
Hardware support for performance measurements and
energy estimation of OpenRISC processor

Lucian Bara, Oana Boncalo, Marius Marcu
Computer and Software Engineering Departments

Politehnica University Timisoara
Timisoara, Romania

lucianbara@gmail.com, oana.boncalo@cs.upt.ro, mmarcu@cs.upt.ro

Abstract—This paper addresses the problem of providing
support for energy consumption accounting and performance
evaluation by means of performance counters in an open source
processor core – OpenRISC OR1200. The OpenRISC processing
core is flexible in that it allows different hardware
configurations, and provides full support on the tool-chain side.
In addition to this, it gives full hardware design access, and it is
used by a well established community. This work has taken
advantage of these features in order to study how different
processing core’s architecture configurations and compiler
parameters influence the processing core’s performance.
Furthermore, an energy consumption model based on
performance counters values correlated by physical
measurements has been proposed.

Keywords— performance counters; OpenRISC processor;
processor profiling, design, energy estimation

I. INTRODUCTION

Performance counters (PC) are ubiquitous in nowadays
processors offering support for different software layers
(operating system, runtime frameworks, and software
applications) for execution analysis and optimization.
Performance counters typically provide support for two
different directions of utmost importance in nowadays systems:
(i) performance profiling and optimization [1,2] and (ii) energy
modeling [3,4].

A rather new trend for the hardware community is the open
hardware concept. In recent years, it has drawn more people
from the research community into sharing know-how and
results of their work. Nowadays, communities such as
OpenCores [5], provide a wide range of open-source designs:
from peripherals to complete systems. These solutions on the
one hand offer full access to all the modeled resources of a core
allowing researchers much flexibility into adjusting them for
their purposes. On the other hand, some important functionality
such as PCs, may not be readily available in the processing
cores. Extending open source processor cores with this kind of
features provides the required support for energy and
performance profiling, and thus enhancing their usage
scenarios. Such features are vital when designing complex
HW/SW solutions based on open source hardware components.

We aim at building an OpenRISC-based multi processor
system with dynamic power consumption monitoring, that is
used by all software layers. For this purpose, a preliminary step
is to add the PCs based support for the OR1200 processing
core and profile processor execution and power consumption
for different benchmarks. Hence, we have carried out an
analysis of the impact of various hardware parameters and
compiler optimizations on application performance of
OpenRisc OR1200 open source core. It is worthwhile
emphasizing the OpenRISC processor offers support for
configuring different architectural features such as floating
point (FP) unit support, or the size of both data and instruction
cache. By employing open source hardware, we are able to
tune these parameters, as well as re-design certain parts
according to the end goal.

The main contributions of this work are: (i) the
implementation of PCs for the OpenRISC processor, (ii)
OR1200 profiling for different benchmarks, for different
compiler optimizations options, as well as different hardware
parameters for the processor cache memory compiler options,
(iii) analysis of the overhead introduced by the measurement
infrastructure (PCs and the diver for reading them) in terms of
cost and power consumption, and (iv) correlation between
power consumption, energy consumption and performance
counters values. FPGA physical measurements of the system
have been carried out with the intention of correlating them
with the performance counter estimates; hence we can obtain
an insight of the power consumption for the OpenRISC system.

This paper is organized as follows: Section I presents an
overview of related work, Section II discusses the benchmarks
considered in this work, as well as the target platform and the
required changes to introduce PCs support in the OpenRISC
core, Section IV illustrates the analysis results on physical
measurements, while Section V contains some concluding
results.

II. RELATED WORK

Nowadays, PCs are common functionality in most of
commercial processors. However, this is not the case of open
source processors, which many lack this type of support. PCs
are key hardware resources to analyze execution of software
application and locate architectural or configuration issues

related to hardware/software stack [1]. In [1] the authors use
internal PCs to locate and understand performance bottlenecks
related to memory subsystem. The authors focus on four key
metrics related to the memory subsystem: cache misses,
bandwidth, latency, and access locality. They also suggest that
by overlapping processor stalls with cache miss profiles, it is
possible to get some good correlation. However, current
Performance and Monitoring Units implementing PCs, do not
provide a feature that can correlate stalls to cache misses or
profile software execution. Another type of insight offered by
performance counters is energy consumptions. Abhishek
Jaiantilal et al. [13] measured instruction power usage over a
long period of time and derived a linear regression model that
relies on PCs to estimate power consumption. A similar
approach has been used by [14].

Other recent works, have utilized PCs in a more dynamic
setup for run-time monitoring of system performance or power
modeling and estimation. In [2] the authors propose a novel
method to perform an application similarity analysis using PCs
variations, called application performance signatures.
Performance improvement and power consumption reduction
of OpenRISC SoC based on cache performance improvement
is presented in [8]. PCs used to monitor processors stalls and
cache misses events are useful for this type of analysis. A
similar analysis carried out for Xilinx MicroBlaze processors is
presented in [9].

Performance API (PAPI) specifies a standard programming
interface for accessing hardware performance counters
available on most modern microprocessors. Many software
tools are available in modern operating systems to access and
analyze PCs, such as perfometer described in [10]. vprof is
another common performance profiler for Linux. However,
although OpenRISC platform supports Linux OS and
development tools, we used the processor in a deterministic
way, in order to emphasize the exact correlation between
processor events and compiler/architectural parameters.

More recent research has proposed a Computer Aided
Design (CAD) flow for high level estimation of dynamic
energy consumption for FPGA technology [17]. The proposed
methodology first selects the appropriate signals for the events
needed for monitoring (events accounted by the monitors
introduced in the RTL model), then derives a statistical power
model for the RTL design. The technique relies on the XPower
tool – a commercial tool for estimating average power
consumption. Our approach differs from [17] in the following
ways: (i) we have used event selection (OpenRISC events
defined by the PCs specification) (ii) we have used physical
board measurements for power consumption.

III. OPENRISC PERFORMANCE COUNTERS IMPLEMENTATION

A. OpenRISC Processor Architecture

The OpenRISC processor [11] is the implementation of the
eponymously named specification, designed and developed by
the open source community. It is described using Verilog HDL
and it is provided as an open source code on OpenCore site [5].
Furthermore, processor architecture variants are present in
commercial products. It is based on a 32 bit instruction set

with 32 x 32 or 64 bit general purpose registers. It is a load-
store architecture, which features a SIMD unit and support for
a multiply accumulate (DSP feature). The majority of the
features from the OR1200 soft processor specification have
been already implemented in the 32 bit core: hardware
multiplier, divider and floating point units as well as a power
management unit. The processor does not offer Out-of-Order
execution, or branch prediction support. It relies on delay slots
so that the pipeline can be kept full at all times. However,
flushing the pipeline is still required for context switch or
multi-threading support.

The Harvard architecture is employed, which provides
separate memory mapping units and caches for data and
instruction paths. These can be configured before generation,
and their default value is 8KB for each of them. Both caches
are 1 way, tagged and directly mapped and operate in bursts of
16 bytes. The processor offers support for virtual memory via
the Memory Mapping Units (MMU) which provide the
translation from virtual to physical memory access via 8KB
and 16MB pages using a fast hashed design and a software
table walk. The processor is capable of executing most
instructions in 1 clock cycle, apart from division which is a
costly operation (54 clock cycles), which means that this
processor yields high performance / MHz.

B. OpenRISC System on a Chip

OpenRISC processor based systems are implemented on
various FPGA platforms, combined with different peripherals.
For this study the Atyls board by Digilent has been selected
because of its wide availability and low cost. Furthermore,
OpenRISC SoC provides proprietary implementation on this
board. The board features a Spartan6 FPGA chip, 128MByte of
16 bit wide DDR2 memory, 16 Mbyte of SPI Flash and
peripherals such as Ethernet, UART, LEDs and Buttons.

OpenRISC SoC implementation consists of an OpenRISC
processor, external memory - DDR2, SPI and I2C interfaces, a
standard UART and access to the memory mapped LEDs and
switches. The processor has separate instruction and data buses
connected to a L2 cache and main memory that are mapped in
the DDR2 memory. The instruction bus is also connected to the
ROM and the data bus to other peripherals such as the UART.
The processor, the ROM memory which contains a small
hardcoded bootstrap and the external memory controller are
connected to the instruction bus. OpenRISC SoC (ORPSoC) is
relatively small, occupying only ~46% of the resources of the
Atlys board (see Table I).

C. Performance Counters Support

The OpenRISC architecture specification defines an
optional Performance Counter Unit (PCU) with 8 x 32 bit PCs
and lists the monitored events [11]. We have decided to
implement PCs accordingly. Implementation wise, PCs are
viewed as 8 x 32 bit registers, accounting for the following
events:

 Load Access Event and Store Access Event –
number of load and store instructions issued.

TABLE I. ORPSOC ATLYS BOARD RESOURCE COST WITH AND WITHOUT PERFORMANCE COUNTER

Slice logic distribution Total Used w/o
PCU

Used w/
PCU

Percentage
w/o PCU

Percentage
w/ PCU

Overhead

Number of occupied Slices 6,822 3,176 3,354 46% 49% 3%
Number of MUXCYs used 13,644 1,232 1,488 9% 10% 1%
Number with an unused Flip Flop 9,852 5,592 5,957 57% 60% 3%
Number with an unused LUT 9,852 487 442 5% 4% -1%
Number of fully used LUT-FF pairs 9,852 3,773 4,175 38% 42% 5%
Number of slice register sites lost to control set
restrictions

54,576 0 0 0% 0% 0%

TABLE II BENCHMARKS PERFORMANCE COUNTERS EXPERIMENTAL RESULTS

Algorithm Compression CRC FFT Bit
manipulation

FIR filter Petri Net
simulator

Auto
generated

code

Load access events 707 12973 11790 25877 152191 2250 307

Store access events 771 7181 9430 11770 102420 509 311

Instruction fetch events 1936 26179 73481 54459 444140 5165 968

Data cache miss events 36 10 9 47 93 49 9

Instruction cache miss events 57 44 224 130 27 1081 206

Instruction fetch stall events 646 6685 36367 8228 67241 2992 501

LSU stall events 817 7463 18369 13801 103226 607 342

Branch stall events 241 1360 16476 1519 10389 2710 393

Duration [Tick counts] 195001 1251401 4371211 2392061 18408771 426291 126431

Number of runs 30000 500000 5000 50000 5000 50000 500000

Power consumption with PCU [W] 0.39621 0.40986 0.39609 0.42941 0.41171 0.39812 0.38414

Power consumption without PCU [W] 0.38914 0.39019 0.39244 0.42036 0.39215 0.39426 0.38069

Power consumption overhead of PCU [%] 1.79 4.81 0.92 2.11 4.75 0.97 0.9

 Instruction Fetch Event - effective number of
instruction fetches (automatically inserted NOPs,
saved instructions are not counted as separate
events);

 Data Cache Miss Event and Instruction Cache
Miss Event - number of cache miss events (data
and instructions which have to be retrieved from
the main memory);

 Instruction Fetch Stall event - number of stall
events in the instruction fetch unit (the next
instruction cannot be retrieved);

 Load/Store Unit Stall event - number of stall
events in the Load Store unit (waiting for data to
be fetched, or data is not yet available);

 Branch Stall Event - number of branch stalls;

 DTLB Miss Event/ITLB Miss Event - number of
misses in the TLB when employing virtual
memory;

 Data dependency Stalls Event - number of stalls
due to data dependencies.

For our experimentation scenario all except the 2 TLB
event counters have been implemented. Furthermore,
OpenRisc 1200 pipeline architecture does not allow for data
dependency stall event to arise. From the design perspective
each PC requires one 32-bit data register and one 32-bit
control/configuration register that hold information regarding
the monitored events and if the counter is present, enabled or
not. On the software side, PCs are mapped to special
configuration registers. The eight PCs can be programmed
individually using the mtspr instruction for writing the
configuration to enable/disable the counter and select the
events to monitor. The value can be read out at any time using
the mfspr instruction.

Adding PCs to processing core will increase both FPGA
area utilization (see Table I) and power consumption of the
FPGA core (see Table II). Based on physical measurements we
observed an increase in power consumption in the range of 1 to
5% for the measured benchmarks. The increase in power
consumption is also correlated with the activity of the counters
(~61%). On simple cores like OpenRISC, PCs activity has
perceptible effect on power consumption of the core itself.
Therefore, reducing the number of events at PCs level will
reduce the power consumption overhead.

IV. PROFILING RESULTS

A. Evaluation Setup

To validate the performance counters, some standalone
benchmarks from the WCET project [12] have been selected.
We have considered representative benchmark applications: a
compression benchmark, a CRC calculator, a FFT algorithm, a
bit manipulation benchmark, a FIR filter, a Petri Net simulator
and an auto generated code. These are self-contained software
programs that do not require any additional libraries, operating
or file systems. The benchmarks have been run once for
performance profiling, because the lack of an operating system
makes the results deterministic. However, physical power
measurements needed many sequential runs of the benchmarks
with the same parameters (Table II).

B. Experimental Results on Performance

With the default architecture configuration, the benchmarks
yield the values shown in Table II. Results show that there are
a lot of stalls and some cache miss events. The impact of cache
size on stalls has been studied by varying the cache sizes from
the minimal to the maximal available configuration. It can be
noted that Petri Net Simulator benchmark has the largest
number of instruction cache misses. This is due to its large
number of branches.

Another way to increase runtime efficiency is by means of
compiler optimization. The OpenRISC GNU tool chain has full
support for the OpenRISC architecture. In order to study the
impact of compiler optimization flags we have selected the
largest of the benchmarks - the FIR filter (Fig. 1). We have run
it through all compiler levels: O0 to O3.

Results show that the usage of compiler switches between –
O0 and –O3 yield an improvement for Load and Store events.
This is due to register reusing instead of memory writes.
Furthermore, decreasing Load and Store events triggers the
decrease in Load Store UnitLSU stall events. However, the
code compaction, results in a small increase in the number of
branch stalls. The gain between higher levels of optimization is
marginally better for some events, but can also be worse for
others (as the optimizations get more aggressive, the number of
branch stalls increase). This is only to be expected since the
compiler does not have runtime information and a global
overview to base its optimizations on.

 The Petri Net benchmark has a large number of branches,
which means that if the cache isn’t large enough to fit all the
relevant instructions, the performance gain is virtually
neglijable. This is also the case for Petri Net: the number of
cache misses and stalls decreases by half with the jump from
16K to 32K, while remaining constant up until that size (Fig.
2).

On the other hand, for the FIR filter benchmark it can be
observed that the decrease in stalls with the jump from 8KB to
16 KB as both data and instructions are well suited for the
16KB cache (Fig. 3).

C. Experimental Results on Power Consumption

During these experiments, we have measured the FPGA
power consumption, both for individual instructions and for the
considered benchmarks in a bid to correlate the performance
counters and the board measurements. The Digilent’s Genesis
and Atlys development boards based on Xilinx Spartan6
FPGAs are using INA219 devices [15] for the current
monitoring on 3.3V line (FPGA I/O, video, USB ports, ROM),

Fig. 1. Compile optimization options influence on performance counters

Fig. 2. Petri Net benchmark events function of cache size

Fig. 3. FIR execution events function of cache size

2.5 V line (FPGA aux, VHDC, GPIO), 1.2V line (FPGA core,
Ethernet), 1.8V line (DDR, FPGA DDR, I/O) and 0.9V line
(DDR). These boards provide a 2mA accuracy for the current
measurement, with 16 values (on 16 bits) per second sent
through an USB port. Each value is obtained as a mean of 128
samples (on 12 bits). In order to surpass the sampling rate limit
of the Atlys board, each benchmark has been executed several
times in order to measure the average power consumption of
the FPGA core (1.2V power supply line) while executing the
benchmark. The achieved power consumption measures for
every benchmark are presented in Fig. 4.

Performance counters are used today in building software
power consumption models for existing processing cores.
Therefore, we analyzed the correlation the PCs series of the
benchmarks with power consumption of the chip with PCs
disabled. We observed no correlation between any of the
performance counters and power consumption. However,
strong correlation between PCs series and benchmark duration
(98%) has been observed. Therefore, due to the small
variations in energy consumption of benchmarks’ executions
are masked by high correlation between duration and PCs
events, energy consumption and PCs values cannot be
analyzed individually.

 (1)

In order to estimate energy consumption of the benchmarks
out of PCs values the formula (1) has been used. The following
constant values have been computed using regression: Ci =
{0.0196, 0.0, 0.0586, 7.0922, 0.0, 0.0, 0.3778, 0.3352}. Data
cache miss events represent the parameter which has the
highest impact on energy consumption of the benchmarks. This
parameter is followed by LSU stall events and Branch stall
events. Based on PCs values, energy consumption of the
evaluated benchmarks can be estimated with an error between
1% and 9%.

One exception is the Automated Generated Code
benchmark whose average power consumption cannot be
measured with the Atlys board. This is a limitation of the
FPGA sensors accuracy and high static power consumption
values of FPGA technology. If we exclude this benchmark
from our evaluation, we obtained an energy estimation model
for OpenRISC core within 10% accuracy.

V. CONCLUSIONS

We have implemented PCs for the OpenRISC processor.
The goal is to collect the appropriate input (performance and
power consumption estimated) and to provide the software
layers with an insight of the execution at run-time. Monitoring
processor activity and estimating the energy usage based on it,
represents a feasible mechanism for power consumption power
consumption. For this purpose, we have studied the
correlations between physical board measurements and PCs
values. Results suggest that 90% correlation exists between the
two, based on a very simple energy estimation model. Another
interesting conclusion from our measurements is that for a
small to medium system, the PCs infrastructure does in fact

contribute to the power consumption (1-5%) due to their high
switching activity. Hence a careful selection of monitored
events, as well as the monitoring time window is required.
Future work includes resuming these measurements on more
capable with enhanced power monitoring support FPGA
boards such as Zynq-7020 evaluation board [16].

ACKNOWLEDGMENT

This work was supported by the research grant CHIST-
ERA/1/01.10.2012, GEMSCLAIM - GreenEr Mobile Systems
by Cross LAyer Integrated energy Management.

REFERENCES

[1] S. Eranian, What can performance counters do for memory subsystem

analysis?, Proceedings of ACM SIGPLAN workshop on Memory
systems performance and correctness, MSPC’08, Mar. 2008, Seattle,
WA, USA, pp. 26-30.

[2] R. Cammarota, A. Kejariwal, P. D’Alberto, S. Panigrahi, A. V.
Veidenbaum, and A. Nicolau, Pruning Hardware Evaluation Space via
Correlation-Driven Application Similarity Analysis, Proceedings of the
8th ACM International Conference on Computing Frontiers, New York,
USA, 2011.

[3] W. L. Bircher and L. K. John, Complete System Power Estimation using
Processor Performance Events, IEEE Transactions on Computers, Apr.
2012, pp. 563 - 577.

[4] S. Sankaran and R. Sridhar, Energy Modeling for Mobile Devices using
Performance Counters, 2013 IEEE 56th International Midwest
Symposium on Circuits and Systems (MWSCAS), Aug. 2013, pp. 441 –
444.

[5] The #1 community within open source hardware IP-cores,
http://www.opencores.org/.

[6] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, Cache Contention and
Application Performance Prediction for Multi-Core Systems, IEEE
International Symposium on Performance Analysis of Systems &
Software (ISPASS), Mar. 2010.

[7] A. Pesterev, N. Zeldovich, and R. T. Morris, Locating cache
performance bottlenecks using data profiling, Proceedings of the 5th
European conference on Computer systems, EuroSys’10, 2010, pp. 335-
348.

[8] H. Jung, X. Jin, and K. Ryoo, Performance Improvement and Power
Consumption Reduction of an Embedded RISC Core, Journal of
Information and Communication Convergence Engineering, Mar. 2012,
pp. 78-84.

[9] I. Mhadhbi, N. Rejeb, S. Ben Othmen, S. Ben Saoud, Performance
Evaluation of FPGA Soft Cores Configurations Case of Xilinx
MicroBlaze, I nternational Journal of Computer Science,
Communication & Information Technology, 2014.

[10] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T.
Spencer, End-user Tools for Application Performance Analysis Using
Hardware Counters, Proceedings of International Conference on Parallel
and Distributed Computing Systems, ICPDCS 2001, 2001.

[11] OpenRISC 1000 Architecture Manual, Architecture Version 1.0,
Document Revision 0, December 5, 2012.

[12] WCET: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[13] Abhishek Jaiantilal, Yifei Jiang, Shivakant Mishra, Modeling CPU
Energy Consumption for Energy Efficient Scheduling, Proceedings of
the 1st Workshop on Green Computing, GCM’10, Bangalore, India, Dec
2010.

[14] W. Lloyd Bircher and Lizy K. John, Complete System Power Estimation
using Processor Performance Events, IEEE Transactions on Computers,
Vol. 61, Iss. 4, pp. 563-577, Apr. 2012.

[15] http://www.ti.com/lit/ds/symlink/ina219.pdf

[16] http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html

[17] Mohamad Najem, Pascal Benoit, Florent Bruguier, Gilles Sassatelli,
Lionel Torres, Method for Dynamic Power Monitoring on FPGAs, 24th

International Conference on Field Programmable Logic and
Applications, FPL 2014, Munich, Germany, Sep. 2014.

Fig. 4. Physical power measurement of selected benchmarks

