
Patrools: Visualizing the Polymorphic Usage of Class Hierarchies

Petru Florin Mihancea
LOOSE Research Group

“Politehnica” University of Timişoara, Romania
petru.mihancea@cs.upt.ro

Abstract—Class hierarchies are key to flexible object-
oriented design, but can also burden program comprehension
activities when improperly designed or documented. This tool
demo presents an Eclipse plugin called PATROOLS. It imple-
ments two software visualizations that capture the polymorphic
usage of a class hierarchy by its clients, and can support
understanding and quality assessment tasks related to class
hierarchies.

Keywords-class hierarchy; polymorphism; visualization;

I. INTRODUCTION

Class hierarchies are key for the increased flexibility of
object-oriented software. Nevertheless, they can also raise
different maintainability issues (e.g. difficult program un-
derstanding) when class hierarchies are poorly documented
or improperly designed.

Many approaches have been proposed to decompose
and analyze from multiple perspectives (e.g. hierarchies
understanding, assessing their design quality) the complexity
of class hierarchies (e.g. [1], [2]). In contrast with these
achievements, we propose a characterization of class hi-
erarchies that is based on the extent to which they are
used polymorphically by their clients. Consequently, we
introduced TYPE HIGHLIGHTING visualizations [3], as an
analysis vehicle to (i) identify patterns of polymorphic usage
of a hierarchy by its clients and (ii) to enable maintainers
to characterize hierarchies based on the identified patterns.

This tool demo presents PATROOLS1, an Eclipse plugin
that implements the TYPE HIGHLIGHTING visualizations
for Java programs. It is built based on the core features
of the CODEPRO plugin [4], based on the JMONDRIAN
visualization framework2 and using the WALA static analysis
libraries3.

II. PATROOLS

Figure 1 describes the TYPE HIGHLIGTHING views im-
plemented in PATROOLS. For more details, please refer to
[3] and [5]. In essence, we first identify all clients of the
investigated hierarchy (e.g. in Figure 1, all methods that
invoke a public method from the A base class). Next, we
assign a color to each source code token of each client.
This token-color mapping depends on each concrete view.

1loose.upt.ro/patrools
2CODEPRO and JMONDRIAN - loose.upt.ro/reengineering/research
3wala.sourceforge.net

+m()
+n()

{abstract}
A

B C

void aClient(A x) {
 1: x.m();
 2: if(x instanceof B) {
 3: x.n();
 4: }
}

1: Find all
clients

2.1: Compute color
code for each client

2.2: Microprinting

void aClient(A x) {
1: x.m();
2: if(x instanceof B) {
3: x.n();
4: }
}

3: Sort Clients
using LOC

Level of Abstraction
View

Group Discrimination
View

void aClient(A x) {
1: x.m();
2: if(x instanceof B) {
3: x.n();
4: }
 }

Figure 1. TYPE HIGHLIGHTING in a Nutshell

For the Level of Abstraction view, we use a red-to-white
color scale. For example, the tokens from the first line of the
exemplified client (see Figure 1) are red. This is because,
before the execution of the invocation, variable x may refer
to an instance of any subclass from the hierarchy (i.e. B or
C instances). By contrast, the tokens from the third line are
white because, before the execution of that line, x can refer
only to instances of exactly one type (i.e. B objects).

Next, we transform the source code of each client into
a small visualization using the microprint technique intro-
duced by Robbes et. al. in [6]. In essence, each source code
character of a client is represented as a tiny rectangle filled
using the color assigned to the corresponding token. Finally,
we sort the microprints of all clients using the Lines of Code
metric, and we arrange them in a grid-like manner.

The Group Discrimination view is obtained similarly. The
distinctive characteristic is that different colors are assigned
to the tokens that are part of some code dedicated only
for particular subclasses from the hierarchy and not for all
of them (e.g. the third line of the client in Figure 1 is
green because x refers only to B objects in that line). Group
Discrimination also includes a legend of colors (not shown
here) to reveal what particular subset of descendants are
manipulated in non-red code regions. Consequently, Group
Discrimination complements the first visualization.

Figure 2. PATROOLS at Work - A Level of Abstraction View Example

Observing TYPE HIGHLIGHTING views, we developed a
set of potential visual patterns that may help to increase the
understanding of a class hierarchy or to assess its design
quality (e.g. polymorphic client, polymorphic island, etc.).
Details can be found in [5] and [3].

An example of Level of Abstraction view is presented
in Figure 2. On one hand, the figure shows how this
microprint based view can easily give us an overview about
the polymorphic usage of a hierarchy in its clients. On
the other hand, the figure exemplifies a polymorphic island
pattern (i.e. the entirely red microprint) emphasizing one of
the few clients which intensively use polymorphism when
manipulating objects defined in the hierarchy. Investigating
the code of such a client may help an analyst understand
the circumstances in which all the descendants are / can be
treated uniformly.

Figure 2 also reveals how an analyst can navigate from
the abstractions of a view back to the source code. In a
visualization, one can easily inspect the code of a micro-
printed client via a quick source code viewer. Additionally,
one can easily localize the client code in a standard source
code editor by double-clicking on the client microprint.

III. RELATED WORK

Many state-of-the-art approaches address the problem of
comprehending and assessing the quality of class hierar-
chies. In [2], software metrics and rules are introduced to
support class hierarchy understanding. Lanza and Ducasse
presents in [7] several polymetric views dedicated to under-
stand the role of inheritance in class hierarchies. In [1], the
authors propose a restructuring technique of class hierarchies
using concept analysis and based on information regarding

the hierarchy usage in clients. In contrast with these achieve-
ments, the approach implemented in PATROOLS character-
izes hierarchies based on their polymorphic usage by clients.

ACKNOWLEDGMENT

This work was supported by CNCSIS under the research grant
PNII-IDEI (357/1.10.2007).

REFERENCES

[1] G. Snelting and F. Tip, “Reengineering Class Hierarchies using
Concept Analysis,” in ACM Trans. Programming Languages
and Systems, 1998.

[2] S. Denier and Y.-G. Guéhéneuc, “Mendel: A Model, Metrics,
and Rules to Understand Class Hierarchies,” in Proceedings of
the 16th IEEE International Conference on Program Compre-
hension (ICPC’08). IEEE Computer Society, 2008.

[3] P. F. Mihancea, “Type Highlighting : A Client Driven Visual
Approach for Class Hierarchies Reengineering,” in Proceed-
ings of the 8th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM’08), 2008.

[4] R. Marinescu, G. Ganea, and I. Verebi, “inCode: Continuous
Quality Assessment and Improvement,” in Proceedings of
the 14th European Conference on Software Maintenance and
Reengineering. IEEE Computer Society, 2010.

[5] P. F. Mihancea, “A Novel Client-Driven Perspective on Class
Hierarchy Understanding and Quality Assessment,” Ph.D. dis-
sertation, “Politehnica” University of Timişoara, 2009.

[6] R. Robbes, S. Ducasse, and M. Lanza, “Microprints: A Pixel-
based Semantically Rich Visualization of Methods,” in Pro-
ceedings of the 13th International Smalltalk Conference, 2005.

[7] M. Lanza and S. Ducasse, “Polymetric Views—A Lightweight
Visual Approach to Reverse Engineering,” Transactions on
Software Engineering, vol. 29, no. 9, 2003.

