
Low-Cost Hardware Infrastructure for Runtime Thread
Level Energy Accounting

Marius Marcu, Oana Boncalo, Madalin Ghenea, Alexandru Amaricai, Cosmin Cernazanu
University Politehnica Timisoara
Timisoara, 2 Vasile Parvan Blvd.

mmarcu@cs.upt.ro, oana.boncalo@cs.upt.ro, alexandru.amaricai@cs.upt.ro, cosmin.cernazanu@cs.upt.ro

Jan Weinstock, Zheng Wang, Rainer Leupers
RWTH Aachen, Germany

weinstoc@ice.rwth-aachen.de, wang@umic.rwth-aachen.de, leupers@ice.rwth-aachen.de

ABSTRACT
The ever-growing need for energy efficient computation requires
adequate support for energy-aware thread scheduling that offers
insight into a systems behavior for improved application
energy/performance optimizations. Runtime accurate monitoring
of energy consumed by every component of a multi-core
embedded system is an important feature to be considered for
future designs. Although, important steps have been made in this
direction, the problem of distributing energy consumptions among
threads executed on different cores for shared components
remains an ongoing struggle. We aim at designing a generic low-
cost and energy efficient hardware infrastructure which supports
thread level energy consumption monitoring of hardware
components in a multi-core system. The proposed infrastructure
provides upper layers (operating system and application threads)
with per thread and per component energy accounting API
(Application Programming Interface), similar with performance
profiling functions. Implementation results indicate that the
proposed LEM (Load and Energy Monitor) adds a less than 3%
resource overhead to the monitored system.

Categories and Subject Descriptors

C.1.4 [Processor architectures]: Parallel Architectures –
Distributed architectures.

General Terms
Measurement, Design.

Keywords
Energy accounting, power consumption, runtime monitoring,
heterogeneous multi-core systems, Per Thread Energy Accounting
(PTEA).

1. INTRODUCTION
Energy metering has been a major research topic during the last
years. Measuring energy is needed to validate and calibrate energy
models; to perform energy profiling of hardware and software
applications and, last but not the least, to develop energy-aware
applications based on runtime energy measurement. Based on
their intrusiveness and required hardware support, these
techniques span from software approaches [1], to solutions
requiring dedicated hardware support within the system such as a
customized token ring interconnect [2], network on a chip
interconnect with monitors [3][4]. Approaches such as HEMA
(Hardware-assisted energy monitoring architecture) [5], are a

tradeoff that rely on software techniques and usage patterns, with
some periodic calibration from hardware monitors. These
researches try to distribute power consumption per core. However,
as argued in the work of [6], this is no longer sufficient. Per task
metering (PTEM) [6] is a must in nowadays systems in order to
facilitate: efficient resource allocation for task execution
(dynamically assess at operating system (OS) level resource
allocation), system level energy/performance optimization, billing
in datacenters.

Furthermore, breaking down energy consumption is even harder,
and requires support on both the monitoring side, and on the OS
side. The majority of the previous work has been focused on
breaking the system energy or power consumption down to
component level, using power measurements or power
estimations. Thus, the problem of per component energy
accounting is well studied at the moment, with well understood
constraints arising due to the limited time resolution and/or
accuracy of the power sensors. However, the ever-increasing
complexity of systems and system-level interactions, requires Per
Thread Energy Accounting (PTEA), also referred to as PTEM in
the work of [7], bringing energy metering to a higher abstraction
level. PTEA performs energy estimation of the hardware
components in response to the actions initiated by each specific
task in a multi-tasking environment. Task level and thread level
energy accounting techniques (PTEA) are even more complex to
accomplish because they have to split power consumed by shared
components to the tasks or threads that control them. This is only
possible with dedicated hardware and software support.

The contribution of this work is as follows:

 Infrastructure for dynamic energy consumption monitoring
in a heterogeneous multi-core system with per thread energy
accounting (PTEA);

 A use case on the software side (OS and drivers) for run-
time PTEA implementation.

Briefly, PTEA can be achieved splitting the whole energy into
processing energy (energy consumed by processing cores), data
movement energy (energy consumed by interconnects to read and
store data) and data storage energy (energy consumed by
memories to store task data). The proposed infrastructure
addresses: processing energy accounting, data movement energy
accounting, and data storage accounting. Both processing and
data movement accounting is performed per thread, but data
storage is currently per component. However, data storage energy
splitting per task can be further implemented in our infrastructure
using the techniques proposed by [6].

The PTEA infrastructure is based on centralized-distributed-
interconnect architecture as described in Section 3. The features
of the proposed solution are:

 Wishbone interconnect: an open-source standard, with one
proposed addition: a short bus cycle when no relevant data
can be read by monitoring infrastructure;

 Centralized control with a number of configurable
parameters that allow an easy adaptation of the
infrastructure for various systems and use cases;

 Lightweight non-intrusive sensors attached to processing
and shared system’s components (see description from
Section 3);

 Software driver support for programming the infrastructure;
it should provide the needed support for PTEA at the OS
side.

This paper is organized as follows: Section 2 provides the
description of previous related work on energy accounting;
Section 3 presents the proposed energy accounting infrastructure;
Section 4 describes proposed PTEA solution; experimental results
and system overhead is presented in Section 5. The conclusions
are discussed in the last section.

2. RELATED WORK
Hardware monitoring infrastructures have been proposed in the
past, with results reported for both FPGAs and ASICs. These
solutions have to provide several main features: power and
performance meters (physical or model based sensors), data
collection (interconnects), control unit (configuration and
processing) and finally, software drivers (API).

The work presented in [2] uses a customized token ring
interconnect for monitoring and actuation. Two lines are
dedicated for communication control (token and valid), with as
many as desired data lines possible (based on the transmission
speed and/or resources committed for the infrastructure). This
solution is simple, with a limitation for the transmission delay: it
increases linearly with the number of nodes. Research in [3][4],
relies on a network on a chip (NoC). Hardcoded routing tables
and two types of monitors (i.e. data pull and data push) try to limit
the overhead introduced by the NoC. Another solution, proposes a
light-weight monitoring system relying on a single-wire
interconnect network, where monitoring components take turns to
send data to centralize data [7].

Most of the solutions allow centralized control [1-7], with [2] also
permitting distributed control and information aggregation. When
addressing large platforms, these are broken into subsystems (in
some works referred to as islands), with each subsystem having its
own interconnect and having its own monitoring infrastructure.
For example, for large systems, the authors of [2] divided the SoC
on islands and use a customized ring for each island. Inter-
subsystem messages can be exchanged by means of an
interconnect on top of the aforementioned one [2][3][4]. This type
of solution is also adopted in this work.

Sensor/monitor architecture is typically made of two parts:
interface with the choice of interconnect, and processing part,
where the data is being aggregated/actuated (sensing application
dependent). Furthermore, on the processing side (which is
connected to the system being monitored), the coupling between
the sensors and the target system can be classified in two
categories: tight (when actual instrumentation of the component

design is required for introducing event counters and additional
ports for reporting their activity [6]), and weak (when already
built-in support exists – e.g. thermal sensors, performance
counters, or some sort of non-intrusive way of accounting events
is proposed [3][4][7]).

Bus

Core 0 Core 1 Core n-1

DRAMI/O

C-LEM

Figure 1. Overall solution architecture.

PTEM is discussed only by few papers [6][8], most of them
targeting x86 processor system architectures [8]. In [6] PTEM is
achieved on the basis of resource utilization and occupancy
tracking with dedicated hardware. Considering the state of the art,
most of the recent efforts in energy accounting are directed toward
component level energy modelling, profiling, or monitoring.
However, energy consumed by data movement is not taken in
consideration, due to its complexity and shared usage problem. In
our work we address energy accounting of data movement in a
heterogeneous multi-core system in conjunction with energy
accounting of processing elements.

3. PTEA INFRASTRUCTURE
3.1 Overall solution architecture
The proposed solution, called Load and Energy Monitor (LEM),
implements a distributed sensor network through a dedicated bus
interconnect. The control is centralized. LEM infrastructure is
constructed on three components: LEM sensors (S-LEM), LEM
controller (C-LEM) and LEM interconnect (LEM Bus) (see
Figure 1). Each component of the target system needs to
implement its own accounting sensors which will provide LEM
interconnect with access interface to collect sensors data. The
sensors (S-LEM) collect data directly from hardware, perform
component level performance or energy accounting computations
and allow fine tuning of components’ power management
parameters. This is a generic infrastructure, therefore sensors
sampled values may be switching activity, performance counters,
and power or temperature physical measures. Sensors are attached
to processing cores, interconnects and memory components of the
target monitored system. Each component should implement at
least one sensor – the energy accounting sensor. The LEM
infrastructure is also non-intrusive, in the sense that the
monitoring infrastructure plane is decoupled from the monitored
target functional system (Fig. 1). Decoupling is possible by
providing sensors with standard bus interface to LEM bus and
data collection probes to monitored hardware and/or bus monitor.
The LEM bus based on Wishbone Bus (WB) specification, is
cost-effective and light-weight.

3.2 Hardware Components Description
The LEM sensors implement a standard interface for the various
performance and/or consumption monitoring support existing in
hardware. Every sensor is made of three parts (Fig. 2): (1) sensor
interface that is Wishbone (WB bus) based it is used to connect
the sensor core with the central LEM; (2) sensor back-end (with

some processing and tuning support) with limited energy
consumption accounting and (3) hardware interface probes which
is hardware or bus specific.

Processing core

T
un

ab
le

 k
no

bs

Monitoring ports

R
ea

da
bl

e
co

u
n

te
rs

LEM bus interface

Sensor
core

Physical probes

Bus interface

Figure 2. Overall sensor architecture.

Sensor back-end either reads the energy consumed by a
component (some processing cores offer this information through
some dedicated ports), or derives the energy consumed by adding
for each accounted event a value from a stored table with apriori
computed values. Although the target system is different, some
common points exist with the tool HEMA [5], mainly the idea of
reducing the overhead on the hardware monitoring infrastructure.
Our solution tries to derive energy consumption by correlating
event accounting (i.e. event counters at various levels in our
system) with hardware based energy pre-computed luck-up-tables.

LEM sensors can be configured to provide energy, power or raw
data. Energy accounting is performed by summing up the samples
from the hardware until then next poll from the master C-LEM.
Power monitoring is performed by averaging the samples from the
hardware until the next read from the master. Raw data from low-
level hardware monitors are passed directly as instantaneously
values to the master. Using monitoring ports, LEM sensors can
access underlying monitoring hardware (e.g. performance
counters, physical sensors, or events monitors).

Central LEM (C-LEM) controls and collects sensors data from
installed LEM sensors and provides the OS with structured access
to the sensors’ data (Fig. 3). The OS communicates with the
central LEM unit through the global memory address space for
sensor control and sampling. Data received from the LEM sensors
is stored in the C-LEM local memory. Each sensor has a reserved
128 memory structure as presented in Fig. 3. The stored
information represents the instantaneous or aggregated value of
the data read from the respective sensor. Each memory location
will store the last value calculated from all the sensors that have
sensor data corresponding to the current core.

Timestamp [32]Memory struct.
[127-0]

Processing energy [32]

Energy quantum [32]

Data moving energy
[32]

Timestamp [32]

Processing energy [32]

Energy quantum [32]

Data moving energy
[32]

Timestamp [32]

Processing energy [32]

Energy quantum [32]

Data moving energy
[32]

S-LEM-0

S-LEM-1

S-LEM-N-1

Figure 3. LEM memory

Figure 4. LEM interconnect

Furthermore, C-LEM central is also highly parameterized, and it
can be programmed by the underlying software same as the router
from [3]. Dedicated registers allow the programming of the LEM
for: enabling/disabling monitoring for a component, changing the
sampling rate, controlling the power model or selecting the
accounting mode. LEM is a bus based infrastructure, based on
WB standard, with the master and slave interfaces presented in
Fig. 4. The bus supports one master, which is C-LEM, and many
sensors slaves. In the initial version of LEM 256 sensors (S-LEM)
are targeted. The C-LEM master polls at the configured rate all
enabled sensors and executes non burst reads to get sensors’
values.

4. PER THREAD ENERGY ACCOUNTING
LEM infrastructure is a hardware solution that can be customized
for different applications. It has been further customized and used
to implement PTEA in a multi-core system. In a multi-core system
we consider two types of components: processing cores (could be
homogeneous or heterogeneous) and shared resources (e.g.
memories and interconnects). In a multi-core hardware
environment, every core has a unique core ID. Our proposal is to
use this ID in hardware transaction with shared components to
identify the processing core which will be charged with the energy
budget of the current transaction. The LEM sensors connected to
these shared components will use master ID to account per core
energy consumption.

Modern interconnects like Wishbone (open source) and AXI
(ARM) allow system designers to attach meta-information to each
transfer. For example, Wishbone bus standard specifies user-
defined tags to apply extra information to each bus cycle [9]. On
the other hand, AMBA open specification [10] associates
implicitly hardware IDs of the master to each bus cycle. ARID,
RID, AWID, WID and BID bus signals are carrying ID tags of the
read address, read, write address, write and response bus transfers.
Hence, it makes sense for the LEM sensors of shared resources to
use the master ID of the access to split the energy consumed for
shared components.

Using the LEM infrastructure and the ID tagging bus support,
PTEA implementation can be split in two steps:
- Per core energy accounting of processing cores and shared

resources based on hardware support;
- Per thread energy accounting implemented at OS level

during context switching, using the provided LEM drivers.

LEM driver provides OS with an API similar to existing
performance profiling counters functions. The LEM driver
interface is based on start/stop accounting operations.

Figure 5. Memory hierarchy monitoring (adapted from [6])

When a thread context switch occurs, the OS will store the energy
counters of the current thread and will restart the counters for the
next thread. While a thread is executed by a core, per core energy
accounting implemented in hardware will be used to account for
the energy of a running thread. Considering that a core will
execute only one thread at the time, the coordination between OS
and HW will account for the thread level energy in a multi-
core/multi-threading execution environment.

LEM hardware infrastructure comprises of bus/interconnect
sniffers (S-LEM). These monitor for the number and type of
accesses for each shared components. Energy accounting is
estimated using look-up-tables which correlated the energy
consumed with the number and type of accesses. We further
discuss the PTEA use case for the example target platform used in
[6] - Figure 5. In case core0, from cluster0, has a cache miss in L2
- cache, three events are reported by three sensors: access L1 -
cache (by the processing core’s sensor), access L2 - cache (event
reported by the cluster bus: L2 cache access), access memory
controller (event reported by the system bus). Each of these events
are accounted on behalf of core0. The proposed approach differs
from the one described in [6] by the fact that events such as dirty
line, cache line eviction, cache hit or miss are not monitored
solely on the shared component side. These are a direct
consequence of our proposed accounting method, and are
transparent for the infrastructure. For example, a cache line

eviction require a number of events on the system bus; the shared
cache sensor for the processing core (identified by master ID) is
notified by the sensor on the system bus that energy needs to be
accounted on its behalf. This mechanism is hierarchical.
Furthermore, the means for these types of notifications represent
transactions on the LEM infrastructure. Therefore, the bus
topology of the LEM infrastructure is similar with the one in the
monitored system.

Table 1 – LEM Cost Estimates and Overhead

Resource
type

LEM
resources

MPSoC
resources

Overhead
[%]

Slice LUTs 750 24063 3

Slice registers 742 40544 1.8

BRAM 0.5 104.5 0.05

DSP 0 12 0

5. EXPERIMENTAL RESULTS
The LEM infrastructure has been implemented on the Xilinx
ZC702 evaluation kit, with Xilinx Zynq-7020 device. The Zynq
7000 family of devices combine two ARM Cortex A9 cores with
FPGA fabric in one MPSoC. The development board has built-in
power monitoring sensors for the power lines of the main
components: processing system cores (ARM cores),
programmable logic core, DRAM, I/O etc. The reference design
for PTEA presented in Figure 10 has four Microblaze cores with
local interrupt controller, and local instruction and data memory
(Figure 7).

The implementetion overhead of the LEM infrastructure for the
reference design is presented in Table 1. C-LEM samples the
sensors at configurable rates. One polling cycle is presented in
Figure 6. LEM bus signals are derived from WB standard.
Minimum delay of one polling cycle function of the number of
available LEM sensors shows a linear dependence (Figure 8).

Figure 6. LEM polling cycles

Figure 7. Power consumption of Microblaze instructions

Figure 8. LEM polling time vs. number of sensors

Preliminary instruction level profiling using the LEM
implementation for the reference design is presented in Figure 9.
The sensors monitor continuously the component interfaces,
mapping the current operation onto the corresponding power
consumption value, using pre-computed tables. The sensor of
shared components (e.g. main memory) monitors memory
transfers on AXI bus and dispatches the measurement values
based on the core ID transferred on AXI ID lines. The LEM
sensors has been calibrated using built-in power sensors and
XADC controller within the Zynq.

Figure 9. Power consumption of Microblaze instructions

6. CONCLUSIONS
In this paper, we have introduced a cost effective LEM
infrastructure for component level power and energy monitoring.
The monitoring infrastructure implements two levels of energy
accounting: processing energy and data movement energy. Per
core energy accounting can be done using the LEM hardware
infrastructure. The infrastructure can be further used in
conjunction with OS drivers, to implement thread-level energy
accounting. The most important limitation for the proposed
infrastructure is represented by the linear increase of the polling

time with the number of sensors. We will address this limitation
by shortening bus cycle when no relevant data can be read by the
monitoring infrastructure. Further tests cases on the reference
design have to be performed in order to validate the PTEA.

7. ACKNOWLEDGMENTS
This work has been supported by the project CHIST-
ERA/1/01.10.2012 – “GEMSCLAIM: GreenEr Mobile Systems
by Cross LAyer Integrated energy Management”.

8. REFERENCES
[1] Weaver, V. M., Johnson, M., Kasichayanula, K., Ralph, J.,

Luszczek, P., Terpstra, D., and Moore, S., 2012. Measuring
Energy and Power with PAPI. Proceedings of 41st
International Conference on Parallel Processing Workshops
(Pittsburgh, PA, USA, September 2012). ICPPW '12.

[2] Bouajila, A., Lakhtel, A., Zeppenfeld, J., Stechele, W.,
Herkersdorf, A., 2012. A low-overhead Monitoring Ring
Interconnect for MPSoC Parameter Optimization.
Proceedings of IEEE International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (Tallinn,
Estonia, April, 2012). DDECS 2012.

[3] Madduri, S., Vadlamani, R., Burleson, W., and Tessier, R.,
2009. A Monitor Interconnect and Support Subsystem for
Multicore Processors. Proceedings of Design, Automation &
Test Europe (Nice, France, April 2009). DATE 2009.

[4] Zhao, J., Madduri, S., Vadlamani, R., Burleson, W., and
Tessier, R., 2011. A Dedicated Monitoring Infrastructure for
Multicore Processors. IEEE Transaction on Very Large
Scale Integration (VLSI) Systems, Vol. 19, No. 6, (June
2011).

[5] Choi, S., Hwang, H., Song, B., and Cha, H., 2012.
Hardware-assisted energy monitoring architecture for micro
sensor nodes. Journal on System Architecture, Elsevier, No
58, (2012), pp 73-85.

[6] Lui, Q., Moreto, M., Jimenez, V., Abella, J., Cazorla, F.J.,
Valero, M. 2013. Hardware Support for Accurate Per-Task
Energy Metering in Multicore Systems. ACM Transactions
on Architecture and Code Optimization, Vol. 10, No. 4,
(December 2013).

[7] Ituero, P., López-Vallejo, M., Marcos, M. A. S., and Osuna,
C. G., 2012. Light-Weight On-Chip Monitoring Network for
Dynamic Adaptation and Calibration. IEEE Sensors Journal,
Vol. 12, No. 6 (June 2012).

[8] Molka, D., Hackenberg, D., Schone, R., and Millier M.S.
2010. Characterizing the Energy Consumption of Data
Transfers and Arithmetic Operations on x86-64 Processors.
In Proceedings of International Green Computing
Conference (Chicago, USA, August 15-18, 2010).
GreenComp 2010. IEEE, 123-133. DOI:
10.1109/GREENCOMP.2010.5598316

[9] OpenCores, WISHBONE System-on-Chip (SoC)
Interconnection, 2010.

[10] ARM, AMBA Open Specifications,
http://www.arm.com/products/system-ip/amba/amba-open-
specifications.php, 2003.

Figure 10. Reference system design

