
Changes, Defects and Polymorphism:
is there any Correlation?

Petru Florin Mihancea
LOOSE Research Group

”Politehnica“ University of Timişoara, Romania

Email: petru.mihancea@cs.upt.ro

Cristina Marinescu
West University of Timişoara, and

”Politehnica“ University of Timişoara, Romania

Email: cristina.marinescu@cs.upt.ro

Abstract—Abstract source code is better than concrete code
when it comes to reduced change likelihood. Trying to provide
empirical evidence for this assumption, we investigate if there are
any correlations between the usage of partially polymorphic calls
in classes and their change and defect likelihood. Based on the
provided evidence, practitioners are advised about the potential
impact of polymorphism at the source code level.1 2

I. INTRODUCTION

Subtype polymorphism and class hierarchies are distin-

guishing mechanisms of object-oriented technology. On one

hand, the main benefit of employing these mechanisms is to

reduce the source code changes due to evolving requirements.

This is emphasized by the plethora of design principles,

heuristics and patterns related to polymorphism (e.g., [1]). On

the other hand, the dark side of polymorphism is that it makes

an application harder to understand (e.g., the yo-yo effect) and

can introduce subtle defects into a program due to unpredicted

polymorphic interactions between objects (e.g., [1], [2]).

Much effort focusing both the benefit and the drawback

of polymorphism has been spent by the research commu-

nity. Different analysis techniques have been proposed to

comprehend, assess and restructure the design of an object-

oriented application in order to take advantage of the flexibility

given by polymorphism (e.g., [3], [4]). In spite of all these

achievements, to the best of our knowledge, there is no work

trying to correlate the change and defect proneness of classes

with polymorphism usage. Consequently, we have performed

an experiment trying to answer the following questions: (RQ1)

– Is the intensity of the polymorphic calls from a class

correlated with its change likelihood? (RQ2) – Is the intensity

of the polymorphic calls from a class correlated with its defect

likelihood?

The paper firstly presents the way we measure the poly-

morphic interactions in a class (Section II). The details of

our experiment and the results we obtained are presented in

Section III. In the successive section we relate our empirical

study with existing works and we summarize the conclusions

and address some hints towards the future work in Section V.

1The scientific contribution of the two authors is equal.
2The work of Cristina Marinescu is partially supported by the European

Union under FP7-REGPOT-CT-2011-284595-HOST.

II. MEASURING POLYMORPHIC INTERACTIONS

We introduce the Invocation Generality (IG) metric for mea-

suring the intensity of the polymorphic interactions between

classes. The metric is a particularization of a more general

metric called Level of Abstraction (LA) we introduced in [4].

The aim of the LA metric is to measure the degree of

abstraction of a statement / expression from a method due to

the usage of polymorphism. For each statement, the metric is

defined with respect to i) a base class whose instance services

are invoked by the method and ii) a reference variable through

which the method accesses the base class hierarchy. In essence,

the LA value for a statement is proportional with the number

of concrete classes from the hierarchy whose objects may be

referred by the variable before the execution of that statement.

By contrast, the IG metric is a particularization of the LA
measure because:

• The metric is defined only for invocation statements that

could be dispatched dynamically (i.e., virtual calls).

• For a particular invocation, the value of the metric is

computed only with respect to its target reference. The

reason is that in this paper, we are interested to measure

only the degree of abstraction due to polymorphism of

the invocation alone and not of the entire code of the

method containing the invocation.

• For a particular invocation, the IG metric is computed

with respect to the highest base class (i.e., having the

maximum height in the inheritance tree) declaring the

invoked service. The reason is that an invocation has

a maximum degree of generality due to polymorphism

when it may target instances of any class having the

invoked service in its interface.

Providing this, the IG metric is computed using the follow-

ing formula. N represents the number of concrete classes the

target reference may refer to at the invocation site while M
represents the number of concrete classes from the hierarchy

rooted by the highest class declaring the invoked service.

IG(inv) =

⎧⎪⎨
⎪⎩

undefined↔ The call is not virtual
e.g., the called method is static
0↔ N = 1
(N − 1)/(M − 1)↔ N > 1

More details on the LA metric can be found in [4] and a brief

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.45

341

void client1(I t) {
1: t.p();

}
void client2(AB t) {

2: t.p();
3: t.q();

}
void client3(C t) {

4: t.p();
5: t.s();

}

(a) Invocation Examples

+p()

<<interface>>
I

+p()
+q()

{abstract}
AB

A
+q()

B

+p()
+s()

C

(b) The Class Hierarchy

Fig. 1. IG Metric Examples

comparison of IG with related metrics (e.g., DIT) is presented

in Section IV.

a) Interpretation and Examples: When defined, the value

of the IG metric is between 0 and 1. Based on Figure 1 we

exemplify and interpret several values of the metric.

A value of 0 means that the invocation, although virtual,

does not actually make use of polymorphism. In other words,

the target object is always an instance of a single class from

the hierarchy. The invocations from line 4 and 5 in Figure 1a

exemplify this kind of method calls, since t can refer only

to instances of class C. We emphasize that this value for the

IG metric also appears when the class containing the invoked

method is a “degenerated base class” (i.e., it is not included

in an inheritance lattice).

A value of 1 means that the measured call makes full use of

polymorphism. For instance, the invocations from lines 1 and

3 use polymorphism at the highest possible level of generality.

That is because, the t variable in client1 may refer to instances

of any class from the hierarchy. For the t variable in client2,

we can remark that it may refer only to instances of type A or

B. However, the call in line 3 is entirely general because the

q method is specific only to objects of these concrete types.

An intermediate value for the IG metric indicates that the

measured invocation does not entirely make use of polymor-

phism. For instance, the call in line 2 can only target A or B
instances since t is of type AB. Additionally, p represents a

general service that can be executed on objects of any class

from the hierarchy (including C). Consequently, the IG metric

for this invocation is 0.5.

b) Implementation: The main concern in implementing

the IG metric is to detect the set of concrete classes a target

reference may refer to at run-time at an invocation site. This

information is necessary because based on it we determine the

N component from the IG metric formula.

Unfortunately, computing this set (and consequently the IG
metric) with a high accuracy is a difficult task. As an extreme

example, some subclasses may be unknown at compile-time

and could be written and loaded dynamically. In this case,

we cannot exactly know neither the M component of the

IG formula. For the sake of simplicity and scalability, in

this work we have estimated the IG metric in the following

manner: we consider that the set of concrete classes a target

reference may refer to at run-time is the set of all concrete

descendants of the reference declared class. If this class is

concrete, it is also included in the set. As discussed in

Section III-D, this approximation can negatively affect the

validity of our experiment. However, more advanced analyses

can be employed in the future for a more accurate (but less

scalable) computation of the IG metric.

III. EXPERIMENT

A. Data Collection

In this experiment we have analysed several versions of

three open-source systems whose main characteristics are

presented in Table I. According to the Overview Pyramid [5],

ArgoUML and FOP have deep and wide hierarchies and, by

contrast, we also considered FindBugs because, according to

the same pyramid, it makes less use of inheritance.

For each class we have extracted the changes and defects

between two releases using IPROBLEMS [6]. For this purpose

the tool makes use of version systems’ logs and information

provided by bug tracking systems. We have also extracted

an aggregation of the IG metric at the class level, namely

MIN IG. It represents the minimum value of the IG met-

ric computed for all the invocations in the measured class.

Choosing the minimum value of this metric is in line with

previous studies where subjects were classified into one or

another category taking into account that they expose at
least a characteristic’s type [7]. The aggregated metric is

undefined when the measured class does not contain any

virtual invocation. The IG metric and its aggregation have been

implemented and computed using the CODEPRO/PATROOLS

[8] Eclipse plugin.

System Referred Start Date End Date LOC Types
Version Archive Archive

ArgoUML 1 30/11/2003 30/11/2004 83,487 1180
2 01/12/2004 09/02/2006 107,125 1237
3 10/02/2006 13/02/2007 155,223 1476
4 14/02/2007 27/09/2008 144,075 1550

FindBugs 1 31/05/2006 31/05/2007 52,206 635
2 06/01/2007 06/05/2008 73,484 791
3 05/07/2008 05/08/2009 84,638 931
4 08/06/2009 30/11/2010 98,082 1022

FOP 1 26/03/2008 31/07/2008 89,398 933
2 01/08/2008 02/08/2009 97,397 1089
3 03/08/2009 25/12/2010 120,255 1457

TABLE I
SOME CHARACTERISTICS OF THE ANALYZED SYSTEMS.

B. Conducting the Study

In order to answer the mentioned research questions we

have employed the Chi-Square (χ2) test. This test, as it is

presented in [9], evaluates if within the underlying population

represented by the sample in a contingency table (rxc), the

two involved dimensions are independent of one another.

The structure of the first contingency table created for

answering RQ1 consists of two dimensions: MIN Invocation

342

Generality (MIN IG) and Changes. The MIN IG dimension

is the row dimension and we consider six categories that

compose this dimension: undef. – a class does not have

virtual calls, 0 – a class uses directly at least a concrete

type, (0 ; 0.5), 0.5, (0.5 ; 1) and 1 for classes that use only

fully polymorphic calls. The two categories which composed

the Changes dimension (i.e., dependent variable) are: Have

Changes – classes reveal at least a change and Do not have

Changes – classes do not reveal changes.

In a similar manner we define another contingency table for

answering RQ2, the row dimension being the same as in the

previous case, while the column dimension is comprised of

defects (i.e., Have Defects and Do not have Defects).

C. Results

For each of the contingency tables we compute the values

of the χ2 test as well as p-values using the R Project for

Statistical Computing3. If p-value is less than a 0.05 level of

significance, we have enough evidence to consider that the two

dimensions of the contingency table are not independent. Next,

based on the values of the observed and expected frequencies

(computed as a result of the test) of the contingency tables, we

establish the way (positive or negative) in which the involved

dimensions are correlated. A trait from the row dimension is

positively correlated with a trait from the column dimension if

the observed frequency is greater than the expected frequency.

Based on this fact we discuss below each type of the inferred

correlation.

(RQ1) Polymorphism and Changes. We summarize the

obtained results in Table II, where + denotes a positive

correlation between a MIN IG values belonging to the set

{undef., 0, (0;0.5), 0.5, (0.5;1), 1} and changes, - denotes a

negative correlation, space denotes no existing correlation (p-

value greater than 0.05) and NA denotes a situation when the

χ2 cannot be computed. From Table II we can see that:

• in most of the cases the employed test reveals different

types of correlations between the two dimensions.

• all the inferred correlations between classes containing

at least one call that always targets a particular concrete

type (i.e., MIN IG = 0) and changes are positive. This

means that these classes are more likely to be changed.

• usually, classes using partially polymorphic calls are more

likely to be changed (e.g., for MIN IG = 0.5, out of 8

analyzed systems, 6 reveal a positive correlation).

• most of the times, classes using fully polymorphic calls

are less likely to be changed (i.e., 6 out of 8 correlations

are negative for MIN IG = 1).

All these observations conform to the expected benefit of

using polymorphism in object-oriented systems: usually, when

a class makes full use of polymorphism, the class is less

likely to be changed. The single two situations when this is

not the case appear in ArgoUML versions 3 and 4. These

situations might be caused by some design flaws or defects

related to some class hierarchies. Consequently, it would worth

3http://www.r-project.org/

taking a closer look at the inheritance latices from ArgoUML
and at their fully polymorphic – but changed – clients. By

contrast, classes that do not make full use of polymorphism,

proved to be more change prone. This is also in line with the

object-oriented theory and emphasizes again the importance

of polymorphism related design principles.

undef. 0 (0;0.5) 0.5 (0.5;1) 1
ArgoUML 1 NA NA NA NA NA NA

2 - + - + + -
3 - + + - + +
4 - + + + - +

FindBugs 1 - + - + + -
2 - + + + + -
3 - + - - + -
4

FOP 1
2 - + - + - -
3 - + + + - -

TABLE II
CORRELATIONS BETWEEN CHANGES AND MIN IG.

(RQ2) Polymorphism and Defects. From Table III that

summarizes the results related to possible correlations between

polymorphic calls and defects we can see that:

• FindBugs shows no correlations between the two involved

dimensions, probably due to its less usage of inheritance.

• all the inferred correlations between defects and classes

containing at least one call that always targets a particular

concrete type (i.e., MIN IG = 0) are positive. This means

that the involved classes are more defect prone.

• the greater the intensity of polymorphism usage in a class,

the lower the likelihood for the class to exhibit defects.

For instance, when the MIN IG value is higher than 0.5,

6 out of 10 correlations are negative.

• the lower the polymorphism usage, the higher likelihood

of classes to contain defects. For instance, 12 out of 15

correlations are positive when MIN IG is lower or equal

to 0.5.

Based on these observations we can conclude that, usually,

classes using high polymorphism constructs have smaller

chances of exhibiting defects than the other classes. The

positive correlations for full usage of polymorphism appear

again in version 3 and 4 of ArgoUML. As a result, it seems

that the changes in these versions are actually caused by defect

fixings. This emphasizes again that it would worth to take a

closer look at the ArgoUML hierarchies and at their clients. By

contrast, when polymorphism is not or only partially used, the

defect likelihood increases. Again, it seems that the changes

from ArgoUML and FOP are predominantly caused by defect

fixings.

Classes with undefined MIN IG may not use external

services at all and, consequently, this may be the cause for

both of the the negative correlations from Tables II and III.

D. Threats to Validity

Within the presented case study the construct validity threats

are mainly related to the errors performed during the data

343

undef. 0 (0;0.5) 0.5 (0.5;1) 1
ArgoUML 1 NA NA NA NA NA NA

2 - + - + + -
3 - + + - + +
4 - + + + - +

FindBugs 1
2
3
4

FOP 1
2 - + - + - -
3 - + + + - -

TABLE III
CORRELATIONS BETWEEN DEFECTS AND MIN IG.

extraction. We consider that classes, changes and defects were

extracted by IPROBLEMS [6] with a high precision and recall

using probably the most widespread approach.

Another construct validity threat appears due to the way

we approximate the IG metric. Because our implementation

is based on pure static information there can be cases in

which we incorrectly classify an invocation as making full

or partial use of polymorphism. For instance, the execution

of an invocation via a target reference declared as being of a

super-type type can be guarded by an instanceof condition

checking the compliance of the target object to some par-

ticular sub-type. These cases are not captured in the current

approximation of the IG metric. To overcome this issue we

can improve the current implementation of the metric using

more advanced points-to and data-flow analyses. However, a

highly possible drawback would be a serious decrease of the

metric computation scalability.

We do not suggest generalising our results (external validity)

unless further case studies are performed. In this context we

consider we have provided enough information about our study

to let it be replicated (reliability validity).

IV. RELATED WORK

On one hand, our work is related with the field of class hier-

archy and polymorphism measurements. In [10] two software

metrics related to class hierarchies are introduced, namely

Depth of Inheritance (DIT) and Number of Children. In [5]

are proposed several other metrics for class hierarchies such

as Base Class Overriding Ratio or Number of Added Services.

More polymorphism-specific metrics are introduced in [11]

and [12]. All these metrics could offer us hints about the

polymorphic capabilities of a class hierarchy. However, as is

it recognized in the case of [12], none of the aforementioned

metrics address the call-sites targeting a class hierarchy: they

do not capture the manner in which the clients of the hierarchy

really use it (i.e., polymorphically or not). In contrast, the IG
metric directly addresses this aspect by considering a relative

number of concrete classes whose objects could be targeted

by an invocation.

On the other hand, our work is related with the plethora of

empirical studies trying to validate the capability of various

metrics to emphasise defect proneness of classes. The well-

known suite of metrics introduced in [10] was validated as a

good defect predictor in [13]. The authors consider the CBO

(Coupling Between Objects) [10] metric as being the best

predictor for defects. However, i) CBO is not capable to distin-

guish between polymorphic and non-polymorphic couplings,

and ii) CBO cannot capture the intensity of a polymorphic

coupling.

To the best of our knowledge, there is little to no empir-

ical evidence regarding the change and defect proneness of

classes taking into account metrics that capture the degree of

polymorphism usage within classes. As previously mentioned,

in [12], several polymorphism related metrics are defined and

evaluated from the early risk prediction capabilities point of

view. However, due to the metrics definitions, this study does

not consider the polymorphic invocation effect [12]. Due to

the usage of the IG metric, our study takes into consideration

this view of the calling source code and thus, the experimental

perspectives are complementary.

V. CONCLUSIONS. FUTURE WORK

In this paper we presented an empirical study that provides

evidence about a positive correlation between classes using

concrete types or partial polymorphism and their change and

defect proneness. We do not want to suggest that using

concrete types or partially polymorphic calls is the cause of an

increased likelihood to exhibit changes and defects. However,

we do provide evidence these kinds of invocations are most

of the times statistically correlated with changes and defects.

We intend to provide within the PROMISE data set a

database that contains the values of the extracted metrics.

REFERENCES

[1] R. C. Martin, Agile Software Development. Principles, Patterns, and
Practices. Prentice-Hall, 2002.

[2] J. Offutt, R. T. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson, “A Fault
Model for Subtype Inheritance and Polymorphism,” in Proc. ISSRE.
IEEE Computer Society, 2001.

[3] S. Ducasse, S. Demeyer, and O. Nierstrasz, “Transform conditionals to
polymorphism,” in Proc. EuroPLoP, 2000.

[4] P. F. Mihancea, “Type Highlighting : A Client Driven Visual Approach
for Class Hierarchies Reengineering,” in Proc. SCAM. IEEE Computer
Society, 2008.

[5] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[6] M. Codoban, C. Marinescu, and R. Marinescu, “iProblems - an inte-
grated instrument for reporting design flaws, vulnerabilities and defects.”
in Proc. WCRE, Limerick, Ireland. IEEE Computer Society Press, 2011.

[7] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 2012.

[8] R. Marinescu, G. Ganea, and I. Verebi, “inCode: Continuous Quality
Assessment and Improvement,” in Proc. CSMR. IEEE Computer
Society, 2010.

[9] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th edition. Chapman&Hall/CRC, 2007.

[10] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-
Oriented Design,” IEEE Transactions on Software Engineering, 1994.

[11] F. Brito e Abreu, M. Goulao, and R. Esteves, “Toward the Design Quality
Evaluation of Object-Oriented Software Systems,” in Proc. ICSQ, 1995.

[12] S. Benlarbi and W. L. Melo, “Polymorphism measures for early risk
prediction,” in Proc. ICSE. ACM, 1999.

[13] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Transactions on Software Engineering, 2005.

344

