
Towards a Reverse Engineering Dataflow Analysis
Framework for Java and C++

Petru Florin Mihancea
LOOSE Research Group

“Politehnica” University of Timişoara, Romania
Email: petru.mihancea@cs.upt.ro

Abstract—Due to the software aging phenomenon,
understanding a program is increasingly difficult. Many
high-level analysis methods have been developed to support
program comprehension, some of them based on dataflow
analysis. Conventional dataflow analysis infrastructures could be
used as a basis to implement these reverse engineering methods.
However, none of them meet specific reverse engineering
requirements. In this tool demo we introduce MEMBRAIN,
a dataflow analysis infrastructure for reverse engineering. A
brief insight over this infrastructure is presented along with
some essential implementation details. The demo also includes
a practical usage example and a performance comparison in
order to prove the tool usability.

Keywords-dataflow analysis; reverse engineering; static
analysis

I. MOTIVATION

Dataflow analyses collect runtime information about data in
programs without actually executing them [1]. Usually, such
static analyses are used in the context of optimizing compilers
and program verifiers. However, they also have an important
and increasing role for reverse engineering legacy systems.

The state of the art literature presents many high-level
reverse engineering methods that rely on dataflow analyses.
In [2], the authors present a method to understand class hi-
erarchies implementation. Manipulating points-to information,
their approach produces behaviorally equivalent hierarchies in
which each object contains only the members that it needs.
In [3], Static Class Analysis [4] is used to characterize the
type hierarchy nature of a class hierarchy. However, in order
to be applicable, such reverse engineering techniques need a
dataflow analysis infrastructure as basis for their implementa-
tion. From the perspective of a reverse engineering practitioner
/ researcher such an infrastructure should have some particular
traits:

1) To avoid duplication, when possible, the implementation
of a reverse engineering analysis should be independent
of the language in which the analyzed program is
written. Thus, a dataflow analysis engine for reverse
engineering should function on a common (language-
neutral) representation of programs.

2) A reverse engineer wants an easy way to precisely im-
plement concrete dataflow analyses. As a consequence,
the common representation of programs must be a
sufficiently low-level one: derived language constructs

(e.g., ++ operator) must be eliminated, the representation
must be explicit (e.g., implicit calls to copy-constructors
in C++ must be made explicit), etc. This is because such
language particularities complicate the implementation
of dataflow analyses (e.g., the ++ operator is a definition
of the associated variable that must be considered by a
precise implementation of Reaching Definitions [1]).

3) Usually, a maintainer wants to understand a program
at the implementation level. Thus, a dataflow analysis
infrastructure for reverse engineering should be able to
present the data facts at the level of the analyzed source
code.

4) Often, reverse engineering is performed on incomplete
code. As a consequence, a reverse engineering dataflow
analysis infrastructure should be employable even when
the code of the reverse engineered program is not
entirely available.

In the following, we are going to briefly present our state-
of-the-art investigation in order to see if these requirements are
or can be met by current dataflow analysis infrastructures.

II. RELATED WORK

A dataflow analysis framework for Java programs is pre-
sented in [5]. However, because it directly manipulates JVM
code, it can be used to analyze only complete Java programs.
BML1 has similar capabilities, but it also analyzes Java byte-
code.

In [6], common representations of programs written in vari-
ous programming languages (at different levels of abstraction)
are proposed. These representations can be used as the basis
for building a generic dataflow analysis engine. However, they
are too close to the original code (e.g., derived operators such
as ++ are not eliminated, etc.) making dataflow analyses less
precise and harder to implement. Similar representations (but
only for C++) are presented in [7].

JKit 2 is an implementation of a Java compiler and it uses an
intermediate representation for Java programs (JKil). However,
since it is a compiler, it has not been constructed as a dataflow
analysis framework for reverse engineering (e.g., it cannot be
used to analyze incomplete code).

1homepages.mcs.vuw.ac.nz/∼djp/bml/
2homepages.mcs.vuw.ac.nz/∼djp/jkit/

10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-0-7695-3523-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SYNASC.2008.7

285

// i and j are local variables
if(2 == j) { i = j++; }
// MemBrain representation
1 :Copy [j]
2 :Equal 2 (-1)
3 :CGoto (-1) L1
4 :Goto L2
5 :Label L1
6 :Copy [j]
7 :Add (-1) 1
8 :AssignToName [j] (-1)
9 :AssignToName [i] (-3)
10:Label L2
// Explanation
[i] - reference to local variable i
(-x)- temporary reference eg., (-3) in the
9th instruction identifies the result of
the 9 - 3 = 6th instruction

Fig. 1. Representation Example

III. MEMBRAIN INFRASTRUCTURE

In essence, MEMBRAIN (Memoria Extension for Method
Body Representation, Analysis and INspection) means two
things. First, it defines a common representation for programs
written in Java and C++3. On the other hand, it is a framework
that allows to easily implement intra-procedural flow-sensitive
dataflow analyses on MEMBRAIN representation. In this sec-
tion we present this representation and the main abstractions of
the framework. Our prototypical infrastructure is implemented
in Java.

A. The Representation

1) Instruction Set: The MEMBRAIN instructions can be
viewed as an elementary low-level representation of Java
and C++ operators and statements (e.g., Addition, StaticCall,
VirtualCall, etc.). This representation does not include derived
operators (e.g., ++, +=) or structured statements such as for,
do, etc. All these statements are expressed in terms of goto and
conditional goto instructions. Moreover, every instruction has
only one meaning (e.g., + means addition between numbers
and cannot be overloaded as in C++). These simplifications
allow an easier dataflow analysis implementation.

MEMBRAIN instructions are a form of three-address code
[1]. To identify the operands of an instruction, different types
of references are used. Usually, a reference models an entry
from the symbol table (e.g., a variable, a type). Additionally,
because we have adopted an implementation of the three-
address code using triples [1], we also use a special kind
of reference (i.e., temporary reference) in order to model the
result of an instruction. As an example, we present in Fig. 1
a code fragment and its MEMBRAIN representation.

2) Translators: Our infrastructure also includes two transla-
tors that convert Java 1.5 and ISO C++ code into MEMBRAIN
representation (the C++ translator is under development). We
emphasize that it is the translator’s responsability to perform
all the transformations mentioned above (e.g., in C++, when a

3The representation will be extended in order to address full C++

Fig. 2. The Dataflow Analysis Framework

+ operator refers to an operator method, it must be translated
into an explicit call).

The translators are built on top of the Recoder4 respectively
Columbus [8] parsers. One reason for using these tools is that
they can parse incomplete code. Additionally, our translators
are also written in such a way that they can recover from errors
(e.g., references to undefined types) produced by incomplete
code. The final effect is that our infrastructure can be used
even when the code of the analyzed program is incomplete.

The translator’s primary output consists of a code table
with MEMBRAIN instructions for the translated method. Next,
the code table is used to build the control-flow graph of that
method. The translators also provide a mapping between the
generated instructions and the source code. In essence, each
generated instruction is associated with a code stripe (i.e.,
continuous or discontinuous sequences of characters identified
by their start / stop line and column) representing the source
code translated into that instruction. Thus, the mapping can be
used to present data facts at the level of the original source
code, an essential prerequisite for reverse engineering.

B. The Framework

In Fig. 2 we present the MEMBRAIN dataflow analysis
framework. The result of a dataflow analysis consists in sets
of ComputedValues associated with any particular point in a
method (e.g., at this execution point, local variable x may have
the value assigned by the instr instruction). To implement
a dataflow analysis, an engineer must define first what a
ComputedValue means for that analysis (in a subclass) and
to define the equality between two such instances (i.e., to
implement the equals() method).

A DataFacts object represents the result of a dataflow
analysis applied on a particular method. Such an instance
is an aggregation of InOutSets (i.e., sets of ComputedValues
associated with the input / output of each basic block). To
define the result of a particular analysis, we must implement
the createAnalysis() factory method [9]. This method will

4recoder.sourceforge.net

286

only have to create an object representing the implemented
analysis. We also emphasize that the DataFacts class provides
methods that can be used to find the input / output sets
of ComputedValues at the basic block and instruction level.
Thus, this class represents the way through which a user can
(programatically) extract the results of a dataflow analysis for
further exploitation.

A DataFlowAnalysis object models a particular dataflow
analysis. The framework uses a classical worklist algorithm [1]
to approximate the sets of ComputedValues at the start / end
of each basic block. In order to implement a dataflow analysis,
an engineer must provide an implementation for the transfer
functions of the analysis (via the createInstructionVisitor()
factory method [9]) and to define the analysis loop (i.e., the
manner in which the sets of ComputedValues are combined)
in the analysisLoop() template method [9].

The purpose of an InstructionsVisitor object is to implement
the transfer functions of a dataflow analysis for each relevant
MEMBRAIN instruction. Usually, it is going to manipulate
(i.e., to compare, instantiate, etc.) analysis specific Comput-
edValue objects. At implementation level, such an instance is
a Visitor [9] for the hierarchy of MEMBRAIN instructions.

IV. PRACTICAL USAGE

MEMBRAIN has been integrated into the IPLASMA reengi-
neering environment [10]. In this section we present a reverse
engineering practical application implemented using our tool
and we compare MEMBRAIN execution times with those of
BML5.

1) Type Highlighting: In order to capture the extent to
which the concrete types of objects defined in a class hier-
archy are polymorphically / non-polymorphically treated by
the clients of that hierarchy, we have developed the Type
Highlighting visualizations [11].

The principle of one of these software views (i.e., Group
Discrimination) is presented in Fig. 3. The body of a client
method is transformed into an image by mapping each source
code character into a pixel. Next, based on the Static Class
Analysis (SCA) [4] computed by MEMBRAIN and on the tool
capabilities to map data facts at the level of source code, we
use distinct colors to emphasize code areas where particular
types of objects are non-uniformly treated (e.g., the true branch
of the if statement is green because only B instances can be
referred by x; the false branch is blue because x may refer
only to C instances in that code area; the last call is red
because x may refer to both concrete types of objects). Using
this visual codification simultaneously for all the clients of a
class hierarchy and preserving the color code (i.e., green is
used only for code areas dedicated to B instances, etc.), we
can easily detect, for example, client type checking design
problems and their prevalence into the analyzed software.

The Type Highlighting views have been applied to several
Java6 case studies. During our experiments, we have also man-

5homepages.mcs.vuw.ac.nz/∼djp/bml/
6Because the C++ translator is still under development, at the moment we

cannot analyze realistic C++ systems

Fig. 3. Group Discrimination Sketch

TABLE I
MEMBRAIN EXECUTION TIMES

System Lines Concrete CFG SCA RD
of code methods building

(sec) (sec) (sec)
Recoder 42 259 5 598 3.0 31.5 4.3

Jung 22 447 2 754 1.5 28.7 2.3

TABLE II
PERFORMANCE COMPARISON

System Time/method Time/method
MemBrain (ms) BML (ms)

Recoder 0.768 0.181
Jung 0.835 0.569

Average 0.802 0.375

ually analyzed the code of many client methods of different
class hierarchies in order to validate both the Type Highlighting
technique and the results of SCA obtained by MEMBRAIN.

2) Performance: To evaluate the efficiency of the tasks
accomplished by MEMBRAIN during the execution of Type
Highlighting analyses, we present in Table I the execution
time for (i) control-flow graph construction (includes trans-
lation time but not parsing time) (ii) computation of Static
Class Analysis (SCA) [4] and (iii) computation of Reaching
Definitions (RD) [1]7. The measurements have been performed
for all methods of two medium-sized Java programs, using a
MacBookPro computer (Core 2 Duo 2.33 GHz, 2 GB of RAM)
running MacOS 10.5.

In Table II, we compare our RD analysis with that of BML
which however considers only local variables and not data
fields. Our execution time per method is on average 2.14 times
higher. We consider this difference of performance acceptable
since it will be offset by the advantage of also analyzing C++
programs.

V. CONCLUSIONS AND FUTURE WORK

We have presented in this tool demo the MEMBRAIN
dataflow analysis prototypical infrastructure dedicated to re-

7The current implementations do not include an alias analysis

287

verse engineering. We have briefly described its internal struc-
ture and we have presented one of its successful practical
applications. As a conclusion, we state that MEMBRAIN is
a promising support for reverse engineering practice and
research.

Our future efforts will be focused on the completion of the
C++ to MEMBRAIN translator. To accomplish this task, our
common representation needs to be extended (e.g., in order
to support C++ templates, pointers to functions, etc.). We
also plan to extend our infrastructure to also support inter-
procedural dataflow analysis (context-sensitive and insensi-
tive). Last but not least, we also plan to improve the execution
times of our tool.

ACKNOWLEDGMENT

This work has been partially supported by the Roma-
nian Ministry of Education and Research under the research
grants CNCSIS TD (2007 & 2008 Code 126) and PN2
(357/1.10.2007).

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques and Tools (2nd Edition). Addison Wesley, 2007.

[2] G. Snelting and F. Tip, “Understanding Class Hierarchies Using Con-
cept Analysis,” ACM Trans. on Programming Languages and Systems,
vol. 22, pp. 540–582, May 2000.

[3] P. F. Mihancea, “Towards a Client Driven Characterization of Class
Hierarchies,” in Proceedings of IEEE International Conference on
Program Comprehension (ICPC 06). IEEE Computer Society, 2006,
pp. 285 – 294.

[4] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis,” in Proceedings of
European Conference on Object-Oriented Programming (ECOOP 95),
ser. LNCS, vol. 952. Springer-Verlag, 1995, pp. 77 – 101.

[5] M. Mohnen, “An Open Framework for Data-Flow Analysis in Java
: Extended Abstract,” in Proceeding of Inaugural Conference on the
Principles and Practice of Programming (PPPJ 02), and Proceedings
of the Second Workshop on Intermediate Representation Engineering for
Virtual Machines (IRE 02). National University of Ireland, 2002, pp.
157 – 161.

[6] R. Al-Ekram and K. Kontogiannis, “An XML-Based Framework for
Language Neutral Program Representation and Generic Analysis,” in
Proceedings of European Conference on Software Maintenance and
Reengineering (CSMR 05). IEEE Computer Society, 2005, pp. 42 –
51.

[7] N. Kraft, B. Malloy, and J. Power, “Towards an Infrastructure to Support
Interoperability in Reverse Engineering,” in Proceedings of Working
Conference on Reverse Engineering (WCRE 05). IEEE Computer
Society, 2005, pp. 196 –205.

[8] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy, “Columbus
- Reverse Engineering Tool and Schema for C++,” in Proceedings of
IEEE International Conference on Software Maintenance (ICSM 02).
IEEE Computer Society, 2002, pp. 172– 181.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[10] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and R. Wettel,
“iPlasma: An Integrated Platform for Quality Assessment of Object-
Oriented Design,” in Proceedings of IEEE International Conference on
Software Maintenance (ICSM 05), Industrial and Tool Volume, 2005.

[11] P. F. Mihancea, “Type Highlighting: A Client-Driven Visual Approach
for Class Hierarchies Reengineering,” in Proceedings of IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM 08). IEEE Computer Society, 2008, pp. 207–216.

288

