
One Hot encoding for FSMs

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

October 30, 2025

Introduction

Objectives:

▶ Construct Finite State Machines (FSMs) using the One Hot
encoding

For reading:

� Mircea Vlăduţiu: ”Computer Arithmetic : Algorithms and
Hardware Implementations”, Appendix B [Vlad12]

The One Hot encoding for a FSM with s states uses s storage
elements. Each storage element is associated with one state. In
consequence, at any given moment, one and only one of the s
storage elements is active (has active output).

The One Hot encoding implementation, although using more
storage elements than the State Table method, has the advantage
of a straightforward design and debug.

2 / 11

Frequency divisor

A frequency divisor having a division factor of n receives at input a
clock signal with frequency fin and generates at output a signal
with frequency fin

n . The generate signal ought not have a 50% duty
cycle (the signal is active half the period and inactive the other
half).

If n is of form 2k , a k-bit binary counter is used, the divided clock
signal being the Most Significant Bit (MSB) of the counter’s
output. If n is not a power of 2, a modulo-n counter is used.

The interface of the frequency divisor:

• input clk: the signal having frequency fin
• input rst b: initialization signal, optional

• output dclk (divided clock): the signal with frequency fin
n

3 / 11

Case study
Implementing a Mealy machine described by transition diagram

Exercise: Implement the following FSM:

S0

S1

S2
S3

a&b/m

a/m, n

∗/m

c/

c/n
b/n

b/n

a&b/n

4 / 11

Case study (contd.)
Implementing a Mealy machine described by transition diagram

The design uses 4 D type flip-flops: FF0, FF1, FF2 and FF3, with
inputs Di and outputs Qi , associated to the 4 states S0, S1, S2 and
S3.

At every moment one and only one of the 4 flip-flops is active,
having output Qi set to 1. The current state is indicated by the
flip-flop with the active output. If Q1 is active, the current state is
S1, if Q4 is 1 then S4 is the current state, etc.

At input Di is connected the boolean equation activating state Si .
FSM’s design reduces to writing these equations. The next state
will be S1 in the following cases:

• the current state is S0, a is 1 and b is 0, or

• the current state is S2 and c is 0

Thus D1 = Q0 · a · b + Q2cdotc

5 / 11

FSMs’ implementation using the One Hot encoding
Step 1

For each state of the FSM, define a state constant, Si , using
localparam. Each state constant will have a distinct value,
between 0 and s − 1 (s being the total number of states).

For the proposed exercise, these constants can be defined like
bellow:

1 l o c a l pa r am S0 = 2 ;
2 l o c a l pa r am S1 = 0 ;
3 l o c a l pa r am S2 = 3 ;
4 l o c a l pa r am S3 = 1 ;

6 / 11

FSMs’ implementation using the One Hot encoding
Step 2

Define the current state, st, and the next state st nxt as 2 binary
vectors on s bits (s being the FSM’s number of states). Signal st
will be declared of reg type whereas st nxt as wire type.

For the proposed exercise, the two signals are defined as bellow:

1 r eg [3 : 0] s t ;
2 w i r e [3 : 0] s t n x t ;

7 / 11

FSMs’ implementation using the One Hot encoding
Step 3

Assign to bit st nxt[Si] (Si being one of the state constants defined
in step 1) the boolean expression activating the state Si . It is
worth noting that these boolean equations are constructed by the
model presented in slide 5, with the specification that signals Di

are replaced with st nxt[Si] and signals Qi are replaced with st[Si].

For the proposed exercise, the next state generation becomes:

1 a s s i g n s t n x t [S0] = (s t [S0] & (˜ a)) |
2 (s t [S3] & b) ;
3 a s s i g n s t n x t [S1] = (s t [S0] & a & (˜b)) |
4 (s t [S2] & (˜ c)) ;
5 a s s i g n s t n x t [S2] = s t [S1] |
6 (s t [S0] & a & b) ;
7 a s s i g n s t n x t [S3] = (s t [S2] & c) |
8 (s t [S3] & (˜b)) ;

8 / 11

FSMs’ implementation using the One Hot encoding
Step 4

Assign to each FSM output the boolean expression constructed
directly from the state transition diagram, by enumerating using
the OR logic operator all conditions on which the respective output
is active. Example: output m is active:

• in state S0, if a is 0, or

• in state S0, if a is 1 and b is 0, or

• in state S1

For the proposed exercise, the outputs are generated like bellow:

1 a s s i g n m = (s t [S0] & (˜ a)) |
2 (s t [S0] & a & (˜b)) |
3 s t [S1] ;
4 a s s i g n n = (s t [S0] & (˜ a)) |
5 (s t [S0] & a & b) |
6 (s t [S2] & c) |
7 (s t [S3] & (˜b)) |
8 (s t [S3] & b) ;

9 / 11

FSMs’ implementation using the One Hot encoding
Step 5

Update the current state in a sequential always block. At each
triggering edge of the clock, the next state signal becomes the
current state. Activation of the reset input brings the FSM in the
initial state, which, for the proposed exercise is state S0.

For the proposed exercise, the current state update is performed as
in the following code:

1 a lways @ (posedge c l k , negedge r s t b)
2 i f (r s t b == 0) beg in
3 s t <= 0 ;
4 s t [S0] <= 1 ;
5 end e l s e
6 s t <= s t n x t ;

10 / 11

References

[Vlad12] M. Vlăduţiu, Computer Arithmetic: Algorithms and
Hardware Implementations. Springer, 2012.

11 / 11

