
Towards a Client Driven Characterization of Class Hierarchies

Petru Florin Mihancea

LOOSE Research Group
“Politehnica” University of Timişoara, Romania

E-mail: petrum@cs.upt.ro

Abstract

Object-oriented legacy systems are hard to maintain be-
cause they are hard to understand. One of the main under-
standing problems is revealed by the so-called ”yo-yo ef-
fect” that appears when a developer or maintainer wants to
track a polymorphic method call. At least part of this un-
derstanding problem is due to the dual nature of the inheri-
tance relation i.e., the fact that it can be used both as a code
and/or as an interface reuse mechanism. Unfortunately, in
order to find out the original intention for a particular hier-
archy it is not enough to look at the hierarchy itself; rather
than that, an in-depth analysis of the hierarchy’s clients is
required. In this paper we introduce a new metrics-based
approach that helps us characterize the extent to which a
base class was intended for interface reuse, by analyzing
how clients use the interface of that base class. The idea of
the approach is to quantify the extent to which clients treat
uniformly the instances of the descendants of the base class,
when invoking methods belonging to this common interface.
We have evaluated our approach on two medium-sized case
studies and we have found that the approach does indeed
help to characterize the nature of a base class with respect
to interface reuse. Additionally, the approach can be used
to detect some interesting patterns in the way clients actu-
ally use the descendants through the interface of the base
class.
Keywords: inheritance relation, design metrics, object-
oriented design, software understanding, static analy-
sis.

1. Introduction

Many object-oriented developers hate maintenance. Is it
because it is perceived as a dumb job that does not involve
much intellectual activity? On the contrary: it is hated be-
cause of its difficulty! Consequently the understanding and
quality assessment of object-oriented systems have become
vital concerns in today’s software industry.

In this context, inheritance is both the “beauty” of object-
oriented design and at the same time the “beast”, when it
comes to maintain or reengineer it. It is the beauty when we
design or discover some high level policies which can then
be reused in different contexts. However, it usually starts as
being the beast because it makes the system hard to under-
stand, due to the so-called “yo-yo effect” [4]. The “yo-yo ef-
fect” works like this: in a strongly typed language, a reader
of the code is tempted to think that a particular method in-
voked at some program point is defined in the class desig-
nated by the type of the target reference used in the call,
only to realize later that the method is actually defined in
one of its ancestor classes. Even worse, the method could
be overridden in one of the descendants of the reference’s
class making the reader become very confused.

A further difficulty in understanding an object-oriented
system arises from the dual nature of class hierarchies. As
stated by Snyder [20], “one can view inheritance as a pri-
vate decision of the designer to reuse code [...] alternatively,
one can view inheritance as making a public declaration that
objects of the child class obey the semantics of the parent
class, so that the child class is merely specializing or refin-
ing the parent class”.

The nature of a class hierarchy is very important in the
context of understanding a legacy system. Knowing if a par-
ticular hierarchy is primarily intended for type reuse or code
reuse would help the maintainer in using it correctly and
systematically. Furthermore, this would help him/her locate
design fragments where the instances of hierarchy classes
are treated uniformly, and thus he/she could spot the places
in the system where high level business policies are ex-
pressed. Last but not least, understanding how a hierarchy is
used could help detecting some potential anomalies which
reveal design problems in the subject hierarchy.

In the last decade many software analyses related to the
understanding of class hierarchies were defined [13, 17, 14,
2, 11]. Almost all these analyses have one major charac-
teristic: they use only information extracted from the hier-
archy itself (e.g., “this class only overrides some methods
from the base class” or “this method is a specialization of a

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

method inherited from the base class”), analyzing thus the
hierarchy in isolation. While this is highly necessary, we be-
lieve that it is insufficient. Analyzing only the hierarchy will
shed some light on the intention of reusing code from ances-
tor classes, but it will be very hard to assess if the hierarchy
is in fact intended to express only code reuse, only subtyp-
ing, or both. As Martin states [18] “ A model, viewed in iso-
lation, can not be meaningfully validated. The validity of a
model can only be expressed in terms of its clients”.

In order to exemplify the important role of clients in un-
derstanding the aim of a class hierarchy, let’s consider a
simple example.

Figure 1. A simple class hierarchy

By looking only at the elements of the hierarchy in Fig-
ure 1 we may regard B as a specialization of A. But if we
take a look at the clients and see that all of them refuse to use
the two types defined in the hierarchy in an uniform man-
ner, we can strongly suspect that the inheritance is not used
for subtyping, but only for code reuse, in spite of its appear-
ance.

void aClient(A ref) {
if(!(ref instanceof B))

ref.n();
}

Figure 2. A simple client of the above hierarchy

Furthermore, there is an additional key aspect related to
the specific knowledge about a hierarchy, which is hidden in
the client code. For example, let’s consider again the hierar-
chy in Figure 1 and look now closer at one of its clients (Fig-
ure 2). Looking only at the invocation of the n method and
at the type of the ref reference we can conclude that aClient
method could invoke n on any instance of the classes A or B.

But at a closer look, we see that ref can only refer to an A in-
stance in the context of the call and as a result we can con-
clude that the real intention of the programmer of this client
was to invoke the n method only for A objects and not for B
instances.

This example makes it clear that in order to analyze the
way clients use a class hierarchy we need to go beyond
simple information (e.g., a simple call graph based only on
method resolution) and employ more advanced techniques
like data flow analysis [1], class hierarchy analysis [6], etc.

In this paper we present a new approach that aims to en-
hance the understanding of class hierarchies, by analyzing
how clients use a hierarchy in terms of uniformity (i.e., to
which extent calls are made in a polymorphic manner be-
ing targeted towards one common superclass rather than to-
wards a direct usage of many subclasses). For this purpose,
the paper first defines a suite of metrics which quantify the
uniformity of clients’ calls with respect to the services pro-
vided by a hierarchy. The definition of these metrics is based
on a combination of simple structural information and more
advanced techniques like data flow analysis. After defining
them we will show how these metrics can help both to char-
acterize a hierarchy and to detect anomalies of clients’ us-
age which often point to design problems.

2. Characterizing Base Classes

In a real software system, it is almost impossible to
reach a uniform characterization for an entire class hierar-
chy, since different parts of the same hierarchy might be
used in different ways. Consequently, we aim to character-
ize all the sub-hierarchies and therefore the analysis pre-
sented next must be applied to every base class.

2.1. Two Characterization Dimensions

Discovering the nature of a base class requires a bi-
dimensional characterization: one from the perspective of
code reuse and a second one from the perspective of inter-
face reuse. Although we characterize classes, both code and
interface reuse are determined by how the public methods of
the class are defined and used. In other words, each public
method contributes to the characterization of a base class.
Therefore, next we will focus on a base class with a sin-
gle public method, while in Section 2.3 and Section 3.2 we
will show how the characterization of the base class can be
inferred for all of its public methods.

Code Reuse Perspective. Table 1 captures the rules based
on which we infer that a base class was intended or not for
code reuse, as this is reflected by one of its public meth-
ods. This characterization is based on the way the method
is reused in the descendants. We identify the following ex-
treme cases:

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Base Class Public Method Usage in descendants
Inherited Specialized Overridden

Inherited for code reuse? Yes Yes No

Table 1. Code Reuse characterization based on a base class method’s usage in descendants (the vertical per-
spective)

Base Class Public Method Calls from clients on descendant objects
Uniform Uniform for some descendants Non uniform

Inherited for interface reuse? Yes Partially Uniform No

Table 2. Interface Reuse characterization based on a base class method’s invocation by its clients (the horizon-
tal perspective)

• When all concrete descendants simply inherit the
method implementation (it is not a redefined imple-
mentation) then we say that the base class is inherited
by descendants for pure code reuse.

• When all concrete descendants inherit or define a spe-
cialized implementation of the method (it is a rede-
fined implementation which invokes the old imple-
mentation) then we say that the base class is inherited
by descendants for specialized code reuse.

• When all concrete descendants have an overridden ver-
sion of the original implementation (including here the
implementation of an abstract operation) then we say
that the base class is not inherited for code reuse.

Interface Reuse Perspective. In Table 2 we summarize the
rules based on which we decide that a base class is intended
for interface reuse. Again, the characterization takes into
account one single public method, and more precisely how
the method is used by the external clients of the hierarchy
i.e., by the methods of a class from outside the hierarchy
that call the method on instances of its definition class de-
scendants.

The notion of uniform usage is central in this character-
ization. We say that in a client a call of a method from a
base class uniformly uses a set of its concrete descendants
when the target reference used in the call may refer to in-
stances of any set members at runtime. When this reference
may refer only to instances of one particular descendant the
usage is non uniform. In this context, we identify the fol-
lowing extreme cases:

• When all the clients always uniformly use all the con-
crete descendants of a base class, we say that the base
class is inherited for interface reuse.

• When all the clients always non uniformly use all the
concrete descendants of a base class, we say that the
base class is not inherited for interface reuse.

• When all the clients always uniformly use a subset of
the concrete descendants of a base class, we say that
the base class is inherited for partially uniform inter-
face reuse.

2.2. Refined Goal Setting

As a complete bi-dimensional characterization of base
classes exceeds the possibilities of a single paper, we de-
cided to set the following boundaries to the approach pre-
sented next:

• We focus on Interface Reuse Perspective, by aiming to
characterize base classes from the perspective of their
users.

• Concerning the Code Reuse Perspective we limit our-
selves to base classes that are intended for pure code
reuse i.e., the case where the methods in the base class
are not overridden or specialized in their descendants.

Consequently we will try to answer the question: how do
the clients of the concrete descendants actually use the in-
terface defined by the base class? Are the concrete descen-
dants predominantly invoked knowing the exact type of the
receiver object? If this is true then the base class is not actu-
ally intended for interface reuse. If, on the contrary, clients
use descendants uniformly then we can say that the base
class is intended not only for code reuse, but also for inter-
face reuse.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

2.3. Measuring Intention of Code Reuse

In order to detect the base classes which are inherited for
pure code reuse we define the Pure Code Reuse (PCR) met-
ric for a public method as the number of concrete descen-
dants of its definition class which inherit the method’s im-
plementation in a non-overridden form divided by the to-
tal number of concrete descendants of the same class. If the
method is abstract then PCR is 0. At the class level, the PCR
metric can be aggregated as the average of PCR metric for
each of its public methods.

Consequently, we can now say in a more precise manner,
that in this paper we are focusing on the characterization of
base classes with average PCR values close to 1.0, as this
indicates that the base class defines concrete methods and
that these methods are mostly inherited as they are by the
descendants of the base class.

3. Characterizing the Intention of Interface
Reuse

In this section we will describe how to characterize the
extent to which a base class is intended for interface reuse
by analyzing how clients use its public methods. As dis-
cussed before (see Table 2) the intention of interface reuse is
reflected by the extent to which clients use a hierarchy uni-
formly i.e., to which extent client calls are made in a poly-
morphic manner being targeted towards the common base
class rather than towards many concrete descendant classes.

Thus, in order to characterize the intention of interface
reuse of a base class we need to find proper means to make
this property quantifiable. Therefore, we define next for this
purpose an adequate suite of metrics.

3.1. Uniformity Related Concepts

Before introducing the metrics we have to introduce
some supplementary concepts on which the metrics defi-
nitions rely. These are accompanied by a concrete example
(Figures 3 and 4) aimed to illustrate the concepts.

ResponsibleFor Set . 1 The ResponsibleFor set
for a method M is the set of classes composed of its class
and all the descendants that inherit the original implementa-
tion of the method. Abstract classes are excluded from this
set.
Example. For the concrete methods defined in class A (Fig-
ure 3) the ResponsibleFor sets are:

ResponsibleFor(m) = {C,D} (1)

1 In the context of this paper where we analyze only base classes hav-
ing PCR close to 1.0 this set is similar with the Applies-To set from
[6]. We did not use this name because generalizing the characteriza-
tion will require a different definition for this set.

ResponsibleFor(n) = {B,C,D} (2)

Totally Uniform Call. A totally uniform call of a method
M is a call which may invoke M’s implementation through
a reference which may refer instances of any class from
ResponsibleFor(M) set at runtime.

Totally NonUniform Call. A totally non uniform call of a
method M is a call which may invoke M’s implementation
through a reference which may refer instances of only one
class from the ResponsibleFor(M) set at runtime.

Partially Uniform Call. A partially uniform call of a
method M is a call which is neither total uniform neither to-
tal non uniform.

Figure 3. The hierarchy used to explain the met-
rics

void method1(int i) {
A a;
if(i == 0) a = new B();
else if(i == 1) a = new C();
else a = new D();
a.n(); // a totally uniform call to n

}
void method2(B b) {

b.p(); // a totally non uniform call to p
// b can refer only B instances

}
void method3(A a) {

if(!(a instanceof B)) {
a.q(); // a partially uniform call to q

// a can refer only C and D instances
}

}

Figure 4. The clients illustrating the uniformity re-
lated concepts

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

3.2. Uniformity Design Metrics

Based on the previously introduced concepts, we will
now introduce three uniformity design metrics at the
method, and, respectively, at the class level.

Total Uniformity (TU). Total uniformity for a concrete
method M is defined as the number of Totally Uniform Calls
of method M, divided by the total number of calls which
may invoke M’s implementation at runtime. At the class
level we define AVG TU as the average of the TU metric
for all of its public, concrete methods.

Partial Uniformity (PU). Partial uniformity for a concrete
method M is defined as the number of Partially Uniform
Calls of method M, divided by the total number of calls
which may invoke M’s implementation at runtime. At the
class level we define AV G PU as the average of the PU met-
ric for all of its public, concrete methods.

Total Non-Uniformity (TNU). Total non-uniformity for a
concrete method M is defined as the number of Totally Non-
Uniform Calls of method M divided by the total number of
calls which may invoke M’s implementation at runtime. At
the class level we define AVG T NU as the average of the
TNU metric for all of its public and concrete methods.

3.3. Characterizing Interface Reuse by using the
Uniformity Metrics

In the following we are going to interpret the values of
the above defined metrics, from the perspective of charac-
terizing the Interface Reuse of base classes.

AVG TU close to 1.0 indicates that the instances of the
subclasses of the measured base class are almost always
used in an uniform way with respect to the base class pub-
lic methods. This means that clients invoke these methods
without being concerned about the concrete type of the in-
voked object and as a conclusion, their classes do not only
reuse the code of the measured class but also reuse its inter-
face.

AVG T NU close to 1.0 should indicate that the instances
of the subclasses of the measured class are almost always
used in an non uniform way with respect to the base class
public methods. This means that clients invoke these meth-
ods knowing exactly the concrete type of the invoked ob-
ject and as a conclusion, their classes only reuse the code of
the measured class and should not be considered subtypes
of the base class.

AVG PU close to 1.0 – which logically implies low values
for AVG TU and AVG TNU – indicates that the instances
of the subclasses of the measured class are almost always
used in an partially uniform way with respect to the base
class public methods. This means that clients almost always
invoke these methods knowing that the target object is an

instance of some subset of these subclasses. As a conclu-
sion, these methods are inherited for code reuse but it might
be possible that clusters of these classes actually intend to
form a type hierarchy.

4. Metrics Computation. Tool Support

Our approach has been implemented using IPLASMA

[16]. It is a reengineering environment built on top of the
MEMORIA meta-model [16] . Additionally, we have used
MEMBRAIN, a prototypical tool developed by us to per-
form data flow analyses on Java source code. MEMBRAIN

has been integrated in the IPLASMA reengineering platform
which permits us to combine in an easy way results of data
flow and design analyses.

In order to approximate the aforementioned uniformity
metrics we have implemented the intra-procedural static
class analysis (SCA) [6] using MEMBRAIN. This data flow
analysis determines at particular program points the set of
classes for an object. In other words, it determines for any
reference variable, at a particular program point, the pos-
sible set of classes of the instance to which that reference
points.

Based on this information computed for all the potential
callers of a method M and based on the ResponsibleFor set
of the same method, we can easily compute the uniformity
metrics for that method. Computing the uniformity metrics
at the base class level is a trivial job once they are computed
at the method level.

5. Experimental Setup

In the previous sections we have theoretically discussed
our approach in order to discover the interface reuse na-
ture of a base class. In this section we present the results we
have obtained by applying our methodology to some con-
crete Java software systems.

5.1. The Case Studies

For our case study we have chosen two public domain
systems: Recoder 2 and FreeMind 3. Table 3 presents an
overview of these systems. While the first three metrics (i.e.,
Number of Classes, Number of Methods, Number of LOC)
help us to understand the size of the system, the last two
(i.e., Average Number of Derived Classes (ANDC) [14] and
Average Hierarchy Height (ANH) [14]) provide an over-
all characterization of inheritance usage in the system. The
ANDC metric is the average number of classes directly de-
rived from a base class (if a class has no derived classes

2 for more details see http://recoder.sourceforge.net/
3 for more details see http://freemind.sourceforge.net/

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

System Number of Number of Number of Average Number of Average Hierarchy
Classes Methods LOC Derived Classes Height

Recoder 490 6795 42259 0.74 0.43
FreeMind 455 5228 52904 0.51 0.34

Table 3. Overall characteristics of the analyzed systems

System All base classes Base classes having PCR > 0.85
Recoder 219 29

FreeMind 239 19

Table 4. The analyzed base classes

then it contributes with a value of 0 to ANDC) while the
ANH metric is the average of the Height of the Inheri-
tance Tree for all the root classes from the system (a class
is a root class if it is not derived from another one; stand-
alone classes have a HIT of 0). The values of these two
inheritance-related metrics tell us that the two systems con-
tain some hierarchies which tend to be wide and not very
deep.

5.2. Investigation Approach

First, we have computed the PCR metric for all base
classes from the two analyzed systems and, in conformity
with the aspects discussed in Section 2.3, we have kept for
the rest of the investigation process only those that had a
PCR value close to 1.0. Table 4 presents the total number
of base classes from each system and the number of base
classes having a PCR metric greater than 0.85.

After this step, for the remaining base classes we have
computed the uniformity metrics and we have interpreted
their values with respect to the interpretation model from
Section 3.3. Based on these metrics values we have chosen
a set of three base classes for a manual inspection in order
to see if our interpretation model is confirmed by the real-
ity in the code. The metrics values for these base classes are
shown in Table 5.

5.3. Discussion of Most Significant Findings

Case 1: The AbstractArrayList Class (from Re-
coder). The class AbstractArrayList has a high
value for the AVG TNU metric. This means that the in-
stances of the subclasses which inherits the public meth-
ods of the AbstractArrayList without any modifi-
cations (not in an overridden form) are almost always
called knowing their concrete type. According to our in-
terpretation model this class is inherited only for code
reuse.

After manually analyzing this class we found that it
has 42 descendants and an height in the inheritance tree
of 1. A partial class diagram is shown in Figure 5. All of
these descendent classes model different kinds of lists like
ConstructorList, ClassTypeList, etc, and implement
their added functionality based on the protected interface of
the AbstractArrayList. Some of these added operations
are add, which inserts a particular type of object in the list,
and the corresponding access methods getConstructor
and getClassType. It seems that this hierarchy has ap-
peared in the system because the version of the Java lan-
guage that was used to implement the system didn’t have
generic types. Based on these observations and based on
the fact that any list provides trim, indexOf, isEmpty,
size operations, it is clear that the inheritance relations be-
tween the AbstractArrayList and its descendants tend to
be oriented only to code reuse.

Case 2: The HookAdapter Class (from FreeMind). The
HookAdapter class has a high value for the AVG PU met-
ric. According to our interpretation model, such a value
means that this base class is inherited for code reuse but
we can expect to find some concrete descendants which are
treated uniformly by some potential clients with respect to
the methods defined in the base class.

After manually analyzing this class we found that it has
25 descendants and an height in the inheritance tree of 4. A
partial class diagram is shown in Figure 6. We have depicted
in this base class some methods inherited but not modified
by any of the descendants. The rest of the public methods
of this class appear to be invoked only from its descendants,
which indicates the code reuse intention of this base class.

Analyzing the invocations of the getName method we
have observed that it is invoked by the clients of the hierar-
chy only for PermanentNodeHookAdapter which explains
the high value of the AVG PU metric for the base class.
When we analyzed the invocations of the setController
method we found that some calls seems to be uniformly

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Class Name PCR AVG TU AVG PU AV G T NU
AbstractArrayList 1 0.003 0.127 0.87

HookAdapter 0.91 0 0.9 0.1
AbstractHashSet 0.89 0.98 0 0.02

Table 5. The metrics values for some base classes

Figure 5. A partial view of the AbstractArrayList hierarchy

for the descendants of ModeConctrollerHookAdapter and
others seems to be uniformly for the other part of the hi-
erarchy. There are no calls which may uniformly treat a
descendant of ModeControllerHookAdapter and one de-
scendant from the other part. This again explains the high
value of the AV G PU for subject base class. In conclusion,
the HookAdapter seems to be inherited only for code reuse,
and, as our AVG PU anticipated, it defines a common inter-
face through which only some parts of the hierarchy descen-
dants are treated in an uniform way.

Case 3: The AbstractHashSet Class (from Recoder).
The AbstractHashSet base class has a high value for the
AVG TU metric. According to our interpretation model,
such a value means that this base class is inherited for code
reuse but it is also used to uniformly invoke its concrete de-
scendants.

Manually analyzing this class we have found it has only
3 descendants and a height in the inheritance tree of 1.
A partial class diagram of this hierarchy is shown in Fig-
ure 7. We have noticed that this hierarchy implements dif-
ferent kinds of sets which only differ in the way the equals
and hashCode operations are computed for the set mem-
bers (these operations being overridden by each descendant
in a specific manner). This explains the smaller value of
the PCR metric for this base class with respect to the other
based classes we have already discussed and also confirms
its code reuse intention. At the same time, analyzing the

potential client invocations to its concrete descendants we
have found a large number of calls having a target refer-
ence of AbstractHashSet type. Based on this observation
one could say that this hierarchy is also used as a type hi-
erarchy as the AVG TU metric anticipated, since the client
code is written in terms of a super-type.

The interesting part with this experiment is that it has
shown us that the things can be more complicated. Manu-
ally analyzing the clients invocations we have also found
that some of these calls are targeted to instance variables
that are initialized (outside the client methods) with con-
crete descendants of the AbstractHashSet base class, and
never changed! Yet, these calls are incorrectly identified as
uniform calls using an intra-procedural SCA which can-
not observe these initializations. On the other hand, an
approximation of the uniformity metrics based on inter-
procedural SCA would have produced a smaller value for
the AV G TU , and according to our interpretation model,
the AbstractHashSet wouldn’t have been considered in-
tended for interface reuse. However, such an implementa-
tion could be too conservative. In our concrete experiment,
a particular kind of set might be substitute with another one
without breaking the client code. Thus, despite the restric-
tive initializations, we can still speak about a type hierar-
chy. As a conclusion, we should further investigate how to
use the object instantiation information in the context of our
analysis.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Figure 6. A partial view of the top of HookAdapter hierarchy

Figure 7. A partial view of the AbstractHashSet hierarchy

5.4. An Interesting Method-Level Abnormal-
ity Pattern

As mentioned at the beginning of this paper, analyzing
the clients of a base class may also reveal some abnor-
malities in the design of the class hierarchy below a given
base class. While analyzing the aforementioned systems,
we identified at the method-level such an abnormality pat-
tern which appears to be very interesting. We will briefly
discuss it next.

Interface Method Imposed by Subclass This abnormality
pattern usually appears in a public method M of a base class
which has the following characteristics:

1. the ResponsibleFor(M) set has at least 3 members

2. a very low total uniformity (TU < 0.2);

3. a null partial uniformity (PU = 0);

4. all the totally non-uniform calls have as receivers in-
stances of one single descendant class from the
ResponsibleFor(M) set.

This pattern has been even detected twice within a single
class hierarchy from the Recoder case-study system. The
partial class diagram of the hierarchy is shown in Figure 8.

By analyzing the names of the methods and classes we
can understand the reason for this abnormality. As Recoder
is a framework that extracts a full-fledged representation of
Java programs, the LoopStatement base class models a reg-
ular loop statement from Java. But it is well known that the
Do and the While statements have neither initializers
nor updates expressions, as imposed by the common inter-
face (see Figure 8). So, these two methods do not actually
characterize these two descendants, but were inserted in the
common base class just in order to treat the objects of de-
scendant classes uniformly, for the few situations when this
is required (see condition: TU < 0.2).

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

Figure 8. Example of Interface Method Imposed by
Subclass

Of course, a For statement may also have empty updates
and initializers but because these two methods will never
be invoked by a client when it knows that it works with Do
and While instances we can say that this is a refused be-
quest design flaw which affects the understandability of the
hierarchy [9]. In this case a refactoring option would be to
”Push Down” those methods into the For class. In general,
in order to take such a decision, a developer or maintainer
should also investigate the need for uniformity which ap-
pears in some clients.

6. Related Work

The dual nature of class hierarchies in object-oriented
software systems is intensively discussed in theory and
practice [5, 10, 15, 18, 19] especially in the context of for-
ward engineering. The design and enforcement of correct
behavioral type hierarchies is an important part of software
development especially in the context of designing reusable
components e.g., [8].

Class hierarchies are also analyzed in the context of
compiler optimizations. Thus, in [6] the authors present a
method, named Class Hierarchy Analysis (CHA), which,
based on the class hierarchies from a system, helps a com-
piler to transform a dynamical dispatched method invoca-
tion into a simple procedure call. An extension of this anal-
ysis is Rapid Type Analysis [3] which refines the results of
CHA with information about object instantiation.

In the reverse engineering community, much effort has
been spent in the last decade to decompose and analyze the
complexity of class hierarchies from multiple viewpoints.
As our work is also placed in the context of reverse en-
gineering we will relate next our work to several valuable
state-of-the-art contributions.

In order to understand the details of class hierarchies
Lanza [13] defines a number visualizations, called poly-
metric views, which help to reveal whether a hierarchy is

built on code reuse by means of extending and overriding
methods or on mere addition of functionality. This is use-
ful in order to find the classes that have a big impact on
their subclasses, or to understand class implementation in
the presence of inheritance. While these visualization tech-
niques can partially help to discover the code reuse nature
of a base class they do not take into consideration the ac-
tual usage of the hierarchy in clients. Because of this they
can not discover the second nature of a base class, namely
interface reuse.

In [14] two detection strategies [17] are defined in order
to detect Refused Parent Bequest bad smell [9] and a further
inheritance related problem called Tradition Breaker [14].
These design problems usually indicate that the hierarchy is
ill designed and so their detection is important in order to
improve the hierarchy. However, the detection of Refused
Parent Bequest is limited because the detection strategy is
using information only from the hierarchy itself, more pre-
cisely, the usage of the protected interface of a base class
in descendants. It does not take into consideration the client
perspective which sees the public interface. Thus, it may be
that a public method inherited by a descendant from its base
class is never invoked by clients on its instances. This is also
a sign of Refused Parent Bequest which could be detected
knowing that a descendant does not inherit a base class for
interface reuse.

Another important problem in the context of class hier-
archies is the presence of client type checks [7]. Usually,
these checks appear because the provider hierarchy does
not implement some service, enforcing its clients to im-
plement themselves the service for different types of ob-
jects in the hierarchy. Identifying and eliminating client type
checks can dramatically reduce the complexity of the hier-
archy clients improving the maintainability and understand-
ability of the subject system.

There are many other reverse engineering analyses fo-
cused on class hierarchies. Arévalo et al. [2] use con-
cept analysis to automatically discover well known and
also unanticipated dependency schemas in class hierarchies
which make them hard to extend and maintain, while Gı̂rba
et al. [11] define measurements and rules by which they de-
tect different characteristics of the evolution of class hierar-
chies.

7. Conclusions and Future Work

We have presented in this paper a new way to character-
ize a class hierarchy of a legacy system from the perspec-
tive of its clients. Understanding an object-oriented legacy
system is a difficult job especially because of the dual na-
ture of the inheritance relation. To address this issue, we
have first introduced a bi-dimensional characterization of
class hierarchies: the code reuse dimension and the inter-

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

face reuse dimension. Then, we have defined a simple met-
ric in order to limit ourself on those base classes which are
intended for pure code reuse. Next, we have focused our ef-
forts on characterizing the interface reuse intention of these
base classes which implies a closer look to the clients of the
hierarchy. We have introduced a suite of uniformity metrics
which quantify the tendency of uniform, partial or non uni-
form usage of the descendant’s instances through the base
class interface. Based on these metrics we characterize the
base class as being intended only for code reuse or for code
reuse and interface reuse.

We have applied our characterization methodology on
two medium-size case studies and we have found that it
might help us in understanding the nature of a base class
from a legacy system since the metrics interpretation ap-
pears to be consistent with the conclusion reached when we
have manually analyzed these systems. We have also identi-
fied a pattern in the usage of a base class which might indi-
cate a potential design problem in the hierarchy. Although
our case studies have provided promising results we believe
that a stronger case study is required in order to evaluate our
approach in more detail.

In the near future our research will be focused on the fol-
lowing directions.

• We want to complete our characterization methodol-
ogy by defining two other code reuse related metrics
to characterize the situations when a base class pub-
lic method is specialized or overridden by some of its
class descendants. The extension might also require
some modifications in the definitions of the uniformity
related concepts and metrics because they will have to
be more general. After the completion and implemen-
tation of the entire characterization methodology we
plan a larger case study.

• Working with a final suite of 6 metrics might become
too difficult. As a result we also plan to aggregate the
two pairs of 3 metrics into 2 metrics, one for each di-
mension.

• In order to compute the uniformity metrics more pre-
cisely we also plan to implement in MEMBRAIN an
inter-procedural SCA algorithm such as that found in
[12]. At the same time, we will also investigate how to
properly use the object instantiation information in our
particular analysis.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison Wesley, Reading, MA,
1986.

[2] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discovering
unanticipated dependency schemas in class hierarchies. In

Proceedings of CSMR ’05. IEEE Computer Society Press,
2005.

[3] D. F. Bacon. Fast and Effective Optimisation of Statically
Typed Object-Oriented Languages. Ph.D. thesis, University
of California at Berkeley, 1997.

[4] R. V. Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Object Technology Series. Addison Wes-
ley, 1999.

[5] G. Booch. Object Oriented Analysis and Design with Appli-
cations. The Benjamin Cummings Publishing Co. Inc., 2nd
edition, 1994.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of object-
oriented programs using static class hierarchy analysis. In
Proceedings of ECOOP ’95. Springer-Verlag, 1995.

[7] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, San Francisco,
2002.

[8] R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. In Proceedings of ESEC
/ SIGSOFT FSE ’ 01, 2001.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, Reading, MA, 1999.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1995.

[11] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the evo-
lution of class hierarchies. In Proceedings of CSMR ’05.
IEEE Computer Society Press, 2005.

[12] D. Grove. The impact of interprocedural class analysis on
optimisation. In Proceedings of CASCOM ’95, 1995.

[13] M. Lanza. Object-Oriented Reverse Engineering—Coarse-
grained, Fine-grained, and Evolutionary Software Visualiza-
tion. PhD thesis, University of Berne, May 2003.

[14] M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented
Metrics in Practice. Springer-Verlag, 2006. to appear.

[15] B. Liskov. Data Abstraction and Hierarchy. In Proceedings
OOPSLA ’87, page addendum, Dec. 1987.

[16] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and
R. Wettel. Iplasma: An integrated platform for quality as-
sessment of object-oriented design. In Proceedings of ICSM
’05, Industrial and Tool Volume. IEEE Computer Society
Press, 2005.

[17] R. Marinescu. Measurement and Quality in Object-Oriented
Design. PhD thesis, ”Politehnica” University of Timişoara,
2002.

[18] R. C. Martin, editor. Agile Software Development. Princi-
ples, Patterns and Practices. Prentice Hall, 2003.

[19] B. Meyer. Object-Oriented Software Construction. Prentice-
Hall, second edition, 1997.

[20] A. Snyder. Encapsulation and inheritance in object-oriented
programming languages. In Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, volume 21, pages 38–45, Nov. 1986.

Proceedings of the 14th IEEE International Conference on Program Comprehension (ICPC’06)
0-7695-2601-2/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

