, “Introduction to the ASM 2.0 bytecode
framework,” http://asm.ow2.org/doc/tutorial-asm-2.0.html.

[4] R. Marinescu, G. Ganea, and I. Verebi, “InCode: Continuous quality
assessment and improvement,” in 14th European Conference on Software
Maintenance and Reengineering (CSMR). IEEE Computer Society,
2010, pp. 274–275.

[5] R. Chatterjee and B. G. Ryder, “Data-flow-based testing of object-
oriented libraries,” Rutgers University, Tech. Rep. DCS-TR-433, 2001.

[6] B.-Y. Tsai, S. Stobart, and N. Parrington, “Employing data flow testing
on object-oriented classes,” IEE Proceedings - Software, vol. 148, no. 2,
pp. 56–64, 2001.

[7] M.-H. Chen and H. Kao, “Testing object-oriented programs - an
integrated approach,” in 10th International Symposium on Software
Reliability Engineering. IEEE Computer Society, 1999, pp. 73–82.

[8] G. Denaro, A. Gorla, and M. Pezzè, “An empirical evaluation of data
flow testing of Java classes,” University of Lugano, Tech. Rep. 2007/03.

[9] U. A. Buy, A. Orso, and M. Pezzè, “Automated testing of classes,”
in Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 2000, pp. 39–48.

[10] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA). ACM, 2004, pp. 119–128.

[11] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, “Using genetic algorithms
to aid test-data generation for data-flow coverage,” in 14th Asia-Pacific
Software Engineering Conference (APSEC). IEEE Computer Society,
2007, pp. 41–48.

[12] M. Vivanti, A. Mis, A. Gorla, and G. Fraser, “Search-based data-flow
test generation,” in 24th IEEE International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2013, pp. 370–379.


