
Static Partial Order Reduct ion

R. Kurshan 1 , V. Levin 1 , M. Minea 2, D. Peled 1,2, H. Yenig/in 1

i Lucent Technologies, Bell Laboratories, Murray Hill, NJ 07974
2 Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

A b s t r a c t . The state space explosion problem is central to automatic
verification algorithms. One of the successful techniques to abate this
problem is called 'partial order reduction'. It is based on the observation
that in many cases the specification of concurrent programs does not
depend on the order in which concurrently executed events are inter-
leaved. In this paper we present a new version of partial order reduction
that allows all of the reduction to be set up at the time of compiling
the system description. Normally, partial order reduction requires devel-
oping specialized verification algorithms, which in the course of a state
space search, select a subset of the possible transitions from each reached
global state. In our approach, the set of atomic transitions obtained from
the system description after our special compilation, already generates a
smaller number of choices from each state. Thus, rather than conducting
a modified search of the state space generated by the original state tran-
sition relation, our approach involves an ordinary search of the reachable
state space generated by a modified state transition relation. Among
the advantages of this technique over other versions of the reduction
is that it can be directly implemented using existing verification tools,
as it requires no change of the verification engine: the entire reduction
mechanism is set up at compile time. One major application is the use
of this reduction technique together with symbolic model checking and
localization reduction, obtaining a combined reduction. We discuss an
implementation and experimental results for SDL programs translated
into COSPAN notation by applying our reduction techniques. This is
part of a hardware-software co-verification project.

1 I n t r o d u c t i o n

One c o m m o n me thod for dealing with the intrinsically intractable computa t iona l
complexi ty of model-checking asynchronous systems is partial order reduction.
This reduct ion technique exploits the c o m m o n practice of model ing concurrent
events in asynchronous systems as an interleaving of the events in all possible
execution orders. An impor t an t observation about such systems is tha t the prop-
erties one needs to check often do not distinguish among these different orders.
The reduct ion a lgor i thm produces a state graph which contains only a subset
of the s tates and transi t ions of the original system, but which contains enough
informat ion about the modelled sys tem so tha t it is possible to apply model
checking a lgor i thms to it instead of the full s tate graph. The verified proper ty is

346

guaranteed to be true in the reduced model if and only if it is true in the original
model.

Since partial order reduction is naturally defined for asynchronous systems,
it has thus far been applied mainly to the verification of software. Traditional
partial order reduction algorithms use an explicit state representation and depth
first search. In contrast, other techniques for model checking, most notably sym-
bolic model checking based on binary decision diagrams (BDDs), have proved
most effective for synchronous systems, in particular for verifying hardware. In
this paper we describe a reduction algorithm that was developed to satisfy the
following goals:

- Perform efficiently for a system that combines software and hardware, and
therefore combine well with symbolic model checking.

- Be independent of the type of search, e.g., be applicable to depth- or breadth-
first search without a change.

- Allow a large (in our case, in fact the entire) part of the reduction to be
done during compilation of the modelled system.

- Be compatible with existing model checking tools without requiring a change
to their search engines.

We show a partial order reduction algorithm that achieves these goals. Our
method was motivated by an interest to verify embedded systems containing
both hardware and software. In our case, the software was written in the SDL
language [13] and was translated into the specification language S/R, which is
an automata based language for specifying coordinating processes and used as
the input language for the model-checking tool COSPAN [7]. COSPAN runs on
synchronous input models and supports a symbolic (BDD-based) state space
search.

Previous implementations of partial order reduction algorithms in pre-existing
state space search engines required considerable changes in the search mecha-
nism [6, 9]. The alternative was to construct a special tool for performing the
search [14]. In [9], a reduction that is based on doing a large part of the calcula-
tions at compile time is described. However, some changes are still made to the
search engine, controlling the backtracking mechanism in the depth-first search
performed in the SPIN [8] model checker.

Since we began with an efficient translator [2] from SDL to S/R, we aimed
to investigate whether one could obtain an efficient partial order reduction al-
gorithm with all of the reduction-specific calculations taking place at compile
time, without changing the search mechanism of the COSPAN verification en-
gine. COSPAN should treat the translated model as a regular model, without
having to undergo any changes to implement the reduction. The process is il-
lustrated in Fig. 1. The usual model checking procedure involves translating the
source code into some intermediate code, which is then analyzed by the actual
model checking algorithms. The reduction usually requires a change to the code
of the model checker. In this paper, we suggest a modified partial order reduc-
tion that can be applied to the translation. The model checking tool remains
unchanged.

347

A related recent result is the combination of partial order reduction with
symbolic model checking reported in [1]. This is based on performing a reduction
which uses breadth first search [3]. The method suggested in the present paper is
more general in the sense that it is independent of the type of search used (e.g.,
breadth first or depth first). It can also be applied to existing model checking
tools without imposing any changes and hence should be easier to adopt and
implement.

Checked [Internal t
System~. l Translation Code I Compiler ~ Model Checking Tool

Model Checking without Partial Order Reduction

Checked Internal Model Checking Tool
System ~. Translation Code _. with

Compiler I Partial Order
Reductions

Traditional Model Checking with Partial Order Reduction

Checked
System:,

Translation
Compiler

with Partial Order
Options

I Internal [
Code

I ~ Model Checking Tool

New Scheme for Model Checking with Partial Order Reduction

Fig. 1. Model Checking Scheme

348

2 A S i m p l i f i e d S e a r c h A l g o r i t h m

2.1 T h e A m p l e Se t s M e t h o d

The reduction method we describe is applied to systems which are modelled
as state-transit ion graphs. A state transition graph is defined as a tuple M =
(S, S0,T, L), where S is the set of states, So is the initial state set, T is a set
of transitions c~ C_ S • S, and L : S ---* 2 Ap a function that labels each state
with some subset of a set AP of atomic propositions. A transition c~ is enabled
in state s if there is some state # for which c~(s, #) holds. We denote the set of
transitions enabled in s by enabled(s). If for any state s there is at most one state
with ~(s, #) , we say that ~ is deterministic and we will write # = ~(s). In
the following, we will consider only deterministic transitions. Note tha t al though
the transitions are deterministic (a usual practice in modeling concurrency), we
can easily model non-deterministic choice (between different transitions tha t are
enabled at the same time).

We introduce the key concept of independent transitions. These are transi-
tions whose respective effects are the same, irrespective of their relative order.

Definition1. Two transitions c~ and/3 are independent if for every state s the
following two conditions hold:
Enabledness: If ~,/3 E enabled(s) then/3 E enabled(a(s)) and c~ E enabled(/3(s))
Commutativity: I f c~,/3 E enabled(s) then a(/3(s)) =/3(~(s)).

In other words, a pair of transitions is independent, if at any state executing
either of them does not disable the other, and executing both in either order
leads to the same state. Two transitions are called dependent if they are not
independent. �9

To construct the reachable state space, model checking algorithms perform
a traversal of the state-transit ion graph (typically depth-first or breadth-first
search). The traversal starts from the set of initial states and successively con-
structs new states by exploring the transitions that are enabled in the current
state. Partial order reduction differs from full state exploration in that at each
step it considers only a subset of the transitions enabled at the current s tate s.
This set is denoted by ample(s). With a good choice of ample(s), only a small
fraction of the reachable state space will be explored. On the other hand, a num-
ber of conditions must be enforced on this set to ensure that the t ruth value of
the checked property is preserved in the reduced model. In the following, we
give a set of such conditions together with an informal explanation of their role.
A complete t reatment of these conditions together with a formal proof is given
in [12].

Condition CO is the simplest and guarantees that if a s tate has a successor
in the original model, it also has a successor in the reduced model.

CO [Non-emptiness condition] ample(s) = 0 if and only if enabled(s) = 0.
C1 [Ample decomposition] On any path start ing from state s, all the transi-

tions appearing before a transition in ample(s) is executed, are independent of
all the transitions in ample(s).

349

To explain C1, note that not every transition sequence in the original model
may appear in the reduced model, since the latter is restricted to transitions
from ample(s) at each state s. However, C1 ensures tha t some transition from
ample(s) may be taken in the reduced model without disabling any of the tran-
sitions in the original sequence. Consider any transition sequence a start ing in
some state so. There are two possible cases:

- cr contains a transition a E ample(so), in which case it is of the form
f l0~ l . . , f ins Condition C1 then implies tha t o~ is independent of any
fli, i < n and commutes with every one of these transitions. Then ~ can be
taken in state so and leaves the sequence fi0fll . . . f i n . - . still enabled there-
after,

- the sequence does not contain any transitions in ample(so). Then an arbi-
t ra ry transition ~ E ample(so) can be taken in So, it is independent of all
transitions in ~r and therefore a is still enabled in ~(s0) in the original model.

In order to be able to use the reduced model instead of the original one in
verification, we also need to ensure that the checked property is not sensitive
to the paths and states that have been eliminated from the reduced model. We
consider as specifications nex t - t ime free linear t ime temporal logic (LTL without
the nex t - t ime operator) formulas over the set of atomic propositions AP that
label the states of the system. We call two paths stuttering equivalent if they
are identical from the point of view of state labeling, after finite subsequences
of successive states with the same labels have been collapsed into one state in
each of them. I t can be shown [11] that if two state transition graphs have the
property tha t for any infinite pa th start ing from an initial s tate in one of them
there exists a stuttering equivalent infinite path in the other and vice versa, the
two models satisfy the same set of next-t ime free LTL formulas.

We call a transition invisible if its execution has no effect on the state labeling.
In other words, a E T is invisible if Vs, s', a(s, s') ~ L(s) = L(s'). A state s is
called fully expanded if ample(s) = enabled(s). In this case, all transitions are
selected for exploration and no reduction is performed at this point.

C2 [Non-visibility condition] If there exists a visible transition in ample(s)
then s is fully expanded.

Revisiting the two cases discussed for condition C1 it can be seen tha t in
each of these cases, a is an invisible transition (since so is not fully expanded),
and therefore the two paths considered will be stuttering equivalent.

Finally, we have to ensure that an enabled transition which does not belong
to an ample set will eventually be taken. Otherwise, the constructions outlined
in the discussion of C1 may close a cycle in the reduced state graph while never
taking a non-ample transition which is enabled throughout the cycle. Conse-
quently some transitions can be ignored and the t ruth value of a specification
in the two models may no longer be the same. Condition C3 is introduced to
eliminate this problem:

C3 [Cycle closing condition] At least one state along each cycle of the reduced
state graph is fully expanded. 3

350

As stated in the introduction, our goal was to develop a reduction algorithm
which is not restricted to depth-first explicit state search, like the typical one
described for instance in [9]. The principles and implementation of this algorithm
are described below.

2.2 A G e n e r i c P a r t i a l O r d e r R e d u c t i o n

The cycle closing condition C3 is very natural to check while performing a
depth-first search. However, it cannot be checked directly when performing a
breadth-first search (which is intrinsic to the symbolic methods), and therefore
it seems that significant modifications to the model checking algorithms are
needed to accommodate it (cf[1]). We show, however, that it is possible to
ensure C3 by performing static checks on the local state-transition graphs of
each process. Conceptually, this method is able to perform a reduction (in terms
of the number of reached states) at least as good as the traditional dynamic
algorithms, although in practice there is a trade-off between the computational
cost of the static reduction and computational savings afforded by the reduced
model during the dynamic state space search. In fact, the most efficient balance
in our algorithm may be achieved with varying degrees of state space reduction.

To describe our algorithm, we first note that both C2 and C3 limit the
extent to which reduction can be performed: they define cases where a state has
to be fully expanded. Moreover, if a cycle contains a visible transition, then C2
guarantees that the state at which that transition is taken is fully expanded, and
therefore (33 holds for that cycle as well. This suggests that C2 and C3 can be
combined into a single condition C2':

C2 ' There exists a set of transitions T which includes all visible transitions,
such that any cycle in the reduced state space contains a transition from T.
When ample(s) includes a transition from T, s is fully expanded.

We call the set of transitions T sticky transitions, since intuitively, they stick
to all other enabled transitions.

To perform reduction during compilation of the modelled system, our goal is
to determine a set T of sticky transitions that breaks all cycles of the reduced
state graph, in order to guarantee C2' . We assume that the system to be verified
is given as a set of component processes. Then, an easy way to find such a set
T to look at the static control flow graph of each process of the system. Any
cycle in the global state space projects to a cycle (or possibly a self-loop) in each
component process. By breaking each local cycle, we are guaranteed to break
each global cycle.

This suggests strengthening C2 ' to the following condition C2" :

3 There are other stronger and weaker conditions that can be used instead of Condition
C3. This particular version fits well with our framework.

351

C2" There is a set of sticky transitions that include all visible transitions. Each
cycle in the static control flow of a process of the modelled system contains
at least one sticky transition, and if ample(s) includes a sticky transition,
then s is fully expanded.

An ideal algorithm would find a minimal set of sticky transitions, in order
to maximize the possible reduction. However, this problem is at least as hard as
reachability analysis. On the other hand, efficient reduction can still be achieved
even without a minimal set. During the state search, priority is given to non-
sticky transitions. In this way, full expansion of a state is avoided as much as
possible, although eventually no cycle can be closed without performing one full
expansion. It is possible therefore that several sticky transitions are delayed until
all of them can be taken from the same state, which reduces the effect of selecting
too many sticky transitions.

Even with delaying sticky transitions, it is still important that the static
analysis generates a small number of sticky transitions, and yet is simple enough
not to require excessive overhead. The next section presents such an algorithm
which is heuristically likely to generate a smaller number of sticky transitions
than required by C2" . The set of sticky transitions found by the algorithm
guarantees C2 ' and in the worst case it corresponds to C2" .

2.3 F i n d i n g S t i cky Transitions

We assume that the system to be analyzed is given as a set of variables V and
a set of processes {P1, P2, . . . , PN}. We also assume that, for each process Pi,
there exists a variable cpi E V called the control point (or program counter) of
process Pi, which always keeps the current local state of the process. A transi-
tion of Pi updates cp~ (not necessarily changes its value) and also updates some
other variables from V. The state space of the system is simply given by all
possible valuations of the variables in V. The state-transition graph of the sys-
tem is derived from the local state-transition graphs of the processes by using
interleaving semantics to model concurrency. A local (resp. global) cycle is a cycle
in the state-transition graph of a process (resp. the system). An execution of a
cycle is the execution of all the transitions in the cycle starting from a state in
the cycle.

An execution of a local cycle of a process Pi restores the value of cpi. But
along the cycle, the values of variables other than cpi can be changed as well,
without necessarily being restored by a complete execution. We call this the side
effect of a local cycle on a variable and observe four different types of side effects:
(1) decrementing effect, if the execution of the cycle always reduces the value of
the variable, (2) incrementing effect if the execution of the cycle always increases
the value of the variable, (3) complex effect if the effect of the execution of the
cycle on the variable cannot be determined statically, and (4) no effect if the
variable is not changed by any of the transitions in the cycle.

If the side effect of a local cycle c is incrementing or decrementing over the
value of a variable v, it is impossible to have a global cycle in which only c is

352

executed. There must be some other local cycle d executed in the global cycle
to compensate for the side effect of c on v. For every global cycle in which c is
executed, c ~ must be executed as well. Therefore, there is no need to select a
sticky transition from both c and d since neither c nor d can appear alone in a
global cycle.

Let C denote the set of local cycles in the system. We assume the existence
of a function f : C x Y ---* { - , +, *, 0} such that for c E C and v E V, f (c , v) = -
(f (c , v) = +, f (c , v) = *, f (c , v) = 0, respectively) means a decrementing effect
(incrementing, complex, no effect, respectively) on v by c. One can always assume
f (c , v) = * if v is updated within c but the side effect is difficult to analyze.

D e f i n i t i o n 2 . A set of local cycles H C_ C covers another set of local cycles
G C C if any global cycle that contains (projects to) a local cycle c E G also has
to contain some local cycle c ~ E H.

In the particular case where G is a singleton set {c}, we will simply say tha t H
covers c.

We can effectively find a set of cycles that covers a local cycle c by considering
the effect of c on some variable v. For a given local cycle c and a variable v, let c~
be the set of local cycles that can compensate the incrementing or decrementing
effect of c on v which is formally defined as:

c~ = {c' E CI (f (c , v) = - and f (c ' , v) E { + , * }) or
(f (c , v) =- + and f (c ' , v) E { - , * }) } .

Since c~ contains all cycles that can have the opposite effect on v compared
to c, it follows that c, covers c. This implies that if for some variable v, all cycles
in c~ have a sticky transition, there is no need for c to have a sticky transition.

Our goal is to find a subset T of sticky transitions that breaks (when removed
from the local process graphs) some set H of local cycles such that H covers the
entire set of local cycles C. Then, since every global cycle contains some local
cycle c E C, it also has to contain a cycle from H, and with it a sticky transition.
Consequently, condition C 2 ' holds.

To find such a set, note that trivially H covers H for any H C_ C. We also
have the following lemma:

L e m m a 3 . Let H, G C C and c E C. I f H covers G and G covers c, then H
covers G U {c}.

P r o o f : We need to show that for any global cycle C1, if C1 contains a local
cycle g E G U {c} then it has to contain a local cycle in H. If g E G U {c} then
we have two cases, either g E G or g -- c.
Case (i): I f g E G, then since H covers G, C1 must have a local cycle in H.
Case (ii): If g = c, then C1 has to contain a local cycle g~ E G since G covers c.
Furthermore, since C1 contains g~ E G and H covers G, C1 contains some cycle
in H.
Together, these two cases show that H covers G U {c}.

353

The Algorithm 1 given in Fig. 2 uses this lemma to compute a set H such
that H covers C. It alternates between analyzing the effect of local cycles on
variables to increase the covered set G and adding cycles to H if there are still
uncovered cycles in C.

Algor i thm 1

0. choose H C_ C, let G := H
1. loop
2. do
3. let updated := false
4. V c E C \ G , V v E V
5. if f(c, v) E { - , +} and c~ C C_ G then
6. let G :-- G tA {c}
7. let updated := true
8. while (updated)
9. if (G = C) return H
10. let H := H U Cadd, G : : G [.J Cadd for s o m e Cadd C C \ G, Cadd r
11. endloop

Fig. 2. An algorithm to find H C_C_ C such that H covers C

It is possible not to take a variable v into account during the local cycle
analysis by simply assuming that f(c, v) = , for all local cycles. One can also
assume the existence of auxiliary variables to produce the dependency relation
between cycles. For example, if there is a variable q of type queue in the system,
we can assume that there is also an integer variable qz, which always keeps the
number of elements in this queue variable. It is hard to define the side effect
of a push or pop operation on q but they are incrementing and decrementing
on qt respectively. In the extreme case where Vc ~ C, Vv E V, f(c, v) E {*, 0},
Algorithm 1 terminates with H = C as the worst case which corresponds to
satisfying Condition C2" since we have to chose a sticky transition from each
local cycle.

The selection of initial set of marked cycles, let's call it Cm, can be arbitrary.
A good starting value is given by the sticky transitions which are already required
by C2' . In particular, Crn can be chosen to be the set of all cycles that include
a visible transition.

2.4 T h e C O S P A N I m p l e m e n t a t i o n

The static partial order reduction technique explained in this paper has been
implemented for SDL and S /R source-target pair of languages. Nevertheless,
the method is not specific to this pair of languages. We give the details of this
particular implementation in this section.

354

Our method of applying the reduction entails the modification of the analyzed
system such that a transition which is not in the ample set for a given state, is
simply not enabled. In other words, the set of enabled transitions at some state
in the mQdified system is exactly an ample set at that state if the original system
were analyzed with a modified search algorithm. This property enables us to use
any search technique to analyze the modified system. In our case, we are able
to use either explicit and symbolic search techniques and also apply localization
reduction [10] together with the partial order reduction.

In order to achieve in COSPAN a partial order reduction that is independent
of the search control, we exploit the selection mechanism of S/R. The language
provides selection variables, which are not part of the state, and thus do not
incur any memory overhead. When deciding on the successor state, each process
chooses non-deterministically among some possible values of its selection vari-
ables. The choice of any process can be dependent on the choice of the selections
of the other processes (as long as this relationship is acyclic).

In the compilation phase from SDL to S/R, first the visible transitions are
tagged as sticky. Algorithm 1 is then executed to find a sufficient set of sticky
transitions with the initial selection Cm being the set of local cycles that include a
visible transition. Also for each local state of a process, we calculate whether the
transitions departing from that local state satisfy Condition C1. If the process
has only internal transitions (the transitions in which only the local variables are
referred), then it is clear that the transitions originating from that local state
of the process satisfy C1 since no other process can refer to those variables.
Similarly, when the process has only enabled receiving transitions, the transitions
of the process again satisfy C1. Although the send transition of another process
can change the same message queue from which the receiving transition reads,
their execution order does not matter. Depending on the topology of the system,
even a send transition of a process can also satisfy C1, for example if there is no
other process that can send a signal to the same message queue. Note that, the
compilation is dependent on the property to be checked (or more precisely, on
the set of visible transitions). Therefore, a new compilation is required for each
property that impose different visible transitions in the system.

In the current version of our compiler, a process is considered to be ample
at a state if it does not have a sticky transition and all of its transitions satisfy
C1 at its current local state. Each process sets a global combinational flag to
true or false depending on its ampleness at a global state. From all the ample
processes at a state, a process with the least number of outgoing transitions is
chosen as the candidate for execution. If more than one process has the least
number of transitions, a static priority (index number) is used to chose only one
process. If there is no ample process at a state then all the processes are chosen as
candidates for execution. A process does not have any enabled transition unless
it is selected as one of the candidates for execution. This candidate election
mechanism is implemented using the primitives of S /R and is embedded in the
source code of the analyzed system without causing any state space overhead.

We added approximately 1000 lines of code to the original compiler (which
was around 9000 lines before the addition) to implement the reduction.

355

3 E x p e r i m e n t a l R e s u l t s

This section gives experimental results for our method. The examples specified in
SDL are translated into S /R using the compiler incorporating the static partial
order reduction approach explained in this paper.

The first example is a concurrent sort algorithm. There are N + 1 processes
which sort N randomly generated numbers. One of the processes simply gener-
ates N random numbers and sends them to the next process on the right. Each
process that receives a new number compares it with the current number it has
and sends the greater one to the process on the right. The rightmost process
receives only one number which is the largest one generated by the leftmost pro-
cess. The second example is a leader election protocol given in [5]. It contains N
processes, each with an index number, that form a ring structure. Each process
can only send a signal to the process on its right and can receive a signal from
the process on its left. The aim of the protocol is to find the largest index number
in the ring. The protocol is verified with respect to all possible initial states. The
final example is an asynchronous tree arbiter as taken from [4] whose purpose
is to solve the mutual exclusion problem. A resource is arbitrated between N
users by a tree of arbiter cells. Each arbiter cell can have at most two children
and forwards a request coming from its children to the upper level of the tree.
When an arbiter cell receives the grant, it passes the grant to the child that
requested the resource. If both of the children are requesting, the grant signal
is sent nondeterministically to one of them. When the resource is released, the
release information is sent to the root of the tree along the branch connecting
the root and the user that released the resource. An acknowledgement is also
sent back by the root to the user, using the same branch in the tree. Table 1
gives the measurements we have obtained so far on these examples.

The examples above showed that in case of small state spaces, the symbolic
search with partial order reduction is more expensive than an explicit search
with partial order reduction. It is even more expensive than a symbolic search
on original system without any partial order reduction. As the state space gets
bigger, the symbolic search with partial order reduction, starts doing better than
the symbolic search without reduction. For large systems, the symbolic search
with partial order reduction becomes the fastest of all the alternatives.

The concurrent sort example has an interesting property for the application of
Algorithm 1. We have introduced an artificial integer variable for each message
queue in the system that is assumed to keep the number of messages in the
queue. When Algorithm 1 is executed by taking into account only these artificial
variables with Cm = 0 initially, it returns H = 0. The reason of this is that, even
though there are cycles in the local graphs of the processes, the global state
space has no cycles and this can be determined by a syntactic analysis.

Since the ample set reduction is applied completely statically, it cannot ben-
efit from all the information available to a dynamic algorithm. For example,

356

No Reduction Ample Reduction
Experiments (no of states) (no of states)
Sort with N = 2 191 66
Sort with N = 3 4903 553
Sort with N = 4 135329 4163 i
Sort with N = 5 3940720 29541

Leader with N = 2 383 107
Leader with N = 3 1106~ 490
Leader with N = 4 537897 3021
Leader with N = 5 26523000 21856

Arbiter with N = 2 73 48
Arbiter with N = 4 18247 4916
Arbiter with N = 6 3272700 358352

Table 1. Experimental Results

Condition C3 is satisfied by predicting the cycles in the global state space at
syntactic level. It is possible that Algorithm 1 will try to break global cycles
that can actually never occur. A reduction algorithm that breaks global cycles
as they appear during the analysis seems to be more fine tuned for the reduction.
However, the produced experimental results are as good as those obtained by
dynamic algorithms.

4 S u m m a r y

Model checking tools are highly complex and required to have a a good perfor-
mance. On the other hand, the state space explosion problem forces the tool
implementors to incorporate the possible reduction techniques into the tools,
making the implementation more complex. Frequently, it is not straightforward
to implement a reduction technique on top of the search technique used by a
model checker. Until recently [1], there were no implementations that combine
partial order reduction and symbolic search techniques although both methods
were known for a long time and had good implementations separately.

We have demonstrated a way to compute a partial order reduction of an asyn-
chronous system statically. This facilitates implementation of the reduction into
model-checking tools without.the need to alter the search algorithms. In partic-
ular, our method allows combining partial order reduction with symbolic search.
Although our implementation of the method uses SDL and S/R as the source
and the target languages, the method itself is not specific to these languages.

Experimental results indicate that for small models, static partial order re-
duction is faster with an explicit state representation. However, for large models,

357

the symbolic search is not only faster, but completes on models which are com-
putationally infeasible with reduction based on an explicit state search.

R e f e r e n c e s

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajam~ui. Partial or-
der reduction in symbolic state space exploration. In Proceedings of the Conference
on Computer Aided Verification (CA V'97), Haifa, Israel, June 1997.

2. E. Bounimova, V. Levin, O. Ba~bu~o$1u, and K. Inan. A verification engine for
SDL specification of communication protocols. In S. Bilgen, U. Ga~layan, and
C. Ersoy, editors, Proceedings of the First Symposium on Computer Networks,
pages 16-25, Istanbul, Turkey, May 1996.

3. C.T. Chou and D. Peled. Formal verification of a partial-order reduction tech-
nique for model checking. In Proceedings of the Second International Workshop on
Tools and Algorithms for the Construction and Analysis of Systems, pages 241-
257, Passau, Germany, 1996. Spfinger-Verlag. Volume 1055 of Lecture Notes in
Computer Science.

4. D.L. Dill . Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1989.

5. D. Dolev, M. Klave, and M. Rodeh. An O(nlogn) unidirectional distributed algo-
rithm for extrema finding in a circle. Journal of Algorithms, 3:245-260, 1982.

6. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verifi-
cation methods. In Proc. 5th Conference on Computer Aided Verification, volume
697 of Lecture Notes in Computer Science, pages 438-449, Elounda, June 1993.
Springer-Verlag.

7. R. H. Hardin, Z. Har'E1, and R. P. Kurshan. COSPAN. In Proc. CAV'96, volume
1102, pages 423-427. LNCS, 1996.

8. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1992.

9. G.J. Holzmann and D. Peled. An improvement in formal verification. In For-
mal Description Techniques 1994, pages 197-211, Bern, Switzerland, 1994. Chap-
man&Hall.

10. R. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, 1994.

11. L. Lamport. What good is temporal logic. In IFIP Congress, pages 657-668.
North Holland, 1983. in Computer Science 115.

12. D. Peled. Combining partial order reductions with on-the-fly model checking. For-
mal Methods in System Design, 8:39-64, 1996.

13. Functional Specification and Description Language (SDL), CCITT Blue Book, Rec-
ommendation Z.IO0. Geneva, 1992.

14. A. Valmari. A stubborn attack on state explosion. In Proc. Pnd Workshop on
Computer Aided Verification, volume 531 of Lecture Notes in Computer Science,
pages 156-165, Rutgers, June 1990. Springer-Verlag.

