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A b s t r a c t .  The state space explosion problem is central to automatic 
verification algorithms. One of the successful techniques to abate this 
problem is called 'partial order reduction'. It is based on the observation 
that in many cases the specification of concurrent programs does not 
depend on the order in which concurrently executed events are inter- 
leaved. In this paper we present a new version of partial order reduction 
that allows all of the reduction to be set up at the time of compiling 
the system description. Normally, partial order reduction requires devel- 
oping specialized verification algorithms, which in the course of a state 
space search, select a subset of the possible transitions from each reached 
global state. In our approach, the set of atomic transitions obtained from 
the system description after our special compilation, already generates a 
smaller number of choices from each state. Thus, rather than conducting 
a modified search of the state space generated by the original state tran- 
sition relation, our approach involves an ordinary search of the reachable 
state space generated by a modified state transition relation. Among 
the advantages of this technique over other versions of the reduction 
is that  it can be directly implemented using existing verification tools, 
as it requires no change of the verification engine: the entire reduction 
mechanism is set up at compile time. One major application is the use 
of this reduction technique together with symbolic model checking and 
localization reduction, obtaining a combined reduction. We discuss an 
implementation and experimental results for SDL programs translated 
into COSPAN notation by applying our reduction techniques. This is 
part of a hardware-software co-verification project. 

1 I n t r o d u c t i o n  

One c o m m o n  me thod  for dealing with the intrinsically intractable  computa t iona l  
complexi ty  of  model-checking asynchronous systems is partial order reduction. 
This  reduct ion technique exploits the c o m m o n  practice of  model ing concurrent  
events in asynchronous  systems as an interleaving of  the events in all possible 
execution orders. An  impor t an t  observation about  such systems is tha t  the prop- 
erties one needs to check often do not  distinguish among  these different orders. 
The  reduct ion a lgor i thm produces a state graph  which contains only a subset 
of  the s tates  and transi t ions of  the original system, but  which contains enough 
informat ion  about  the modelled sys tem so tha t  it is possible to apply model  
checking a lgor i thms to it instead of  the full s tate  graph.  The  verified proper ty  is 
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guaranteed to be true in the reduced model if and only if it is true in the original 
model. 

Since partial order reduction is naturally defined for asynchronous systems, 
it has thus far been applied mainly to the verification of software. Traditional 
partial order reduction algorithms use an explicit state representation and depth 
first search. In contrast, other techniques for model checking, most notably sym- 
bolic model checking based on binary decision diagrams (BDDs), have proved 
most effective for synchronous systems, in particular for verifying hardware. In 
this paper we describe a reduction algorithm that was developed to satisfy the 
following goals: 

- Perform efficiently for a system that combines software and hardware, and 
therefore combine well with symbolic model checking. 

- Be independent of the type of search, e.g., be applicable to depth- or breadth- 
first search without a change. 

- Allow a large (in our case, in fact the entire) part of the reduction to be 
done during compilation of the modelled system. 

- Be compatible with existing model checking tools without requiring a change 
to their search engines. 

We show a partial order reduction algorithm that achieves these goals. Our 
method was motivated by an interest to verify embedded systems containing 
both hardware and software. In our case, the software was written in the SDL 
language [13] and was translated into the specification language S/R, which is 
an automata based language for specifying coordinating processes and used as 
the input language for the model-checking tool COSPAN [7]. COSPAN runs on 
synchronous input models and supports a symbolic (BDD-based) state space 
search. 

Previous implementations of partial order reduction algorithms in pre-existing 
state space search engines required considerable changes in the search mecha- 
nism [6, 9]. The alternative was to construct a special tool for performing the 
search [14]. In [9], a reduction that is based on doing a large part of the calcula- 
tions at compile time is described. However, some changes are still made to the 
search engine, controlling the backtracking mechanism in the depth-first search 
performed in the SPIN [8] model checker. 

Since we began with an efficient translator [2] from SDL to S/R, we aimed 
to investigate whether one could obtain an efficient partial order reduction al- 
gorithm with all of the reduction-specific calculations taking place at compile 
time, without changing the search mechanism of the COSPAN verification en- 
gine. COSPAN should treat the translated model as a regular model, without 
having to undergo any changes to implement the reduction. The process is il- 
lustrated in Fig. 1. The usual model checking procedure involves translating the 
source code into some intermediate code, which is then analyzed by the actual 
model checking algorithms. The reduction usually requires a change to the code 
of the model checker. In this paper, we suggest a modified partial order reduc- 
tion that can be applied to the translation. The model checking tool remains 
unchanged. 
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A related recent result is the combination of partial order reduction with 
symbolic model checking reported in [1]. This is based on performing a reduction 
which uses breadth first search [3]. The method suggested in the present paper is 
more general in the sense that it is independent of the type of search used (e.g., 
breadth first or depth first). It can also be applied to existing model checking 
tools without imposing any changes and hence should be easier to adopt and 
implement. 
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2 A S i m p l i f i e d  S e a r c h  A l g o r i t h m  

2.1 T h e  A m p l e  Se t s  M e t h o d  

The reduction method we describe is applied to systems which are modelled 
as state-transit ion graphs. A state transition graph is defined as a tuple M = 
(S, S0,T,  L), where S is the set of states, So is the initial state set, T is a set 
of transitions c~ C_ S • S, and L : S ---* 2 Ap a function that  labels each state 
with some subset of a set AP of atomic propositions. A transition c~ is enabled 
in state s if there is some state # for which c~(s, # )  holds. We denote the set of 
transitions enabled in s by enabled(s). If  for any state s there is at most  one state 
# with ~(s,  #) ,  we say that  ~ is deterministic and we will write # = ~(s).  In 
the following, we will consider only deterministic transitions. Note tha t  al though 
the transitions are deterministic (a usual practice in modeling concurrency), we 
can easily model non-deterministic choice (between different transitions tha t  are 
enabled at the same time). 

We introduce the key concept of independent transitions. These are transi- 
tions whose respective effects are the same, irrespective of their relative order. 

Definition1. Two transitions c~ and/3  are independent if for every state s the 
following two conditions hold: 
Enabledness: If  ~,/3 E enabled(s) then/3 E enabled(a(s)) and c~ E enabled(/3(s)) 
Commutativity: I f  c~,/3 E enabled(s) then a(/3(s)) =/3(~(s)). 

In other words, a pair of transitions is independent, if at any state executing 
either of them does not disable the other, and executing both in either order 
leads to the same state. Two transitions are called dependent if they are not 
independent. �9 

To construct the reachable state space, model checking algorithms perform 
a traversal of the state-transit ion graph (typically depth-first or breadth-first 
search). The traversal starts from the set of initial states and successively con- 
structs new states by exploring the transitions that  are enabled in the current 
state. Partial  order reduction differs from full state exploration in that  at each 
step it considers only a subset of the transitions enabled at the current s tate s. 
This set is denoted by ample(s). With a good choice of ample(s), only a small 
fraction of the reachable state space will be explored. On the other hand, a num- 
ber of conditions must  be enforced on this set to ensure that  the t ruth  value of 
the checked property is preserved in the reduced model. In the following, we 
give a set of such conditions together with an informal explanation of their role. 
A complete t reatment  of these conditions together with a formal proof  is given 
in [12]. 

Condition CO is the simplest and guarantees that  if a s tate has a successor 
in the original model, it also has a successor in the reduced model. 

CO [Non-emptiness condition] ample(s) = 0 if and only if enabled(s) = 0. 
C1 [Ample decomposition] On any path  start ing from state s, all the transi- 

tions appearing before a transition in ample(s) is executed, are independent of 
all the transitions in ample(s). 
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To explain C1,  note that  not every transition sequence in the original model 
may  appear  in the reduced model, since the latter is restricted to transitions 
from ample(s) at each state s. However, C1 ensures tha t  some transition from 
ample(s) may be taken in the reduced model without disabling any of the tran- 
sitions in the original sequence. Consider any transition sequence a start ing in 
some state so. There are two possible cases: 

- cr contains a transition a E ample(so), in which case it is of the form 
f l0~ l . . ,  f ins  . . . .  Condition C1 then implies tha t  o~ is independent of any 
fli, i < n and commutes with every one of these transitions. Then ~ can be 
taken in state so and leaves the sequence fi0fll . . . f i n . - .  still enabled there- 
after, 

- the sequence does not contain any transitions in ample(so). Then an arbi- 
t ra ry  transition ~ E ample(so) can be taken in So, it is independent of all 
transitions in ~r and therefore a is still enabled in ~(s0) in the original model. 

In order to be able to use the reduced model instead of the original one in 
verification, we also need to ensure that  the checked property is not sensitive 
to the paths and states that  have been eliminated from the reduced model. We 
consider as specifications nex t - t ime  free linear t ime temporal  logic (LTL without 
the nex t - t ime  operator)  formulas over the set of atomic propositions AP that  
label the states of the system. We call two paths stuttering equivalent if they 
are identical from the point of view of state labeling, after finite subsequences 
of successive states with the same labels have been collapsed into one state in 
each of them. I t  can be shown [11] that  if two state  transition graphs have the 
property tha t  for any infinite pa th  start ing from an initial s tate in one of them 
there exists a stuttering equivalent infinite path  in the other and vice versa, the 
two models satisfy the same set of next-t ime free LTL formulas. 

We call a transition invisible if its execution has no effect on the state labeling. 
In other words, a E T is invisible if Vs, s', a(s, s') ~ L(s) = L(s'). A state s is 
called fully expanded if ample(s) = enabled(s). In this case, all transitions are 
selected for exploration and no reduction is performed at this point. 

C2  [Non-visibility condition] If  there exists a visible transition in ample(s) 
then s is fully expanded. 

Revisiting the two cases discussed for condition C1 it can be seen tha t  in 
each of these cases, a is an invisible transition (since so is not fully expanded), 
and therefore the two paths considered will be stuttering equivalent. 

Finally, we have to ensure that  an enabled transition which does not belong 
to an ample set will eventually be taken. Otherwise, the constructions outlined 
in the discussion of C1 may  close a cycle in the reduced state graph while never 
taking a non-ample transition which is enabled throughout the cycle. Conse- 
quently some transitions can be ignored and the t ruth value of a specification 
in the two models may  no longer be the same. Condition C3 is introduced to 
eliminate this problem: 

C3 [Cycle closing condition] At least one state along each cycle of the reduced 
state graph is fully expanded.  3 



350 

As stated in the introduction, our goal was to develop a reduction algorithm 
which is not restricted to depth-first explicit state search, like the typical one 
described for instance in [9]. The principles and implementation of this algorithm 
are described below. 

2.2 A G e n e r i c  P a r t i a l  O r d e r  R e d u c t i o n  

The cycle closing condition C3 is very natural to check while performing a 
depth-first search. However, it cannot be checked directly when performing a 
breadth-first search (which is intrinsic to the symbolic methods),  and therefore 
it seems that  significant modifications to the model checking algorithms are 
needed to accommodate it (cf[1]). We show, however, that  it is possible to 
ensure C3 by performing static checks on the local state-transition graphs of 
each process. Conceptually, this method is able to perform a reduction (in terms 
of the number of reached states) at least as good as the traditional dynamic 
algorithms, although in practice there is a trade-off between the computational  
cost of the static reduction and computational savings afforded by the reduced 
model during the dynamic state space search. In fact, the most efficient balance 
in our algorithm may be achieved with varying degrees of state space reduction. 

To describe our algorithm, we first note that  both C2 and C3 limit the 
extent to which reduction can be performed: they define cases where a state has 
to be fully expanded. Moreover, if a cycle contains a visible transition, then C2 
guarantees that  the state at which that  transition is taken is fully expanded, and 
therefore (33 holds for that  cycle as well. This suggests that  C2 and C3 can be 
combined into a single condition C2':  

C2 '  There exists a set of transitions T which includes all visible transitions, 
such that  any cycle in the reduced state space contains a transition from T. 
When ample(s) includes a transition from T, s is fully expanded. 

We call the set of transitions T sticky transitions, since intuitively, they stick 
to all other enabled transitions. 

To perform reduction during compilation of the modelled system, our goal is 
to determine a set T of sticky transitions that  breaks all cycles of the reduced 
state graph, in order to guarantee C2' .  We assume that  the system to be verified 
is given as a set of component processes. Then, an easy way to find such a set 
T to look at the static control flow graph of each process of the system. Any 
cycle in the global state space projects to a cycle (or possibly a self-loop) in each 
component process. By breaking each local cycle, we are guaranteed to break 
each global cycle. 

This suggests strengthening C2 '  to the following condition C2" :  

3 There are other stronger and weaker conditions that can be used instead of Condition 
C3. This particular version fits well with our framework. 
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C2"  There is a set of sticky transitions that  include all visible transitions. Each 
cycle in the static control flow of a process of the modelled system contains 
at least one sticky transition, and if ample(s) includes a sticky transition, 
then s is fully expanded. 

An ideal algorithm would find a minimal set of sticky transitions, in order 
to maximize the possible reduction. However, this problem is at least as hard as 
reachability analysis. On the other hand, efficient reduction can still be achieved 
even without a minimal set. During the state search, priority is given to non- 
sticky transitions. In this way, full expansion of a state is avoided as much as 
possible, although eventually no cycle can be closed without performing one full 
expansion. It is possible therefore that  several sticky transitions are delayed until 
all of them can be taken from the same state, which reduces the effect of selecting 
too many sticky transitions. 

Even with delaying sticky transitions, it is still important  that  the static 
analysis generates a small number of sticky transitions, and yet is simple enough 
not to require excessive overhead. The next section presents such an algorithm 
which is heuristically likely to generate a smaller number of sticky transitions 
than required by C2" .  The set of sticky transitions found by the algorithm 
guarantees C2 '  and in the worst case it corresponds to C2" .  

2.3 F i n d i n g  S t i cky  Transitions 

We assume that  the system to be analyzed is given as a set of variables V and 
a set of processes {P1, P2, . . . ,  PN}. We also assume that,  for each process Pi, 
there exists a variable cpi E V called the control point (or program counter) of 
process Pi, which always keeps the current local state of the process. A transi- 
tion of Pi updates cp~ (not necessarily changes its value) and also updates some 
other variables from V. The state space of the system is simply given by all 
possible valuations of the variables in V. The state-transition graph of the sys- 
tem is derived from the local state-transition graphs of the processes by using 
interleaving semantics to model concurrency. A local (resp. global) cycle is a cycle 
in the state-transition graph of a process (resp. the system). An execution of a 
cycle is the execution of all the transitions in the cycle starting from a state in 
the cycle. 

An execution of a local cycle of a process Pi restores the value of cpi. But 
along the cycle, the values of variables other than cpi can be changed as well, 
without necessarily being restored by a complete execution. We call this the side 
effect of a local cycle on a variable and observe four different types of side effects: 
(1) decrementing effect, if the execution of the cycle always reduces the value of 
the variable, (2) incrementing effect if the execution of the cycle always increases 
the value of the variable, (3) complex effect if the effect of the execution of the 
cycle on the variable cannot be determined statically, and (4) no effect if the 
variable is not changed by any of the transitions in the cycle. 

If the side effect of a local cycle c is incrementing or decrementing over the 
value of a variable v, it is impossible to have a global cycle in which only c is 
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executed. There must  be some other local cycle d executed in the global cycle 
to compensate for the side effect of c on v. For every global cycle in which c is 
executed, c ~ must  be executed as well. Therefore, there is no need to select a 
sticky transition from both c and d since neither c nor d can appear  alone in a 
global cycle. 

Let C denote the set of local cycles in the system. We assume the existence 
of a function f : C x Y ---* { - ,  +,  *, 0} such that  for c E C and v E V,  f (c ,  v) = - 
( f (c ,  v) = +, f (c ,  v) = *, f (c ,  v) = 0, respectively) means a decrementing effect 
(incrementing, complex, no effect, respectively) on v by c. One can always assume 
f ( c ,  v) = * if v is updated within c but the side effect is difficult to analyze. 

D e f i n i t i o n 2 .  A set of local cycles H C_ C covers another set of local cycles 
G C C if any global cycle that  contains (projects to) a local cycle c E G also has 
to contain some local cycle c ~ E H.  

In the particular case where G is a singleton set {c}, we will simply say tha t  H 
covers c. 

We can effectively find a set of cycles that  covers a local cycle c by considering 
the effect of c on some variable v. For a given local cycle c and a variable v, let c~ 
be the set of local cycles that  can compensate the incrementing or decrementing 
effect of c on v which is formally defined as: 

c~ = {c' E CI ( f (c ,  v) = - and f (c ' ,  v) E { + , * } )  or 
( f ( c , v )  =- + and  f ( c ' , v )  E { - , * } ) } .  

Since c~ contains all cycles that  can have the opposite effect on v compared 
to c, it follows that  c, covers c. This implies that  if for some variable v, all cycles 
in c~ have a sticky transition, there is no need for c to have a sticky transition. 

Our goal is to find a subset T of sticky transitions that  breaks (when removed 
from the local process graphs) some set H of local cycles such that  H covers the 
entire set of local cycles C. Then, since every global cycle contains some local 
cycle c E C, it also has to contain a cycle from H,  and with it a sticky transition. 
Consequently, condition C 2 '  holds. 

To find such a set, note that  trivially H covers H for any H C_ C. We also 
have the following lemma: 

L e m m a 3 .  Let H, G C C and c E C. I f  H covers G and G covers c, then H 
covers G U {c}. 

P r o o f :  We need to show that  for any global cycle C1, if C1 contains a local 
cycle g E G U {c} then it has to contain a local cycle in H.  If  g E G U {c} then 
we have two cases, either g E G or g -- c. 
Case (i): I f  g E G, then since H covers G, C1 must  have a local cycle in H.  
Case (ii): If  g = c, then C1 has to contain a local cycle g~ E G since G covers c. 
Furthermore,  since C1 contains g~ E G and H covers G, C1 contains some cycle 
in H. 
Together, these two cases show that  H covers G U {c}. 
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The Algorithm 1 given in Fig. 2 uses this lemma to compute a set H such 
that  H covers C. It alternates between analyzing the effect of local cycles on 
variables to increase the covered set G and adding cycles to H if there are still 
uncovered cycles in C. 

Algor i thm 1 

0. choose H C_ C, let G := H 
1. loop 
2. do 
3. let updated := false 
4. V c E C \ G ,  V v E V  
5. if f(c, v) E { - ,  +} and c~ C C_ G then 
6. let G :-- G tA {c} 
7. let updated := true 
8. while (updated) 
9. if (G = C) return H 
10. let H := H U Cadd, G : :  G [.J Cadd for s o m e  Cadd C C \ G, Cadd r 
11. endloop 

Fig.  2. An algorithm to find H C_C_ C such that  H covers C 

It is possible not to take a variable v into account during the local cycle 
analysis by simply assuming that  f(c, v) = , for all local cycles. One can also 
assume the existence of auxiliary variables to produce the dependency relation 
between cycles. For example, if there is a variable q of type queue in the system, 
we can assume that  there is also an integer variable qz, which always keeps the 
number of elements in this queue variable. It is hard to define the side effect 
of a push or pop operation on q but they are incrementing and decrementing 
on qt respectively. In the extreme case where Vc ~ C, Vv E V, f(c, v) E {*, 0}, 
Algorithm 1 terminates with H = C as the worst case which corresponds to 
satisfying Condition C2"  since we have to chose a sticky transition from each 
local cycle. 

The selection of initial set of marked cycles, let's call it Cm, can be arbitrary. 
A good starting value is given by the sticky transitions which are already required 
by C2' .  In particular, Crn can be chosen to be the set of all cycles that  include 
a visible transition. 

2.4 T h e  C O S P A N  I m p l e m e n t a t i o n  

The static partial order reduction technique explained in this paper has been 
implemented for SDL and S /R  source-target pair of languages. Nevertheless, 
the method is not specific to this pair of languages. We give the details of this 
particular implementation in this section. 
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Our method of applying the reduction entails the modification of the analyzed 
system such that a transition which is not in the ample set for a given state, is 
simply not enabled. In other words, the set of enabled transitions at some state 
in the mQdified system is exactly an ample set at that  state if the original system 
were analyzed with a modified search algorithm. This property enables us to use 
any search technique to analyze the modified system. In our case, we are able 
to use either explicit and symbolic search techniques and also apply localization 
reduction [10] together with the partial order reduction. 

In order to achieve in COSPAN a partial order reduction that  is independent 
of the search control, we exploit the selection mechanism of S/R.  The language 
provides selection variables, which are not part  of the state, and thus do not 
incur any memory overhead. When deciding on the successor state, each process 
chooses non-deterministically among some possible values of its selection vari- 
ables. The choice of any process can be dependent on the choice of the selections 
of the other processes (as long as this relationship is acyclic). 

In the compilation phase from SDL to S/R, first the visible transitions are 
tagged as sticky. Algorithm 1 is then executed to find a sufficient set of sticky 
transitions with the initial selection Cm being the set of local cycles that  include a 
visible transition. Also for each local state of a process, we calculate whether the 
transitions departing from that  local state satisfy Condition C1. If the process 
has only internal transitions (the transitions in which only the local variables are 
referred), then it is clear that the transitions originating from that  local state 
of the process satisfy C1 since no other process can refer to those variables. 
Similarly, when the process has only enabled receiving transitions, the transitions 
of the process again satisfy C1. Although the send transition of another process 
can change the same message queue from which the receiving transition reads, 
their execution order does not matter.  Depending on the topology of the system, 
even a send transition of a process can also satisfy C1, for example if there is no 
other process that  can send a signal to the same message queue. Note that,  the 
compilation is dependent on the property to be checked (or more precisely, on 
the set of visible transitions). Therefore, a new compilation is required for each 
property that  impose different visible transitions in the system. 

In the current version of our compiler, a process is considered to be ample 
at a state if it does not have a sticky transition and all of its transitions satisfy 
C1 at its current local state. Each process sets a global combinational flag to 
true or false depending on its ampleness at a global state. From all the ample 
processes at a state, a process with the least number of outgoing transitions is 
chosen as the candidate for execution. If more than one process has the least 
number of transitions, a static priority (index number) is used to chose only one 
process. If there is no ample process at a state then all the processes are chosen as 
candidates for execution. A process does not have any enabled transition unless 
it is selected as one of the candidates for execution. This candidate election 
mechanism is implemented using the primitives of S /R  and is embedded in the 
source code of the analyzed system without causing any state space overhead. 

We added approximately 1000 lines of code to the original compiler (which 
was around 9000 lines before the addition) to implement the reduction. 
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3 E x p e r i m e n t a l  R e s u l t s  

This section gives experimental results for our method. The examples specified in 
SDL are translated into S /R  using the compiler incorporating the static partial 
order reduction approach explained in this paper. 

The first example is a concurrent sort algorithm. There are N + 1 processes 
which sort N randomly generated numbers. One of the processes simply gener- 
ates N random numbers and sends them to the next process on the right. Each 
process that  receives a new number compares it with the current number it has 
and sends the greater one to the process on the right. The rightmost process 
receives only one number which is the largest one generated by the leftmost pro- 
cess. The second example is a leader election protocol given in [5]. It contains N 
processes, each with an index number, that  form a ring structure. Each process 
can only send a signal to the process on its right and can receive a signal from 
the process on its left. The aim of the protocol is to find the largest index number 
in the ring. The protocol is verified with respect to all possible initial states. The 
final example is an asynchronous tree arbiter as taken from [4] whose purpose 
is to solve the mutual  exclusion problem. A resource is arbitrated between N 
users by a tree of arbiter cells. Each arbiter cell can have at most two children 
and forwards a request coming from its children to the upper level of the tree. 
When an arbiter cell receives the grant, it passes the grant to the child that  
requested the resource. If both of the children are requesting, the grant signal 
is sent nondeterministically to one of them. When the resource is released, the 
release information is sent to the root of the tree along the branch connecting 
the root and the user that  released the resource. An acknowledgement is also 
sent back by the root to the user, using the same branch in the tree. Table 1 
gives the measurements we have obtained so far on these examples. 

The examples above showed that  in case of small state spaces, the symbolic 
search with partial order reduction is more expensive than an explicit search 
with partial order reduction. It is even more expensive than a symbolic search 
on original system without any partial order reduction. As the state space gets 
bigger, the symbolic search with partial order reduction, starts doing better  than 
the symbolic search without reduction. For large systems, the symbolic search 
with partial order reduction becomes the fastest of all the alternatives. 

The concurrent sort example has an interesting property for the application of 
Algorithm 1. We have introduced an artificial integer variable for each message 
queue in the system that  is assumed to keep the number of messages in the 
queue. When Algorithm 1 is executed by taking into account only these artificial 
variables with Cm = 0 initially, it returns H = 0. The reason of this is that,  even 
though there are cycles in the local graphs of the processes, the global state 
space has no cycles and this can be determined by a syntactic analysis. 

Since the ample set reduction is applied completely statically, it cannot ben- 
efit from all the information available to a dynamic algorithm. For example, 
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No Reduction Ample Reduction 
Experiments (no of states) (no of states) 
Sort with N = 2 191 66 
Sort with N = 3 4903 553 
Sort with N = 4 135329 4163 i 
Sort with N = 5 3940720 29541 

Leader with N = 2 383 107 
Leader with N = 3 1106~ 490 
Leader with N = 4 537897 3021 
Leader with N = 5 26523000 21856 

Arbiter with N = 2 73 48 
Arbiter with N = 4 18247 4916 
Arbiter with N = 6 3272700 358352 

Table  1. Experimental Results 

Condition C3 is satisfied by predicting the cycles in the global state space at 
syntactic level. It is possible that Algorithm 1 will try to break global cycles 
that can actually never occur. A reduction algorithm that breaks global cycles 
as they appear during the analysis seems to be more fine tuned for the reduction. 
However, the produced experimental results are as good as those obtained by 
dynamic algorithms. 

4 S u m m a r y  

Model checking tools are highly complex and required to have a a good perfor- 
mance. On the other hand, the state space explosion problem forces the tool 
implementors to incorporate the possible reduction techniques into the tools, 
making the implementation more complex. Frequently, it is not straightforward 
to implement a reduction technique on top of the search technique used by a 
model checker. Until recently [1], there were no implementations that combine 
partial order reduction and symbolic search techniques although both methods 
were known for a long time and had good implementations separately. 

We have demonstrated a way to compute a partial order reduction of an asyn- 
chronous system statically. This facilitates implementation of the reduction into 
model-checking tools without.the need to alter the search algorithms. In partic- 
ular, our method allows combining partial order reduction with symbolic search. 
Although our implementation of the method uses SDL and S/R as the source 
and the target languages, the method itself is not specific to these languages. 

Experimental results indicate that for small models, static partial order re- 
duction is faster with an explicit state representation. However, for large models, 
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the symbolic search is not only faster, but completes on models which are com- 
putationally infeasible with reduction based on an explicit state search. 

R e f e r e n c e s  

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajam~ui. Partial or- 
der reduction in symbolic state space exploration. In Proceedings of the Conference 
on Computer Aided Verification (CA V'97), Haifa, Israel, June 1997. 

2. E. Bounimova, V. Levin, O. Ba~bu~o$1u, and K. Inan. A verification engine for 
SDL specification of communication protocols. In S. Bilgen, U. Ga~layan, and 
C. Ersoy, editors, Proceedings of the First Symposium on Computer Networks, 
pages 16-25, Istanbul, Turkey, May 1996. 

3. C.T. Chou and D. Peled. Formal verification of a partial-order reduction tech- 
nique for model checking. In Proceedings of the Second International Workshop on 
Tools and Algorithms for the Construction and Analysis of Systems, pages 241- 
257, Passau, Germany, 1996. Spfinger-Verlag. Volume 1055 of Lecture Notes in 
Computer Science. 

4. D.L. Dill .  Trace Theory for Automatic Hierarchical Verification of Speed- 
Independent Circuits. MIT Press, 1989. 

5. D. Dolev, M. Klave, and M. Rodeh. An O(nlogn) unidirectional distributed algo- 
rithm for extrema finding in a circle. Journal of Algorithms, 3:245-260, 1982. 

6. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verifi- 
cation methods. In Proc. 5th Conference on Computer Aided Verification, volume 
697 of Lecture Notes in Computer Science, pages 438-449, Elounda, June 1993. 
Springer-Verlag. 

7. R. H. Hardin, Z. Har'E1, and R. P. Kurshan. COSPAN. In Proc. CAV'96, volume 
1102, pages 423-427. LNCS, 1996. 

8. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 
1992. 

9. G.J. Holzmann and D. Peled. An improvement in formal verification. In For- 
mal Description Techniques 1994, pages 197-211, Bern, Switzerland, 1994. Chap- 
man&Hall. 

10. R. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton 
University Press, 1994. 

11. L. Lamport. What good is temporal logic. In IFIP Congress, pages 657-668. 
North Holland, 1983. in Computer Science 115. 

12. D. Peled. Combining partial order reductions with on-the-fly model checking. For- 
mal Methods in System Design, 8:39-64, 1996. 

13. Functional Specification and Description Language (SDL), CCITT Blue Book, Rec- 
ommendation Z.IO0. Geneva, 1992. 

14. A. Valmari. A stubborn attack on state explosion. In Proc. Pnd Workshop on 
Computer Aided Verification, volume 531 of Lecture Notes in Computer Science, 
pages 156-165, Rutgers, June 1990. Springer-Verlag. 


