
Understanding Web Applications
Using Component Based Visual Patterns

Dan C. Cosma and Petru F. Mihancea
LOOSE Research Group

Politehnica University of Timişoara and Institute e-Austria Timişoara, Romania

Email: {dan.cosma, petru.mihancea}@cs.upt.ro

Abstract—This paper introduces our approach for high-level
system understanding that uses software visualization to analyze
the presentation layer of Web applications. The technique is
driven by static analysis, relies on state-of-the art concepts,
and is technology-aware, so that it focuses on those precise
particularities of the application’s presentation layer that define
its Web presence. By combining an approach initially developed
for software testing with visualization, the essential structural
dependencies between and within the Web components are ex-
tracted and reviewed. Initial evaluation shows that the technique
is able to provide a comprehensive view that is very useful in
spotting new and interesting visual patterns that give significant
insight for software comprehension.

I. INTRODUCTION

This paper introduces our approach of reverse engineer-

ing Web applications, specifically targeting program compre-

hension. This new approach extends a technique developed

by [1] for software testing, and combines it with software

visualization in order to identify and analyze the relevant

structural patterns that provide significant understanding on

the application. Static analysis is used for extracting struc-

tural information about the Web components, their inter-

dependencies, and the way they generate the Web content

during the interaction with the user. The approach focuses

on the application’s presentation layer as the most significant

source of information, gathering most of the elements that

define the application’s Web presence: technology-dependent

code, user interface interaction, dynamic content.

II. BACKGROUND

Web applications provide user interfaces consisting of dy-

namically generated HTML pages sent from the server to the

Web browser. When aiming to represent the structure of the

generated Web pages, one needs a way of identifying the

source code fragments that deal with the dynamic generation

of each significant portion of the HTML content.

For this purpose, a very useful set of concepts were in-

troduced by [1] in the context of modeling Web applications

for software testing. The main concept is the atomic section,

defined as “a section of HTML [...] that has the property
that if part of the section is sent to the client, the entire
section is” [1]. The atomic section is in a way similar to

the concept of basic blocks in programs, although it focuses

on the way HTML responses are generated. A dynamically

generated HTML page consists of a certain combination of

//Component A_jsp.java
out.println("<html>");
out.println("<body>");
if(some_condition) {
 out.println("You do not have a link!");
} else {
 out.println("");
 out.println("Click Here");
 out.println("");
}
out.println("</html>");
out.println("</body>");

B_jsp.java
...

A_jsp.javaAtomic
Section

Transition
Between

Components

Transition
Between
Atomic

Sections

Fig. 1: Atomic Sections and Transitions

atomic sections, put together at runtime by a server-side Web

component. Building on this concept, [1] introduces the Web
application transition graph, with the aim of modeling the

entire application. Nodes are Web components (the A jsp.java
and B jsp.java rectangles in Figure 1), and edges model

HTML link elements and other similar transitions between the

components. Each web component is represented in turn by

using a Component Interaction Model, a graph showing how

the atomic sections (the circles in Figure 1) are combined by

the software to generate all the possible versions of Web pages

that fall in the respective component’s responsibility.

While [1] introduces this model to further define testing

criteria, we use the model for an altogether different purpose:

reverse engineering existing applications in order to extract

highly relevant information for program comprehension.

III. TOWARDS A REVERSE ENGINEERING APPROACH

Our work focuses on i) using static analysis to build a

model of a JSP/Servlet application, similar to the transition

graph described in Section II, and ii) using visualization to

comprehend the system. While this is work in progress, we

have already built an interactive tool to apply the approach.

A. Model Representation and Extraction

To represent the Web application, we have defined a specific

meta-model shown in Figure 2. The main concept is the Web

component, corresponding to a JSP page, and the other entities

the atomic sections, the transitions between atomic sections

and several types of transitions between components.

The model is built in two steps by processing the Abstract

Syntax Tree of each Web component. The first step uses an

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPC.2015.39

281

Application

Component

AtomicSection

RefferingElement

*

1

*

AtomicSection
Transition

*

2

from/to

*

1

Form Link Redirect Dynamic
Include

0..1

Fig. 2: The Meta-Model

inter-procedural analysis of the control flow to create the intra-
component atomic section graph, where the nodes are atomic

sections and the transitions represent compositional links

between them. The second step creates the inter-component
transition graph. It captures all elements that can cause the

user interface to “jump” from the page generated by the

current component to a page generated by another component

(HTML links, forms and HTTP redirections), as well as the

statements that let Web components include each other at

runtime. The purpose is to extract the ”intentional flow” of

the Web interface, i.e., how are the components activated when

users interact with the pages generated by each component.

B. Model Visualization

An example of the main view rendered by our visualization

is presented in Figure 4, and the individual visual elements of

the representation are explained in Figure 3.

Components are drawn as rectangles, linked together by

color-coded arrows depicting the inter-component dependen-

cies. There are, at this point, three types of arrows drawn

at the inter-component level: i) red arrows – the transitions

that show the ”jump” dependencies: links, form actions, and

HTTP redirects. Each arrow starts in the atomic section that

generates the jump, and points to the target component; ii) blue
arrows – the runtime include dependencies. The arrow starts

at the atomic section containing the runtime include statement

and points to the included component; iii) gray arrows
– dependencies that either refer to destinations outside the

application, or link to components whose names are computed

at runtime (and cannot be resolved by static analysis)

For each component in the view, the interior of the rectangle

contains the graph that describes the component interaction

model (as described in Section II). Any path from a component

entry point (the smaller grey disks) to its exit point (the black

bullets) represents a specific combination of atomic sections,

forming one of the several possible HTML pages that can be

generated by the current component.

C. Visual Patterns of Interaction

In order to present the details of our visual approach, while

also providing an initial evaluation of the involved techniques,

we have applied it to a real web application, Online Bookstore,

part of the GotoCode Applications suite [2]. It is made of 28

Web components, totaling about 9500 lines of JSP code.

Atomic
Section

Component

Link, Form action, Redirect

Dynamic include

Component/Method
Entry/Exit Point

Fig. 3: The Main View Explained

The Bookstore’s presentation layer, as depicted by our

visualization, is presented in Figure 4. The image is annotated

to indicate the visual patterns we discuss below. A first

visual clue provided by the view is that larger rectangles

usually depict more important components: they contain a

larger number of atomic sections, possibly connected by more

complex compositional paths. While helpful, this clue is by no

means sufficient by itself. There are several other interesting

visual patterns we have identified, which provide a more

sophisticated insight on the application’s traits relevant to

system comprehension. They are presented as follows.

a) Red Target: A visual Red Target is a Web component

pointed to by a lot of red arrows that originate in other

components of the application (Figure 4 A). As the red

arrows depict HTML links, form actions or redirects between

components, this shows that a Red Target is heavily used by

its counterparts, which is a strong indicator that it provides a

significant, if not essential, functionality of the system.

In Bookstore we have identified one prominent Red Target

component, which was easily visible. We found that its name

was ”Login.jsp”, and provided an essential functionality all

other main components relied on: user authentication. We must

point out that the view was more than helpful in this case

because, regardless of the component name, it quickly showed

that Login was indeed a central component, with many other

large components depending on it. If we were to only look

at the code manually, we would have probably found out that

a Login page was there, but there would have been no quick

way to actually confirm that its was indeed used by many other

important components. Moreover, interpreting the pattern from

a system evolution perspective, we quickly understood that any

new component adding functionality will probably have to use

Login.jsp, too, which is significant insight.

b) Blue Target: A visual Blue Target is a Web component

that is pointed by a lot of blue arrows originating in different

components (Figure 4 B). This means the Blue Target compo-

nent is in fact a JSP page that is heavily included at runtime by

other JSP pages, a trait that may show that the component does

282

Red Target
(A)

Blue Target
(B)

Paired
Components

(C)

Dynamic Entity
(E)

External
Hub
(D)

Fig. 4: The Complete View of the Case Study

not generate a complete Web page by itself, but it is instead

used by others to generate parts of their own Web pages.

This is useful when trying to discriminate between the main

Web components and the helper JSP pages in the system. For

Bookstore, we have visually identified two such components,

handling the header and footer sections of the dynamic Web

pages, which helped us quickly understand they are not core

functional components. From the system evolution perspective,

the pattern provides us again with relevant clues: any new

system component (page) will probably have to include these

”blue target” components as well.

c) Paired Components: This pattern describes two com-

ponents that are linked together by a significant number of

red arrows. This means that the two refer each other in one

or both directions through links, form actions or redirections.

The pattern is significant as it shows that the user interface

actions often jump from one component to another, which

suggests that the two work together for a common goal.

Visually, the pattern is identified by finding ”streams” of

arrows that only connect the two entities, standing out among

the other inter-component transitions. In Bookstore, we have

found several such pairs, one of them being (MembersRecords,

MembersGrid) – Figure 4 C. An analysis of their code showed

that they indeed worked together, enabling the user to browse a

list of registered users (”members”). MembersRecord handled

the editing of user information, while MembersGrid displayed

the member list by generating HTML tables.

d) External Hub: This is not a pattern per se, but a rather

useful particularity of the visualization. Our visualization

gathers all inter-component transitions that point to external

or unresolved destinations (the gray arrows) in a single node

(visible in Figure 4 D on the right). It can be used as a starting

point for analysis in at least two cases: i) to search for the

components that refer external entities, such as other parts of

the same Web portal, external sites, entities belonging to the

Web development frameworks or tools used, etc.; ii) to help

locate the dynamic parts of the code, i.e., those that use runtime

constructs to compute jumps to other components: they are

identifiable by looking at the atomic sections with outgoing

gray arrows not labeled with (statically-resolved) URLs.

In Bookstore, about 35% of the External Hub links could be

resolved statically and provided technology-related clues: they

pointed to the site of a software tool used when developing

the application. The rest were references computed at runtime.

283

Fig. 5: Conditional Jump

e) Dynamic Entity: This pattern highlights the most

prominent components related to the External Hub: those

that originate a visibly large number of outgoing gray arrows

(Figure 4 E). They either depend strongly on external entities,

or they heavily rely on runtime values for computing the

links. In Bookstore most such components were using runtime

database values for linking to other pages.

f) Conditional Jump: Unlike the above patterns, this is

an intra-component visual pattern, visible when looking inside

a component, at the graph connecting atomic sections. It

depicts two intra-component edges starting in a same atomic

section, and pointing to at least one atomic section that is

the origin of an inter-component arrow. For example, this

happens when the code contains an if statement, and only one

of its branches generates a HTML link to another component.

Finding such cases is important, because they show an inter-

component reference which only activates in specific cases,

and identifying the condition will provide essential insight

on the code. We found several such cases in Bookstore, one

of them in the EditorialGrid component (Figure 5). One of

its atomic sections was connected to two atomic sections

originating gray arrows. We found that the corresponding code

controlled the behavior of a button for navigating in a row of

inter-related pages. When at the first page the button simply

pointed to it, while for the rest the EditorialGrid was called

again, with a different page value as parameter. Helped by the

visualization, the process of understanding this case only took

us 5 minutes, including the parts where we read the code.

IV. RELATED WORK

Analyzing Web applications is a constant concern for the

software engineering community. Aiming software testing,

Offutt and Wu [1] introduce the atomic section model to

represent Web applications by focusing on the HTML output

generated by their components. We use this idea in our

approach, adapting it to our goal of reverse engineering the

source code to achieve program comprehension.

There are various efforts of reverse engineering Web ap-

plications. Early achievements targeted the transformation of

legacy static Web sites into dynamic applications. A reference

example is the work done by Ricca and Tonella [3], where

similarity measures are used to group pages together, as can-

didates for migration into dynamic components. Full-fledged

dynamic Web applications were addressed by Di Lucca et

al. [4], [5], who developed a tool-supported reverse engineer-

ing process for understanding Web applications. While also

targeting system comprehension, their approach differ from

ours as their aim is the recovering of UML diagrams for

the system, it uses a hybrid static-dynamic process, and it

is not driven by visualization. Amalfitano et al. [6] describe

what they call an ’agile’ reverse engineering process for

Web applications, that uses dynamic analysis to model the

application’s presentation layer. Besides using static analysis,

our approach is different as it aims at finding structural patterns

that can be directly used for quick yet relevant assessments in

an source-code driven interactive environment. Techniques that

reverse engineer Web applications can be entirely based on

dynamic analysis, rather than static as our own. An example

is Revangie [7], where crawling and HTTP communication

monitoring are the employed techniques. An interesting way of

analyzing Web applications is also presented in [8], where the

authors use instrumentation to dynamically capture interaction

between the application and its database. Rather than applying

the analysis on the presentation layer, it finds the SQL-related

behavior in PHP-based applications to assess security aspects.

V. CONCLUSIONS

This paper has presented our ongoing work in reverse

engineering the presentation layer of JSP/Servlets Web ap-

plications by combining static analysis and visualization to

achieve software comprehension. The identified visual patterns

describe several essential interactions that help us easily find

system traits relevant for its understanding, as shown by our

initial evaluation in a real-world case study.

Future work aims the development of a full reverse engi-

neering process for comprehending modern Web applications.

The first steps imply refining the visual patterns, finding new

ones, and validating them on a larger number of applications.

Next, the process will have to use them in strategies targeted

to assess the various high-level concerns implied by the goal

of software understanding.

ACKNOWLEDGMENT

This work has been partially supported by the European

FP7-ICT- 2009-5 project no. 257876, SPaCIoS Secure Provi-

sion and Consumption in the Internet of Services.

REFERENCES

[1] J. Offutt and Y. Wu, “Modeling presentation layers of web applications for
testing,” Software&Systems Modeling, vol. 9, no. 2, pp. 257–280, 2010.

[2] Yes Software, “Gotocode applications,”
http://web.archive.org/web/20110430192101/http://gotocode.com/.

[3] F. Ricca and P. Tonella, “Using clustering to support the migration from
static to dynamic web pages,” in IWPC ‘03. IEEE CS Press, 2003.

[4] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, and U. De Carlini,
“Ware: a tool for the reverse engineering of web applications,” in CSMR
2002.

[5] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Reverse engineering
web applications: the ware approach,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 16, no. 1-2, pp. 71–101, 2004.

[6] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “An iterative approach
for the reverse engineering of rich internet application user interfaces,”
in ICIW 2010.

[7] D. Draheim, C. Lutteroth, and G. Weber, “A source code independent
reverse engineering tool for dynamic web sites,” in CSMR 2011.

[8] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Wafa: Fine-grained dynamic
analysis of web applications,” in WSE 2009.

284

