
Writing parameterized modules

Opriţoiu Flavius
flavius.opritoiu@cs.upt.ro

October 30, 2025

Introduction
Objectives:

▶ Datapath and control path separation

▶ Understand how to write parameterized modules

Datapath

- Consists of elements processing the data: no decisions are
taken

- Typical components: multiplexers, registers, Arithmetic and
Logic Units (ALUs), counters

- Construct shared buses using three-state drivers

Control path

- Concerned with decision making

- Described in terms of state machines

Note: State-enabled components (such as registers, counters) can
be part of the datapath, as well.
© 2025 Opriţoiu Flavius. All Rights Reserved.

Reusable modules
Reusable modules are defined in terms of parameters, which can be
redefined. In Verilog 2001 the module’s parameters are specified in
a dedicated section, marked by #(and) symbols.

The code bellow describes a parallel load register with
parameterized width (no. of bits) and initialization value (register
content after reset or clear).

1 module r g s t #(
2 paramete r w = 8 , // r e g i s t e r ’ s w idth paramete r ; d e f a u l t o f 8
3 paramete r i v = {w{1 ’ b0}}// i n i t i a l i z a t i o n v a l u e paramete r
4) (
5 i n pu t c l k ,
6 i n pu t r s t b , // asynch ronous r e s e t ; a c t i v e low
7 i npu t [w=1:0] d , // i npu t data , on w b i t s
8 i n pu t ld , // synch ronous l oad ; a c t i v e h igh
9 i npu t c l r , // synch ronous c l e a r ; a c t i v e h igh

10 output r eg [w=1:0] q // r e g i s t e r ’ s content , on w b i t s
11) ;

13 a lways @ (posedge c l k , negedge r s t b)
14 i f (! r s t b)
15 q <= i v ; // s e t con t en t to i n i t i a l i z a t i o n v a l u e
16 e l s e i f (c l r)
17 q <= i v ; // s e t con t en t to i n i t i a l i z a t i o n v a l u e
18 e l s e i f (l d)
19 q <= d ;
20 endmodule

© 2025 Opriţoiu Flavius. All Rights Reserved.

Reusable modules (contd.)
In-line, explicit redefinition of module’s parameters, in Verilog
2001, uses the following format:
module-name #(.parameter-name(value), ...)

instance_name (.port-name(signal), ...)

Code bellow instantiate a 16-bit register, with an initialization
value of 0

1 r g s t #(
2 .w(16)
3) r e g i s t r u 1 (
4 . c l k (c l k) , . . .
5) ;

Code bellow instantiate a 4-bit register, initialized 15

1 r g s t #(
2 .w(4) ,
3 . i v (4 ’ d15)
4) r e g i s t r u 2 (
5 . c l k (c l k) , . . .
6) ;

© 2025 Opriţoiu Flavius. All Rights Reserved.

Solved problem
Constructing a register file using discrete registers

Exercise: Construct a 4x8 register file.

Solution: An MxN register file is a storage element organized as an
array of M registers, each register having N bits. It permits
simultaneous reading one internal register and writing one internal
register (possibly the same).

A register file’s interface includes the following connections:

• an N-bit data input, for writing internal registers (wr data)

• an N-bit data output, for reading internal registers (rd data)

• an input address, selecting the register to be written (wr addr)

• an output address, selecting the register to be read (rd addr)

• data write enable signal (wr e)

• data read enable signal (rd e)

The enable lines of the writing/reading port are optional. M is,
typically, of form 2k : the input/output addresses use k bits.
© 2025 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Constructing a register file using discrete registers

The interface of a 4xn register file is depicted bellow

wr_data

wr_addr

wr_e

2

rd_data
n

rd_e

rd_addr

n

2

reg_fl

clk

rst_b

For this case, the interface is made up of:

• the writing port (wr data, wr addr, wr e)

• the reading port (rd data, rd addr, rd e)

• clock signal (clk)

• reset signal (rst b)

© 2025 Opriţoiu Flavius. All Rights Reserved.

Solved problem (contd.)
Constructing a register file using discrete registers

An 4x8 register file with no output enable line:

e

ld

ld

ld

ld

s1

s0

1
-o

u
t-

o
f-

4
 d

e
c
o
d
e
r

o0

o1

o2

o3

8-bit register

wr_data

wr_addr

wr_e

rd_data
8

8

8

8-bit register

8

8-bit register

8

8-bit register

8

s0

s1

4
-t

o
-1

 m
u
lt
ip

le
x
e
r

rd_addr

d0

d1

d2

d3

d

q

d

q

d

q

d

q

o

Note: The clock and reset lines were omitted for brevity.

© 2025 Opriţoiu Flavius. All Rights Reserved.

Three-state driver

Used for connecting several components on a shared line or bus.

e

i o

Output o is set to i when enable line, e, is active, and to high
impedance otherwise. An output set to high impedance
(symbolized by z, in Verilog) allows other component to drive the
logic level of the shared line or bus it connects to.

The code fragment bellow demonstrates commanding a signal into
high impedance by a control line, e:

1 wi r e [1 5 : 0] data , d a t a h i z ;
2 a s s i g n d a t a h i z = (e) ? data : 16 ’ bz ;

Because the high impedance symbol, z, is the most significant bit
of the constant in line 2, it is extended to 16 high impedance bits.

© 2025 Opriţoiu Flavius. All Rights Reserved.

Solved problem
Constructing a multiplexer using three-state drivers

An n-bit 4-to-1 multiplexer, implemented with three-state drivers:

1-out-of-4 decoder
o0o1o2o3

s

o
n

n

n

n

n

d3

d2

d1

d0

s
2

Multiplexer’s select input, s, drives a 1-out-of-4 decoder. The final
stage connects all three-state drivers’ outputs together.

© 2025 Opriţoiu Flavius. All Rights Reserved.

