
XCore: Support for Developing Program Analysis
Tools

Alexandru Ştefănică and Petru Florin Mihancea
LOOSE Research Group

Politehnica University of Timişoara, Romania
Email: salexandru.alex@gmail.com, petru.mihancea@cs.upt.ro

Abstract—Building program analysis tools is hard. A recurring
development task is the implementation of the meta-model
around which a tool is usually constructed. The XCORE prototype
supports this task by generating the implementation of the meta-
model. For this purpose, developers will add directly into the
source code of the tool under construction some meta-information
describing the desired meta-model. Our demo presents some
internal details of XCORE and emphasizes the advantages of our
tool by describing the construction of a basic analysis instrument.

Index Terms—meta-model, program analysis tool

I. INTRODUCTION

Creating tools is an important goal of the research com-
munities that elaborate analysis means to support software
development. Unfortunately, building highly flexible, reusable
and integrable program analysis tools is hard.

Figure 1 shows the generic architecture of an analysis
instrument. The back-end extracts the raw artifacts needed by
the analyses implemented in the tool (e.g., a parser creating the
ASTs of the source code). Usually, analyses require artifacts
that are more coarse-grained than what is provided by back-
end extractors. Thus, some builders are needed to form higher-
level artifacts (e.g., visit ASTs and capture all classes as first-
class entities). These latter artifacts form the model of the
analyzed system and it is structured according to a meta-model
defined and implemented by the developers of the tool.

This is a recurring task for tool builders. IPLASMA [1]
uses the MEMORIA meta-model to compute metrics. RAN-
DOOP [2] captures the methods from a system and models
random sequences of invocations in order to create tests.
WALA [3] also defines and implements a meta-model cap-
turing the program structure (e.g., existing classes) but also
represents more complex entities like flow-graphs in order to
perform flow analyses.

Front-end (e.g., UI)

Back-end (e.g., parser)

Model
Analyses

M
et

a
M

od
el uses

Builders
instantiates

collects
meta-information

generates XCore

Fig. 1. XCORE Place in the Development of an Analysis Tool

One main concern when implementing a meta-model is to
provide an implementation for its entities (e.g., writing the
code of the meta-class whose instances will represent different
types from the program under analysis). While this can be
perceived as a simple task, even if it is time consuming from
a development perspective, it is only half of the story. Like
any other program, the analysis tool will evolve over time
and include more and more sophisticated analyses requiring
an enhancement to the initial meta-model. Consequently, ded-
icated mechanisms will have to be implemented from the
beginning to allow easy meta-model extension. Similarly, other
mechanisms could be required in connection with the meta-
model to support easy reuse of simpler analyses in larger ones
or to reuse analyses by inter-operating/integrating other tools.
Unfortunately, all these additional mechanisms are difficult to
design and implement, and different approaches have been
proposed in the state-of-the-art literature to address them (e.g.,
[4], [5]). However, our tool offers an alternative.

XCORE (see Figure 1) provides developers with the means
to add meta-information in the source code of the tool under
development in order to describe the desired meta-model.
Next, during the compile process of the tool, XCORE gathers
all this meta-information and it automatically generates the
implementation of the meta-model. Additionally, due to the
way it was designed to be used, XCORE also facilitates other
non-functional traits for the built tool such as the simplicity
to extend its meta-model.

II. XCORE BASICS

To generate the implementation of a meta-model, XCORE
needs a way to enable developers to describe it. Consequently,
our tool needs a meta-meta-model.

A. The Meta-Meta-Model Used by XCORE

XCORE is based on the conceptual meta-meta-model de-
scribed by Ganea et. al. in [5]. Figure 2a shows how this
meta-meta-model has been employed into XCORE together
with some extensions. To describe its components, we make
use of the meta-model exemplified in Figure 2b.

XMethod and XClass are types of entities of the meta-model
used to represent classes and methods from an object-oriented
program. An entity has properties representing characteristics
or analysis results associated to that entity (e.g., noOfArgs
represents a metric for the method). An entity may also have

978-1-5090-5501-2/17 c© 2017 IEEE SANER 2017, Klagenfurt, Austria
Tool Demonstrations

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

462

Entity
Type

Group

*

*

Property
Computer

Relation
Builder

1

*

+/displayAction
XClass

+/noOfArgs
XMethod

*

1

MethodGroup
Builder

1

NoOfArgs
Computer

a) Meta-Meta Model b) A Meta-Model Example

<<instantiate>>

<<instantiate>>

*

<<derived>>

<<derived>>

<<instantiate>> +/methodGroup

Property

ActionAction
Performer

**

<<derived>>

DisplayAction
Performer

1

<<instantiate>>

From InCode

Fig. 2. The Conceptual Meta-Meta-Model and an Instantiation

@PropertyComputer
class NoOfArgs implements
 IPropertyComputer<Integer,XMethod>
{ … }

Eclipse IDEXCore

The Initial Java Project (Tool)

PropertyComputer
…

Annotation Processor

@PropertyComputer
class NoOfArgs implements
 IPropertyComputer<Integer,XMethod>
{ … }

//Generated by XCore
interface XMethod {
 public Integer noOfArgs();
}
class XMethodImpl implements XMethod
{…}

The Resulting Java Project (Tool)

Fig. 3. Internals and Usage Overview

groups describing relations between entities (e.g., a class has a
group of methods declared in that class). Last, but not least, an
entity may have actions (e.g., displayAction opens the source
code of the associated class in an editor). We emphasize that
these properties, groups and actions are not explicitly defined.
They are actually derived/obtained from their corresponding
PropertyComputer, RelationBuilder or ActionPerformer ob-
jects. These last modelling elements are central from the
XCORE internal and usage perspectives.

B. Internal Details and Usage Basics

XCORE is a tool for helping building tools and thus, it
must work very closely with the developers. Consequently, it
has been implemented as an ECLIPSE plugin (see Figure 3).
Moreover, to generate the JAVA code for the meta-model of
the tool under construction, XCORE is an annotation processor.
Developers add classes to the tool project, and annotate them
by specifying if they are a property computer, a relation
builder or an action performer. When the project is built,
ECLIPSE invokes XCORE asking it to process these annota-
tions. As a result, XCORE injects the code for the found meta-
model entities into the tool project (i.e., XMethod in Figure 3).
This includes the required operations (i.e., noOfArgs) and their
implementations that invoke the actual executants of those
operations (i.e., the NoOfArgs property computer object).

III. BUILDING A TOOL WITH XCORE

To better understand the XCORE advantages we present in
the following the main steps of developing a basic ECLIPSE
plugin analysis tool using our meta-tool. This section assumes

that XCORE is installed and that the ECLIPSE project of
the built tool is properly configured1. The developed analysis
instrument will model the classes and the methods from an
object-oriented program as instances of XClass and XMethod
meta-model entities. For each entity, the name will be pro-
vided. The tool will also compute the NoOfArguments metric
for a method, and the AvgMethodParameters at the class level.
Finally, the tool must facilitate the navigation from an XClass
object to the source code of the modeled class.

A. Developing the DemoTool

Figure 4a shows the way we start describing the charac-
teristics of an XMethod. We declare two classes annotated
as property computers. They have to implement a predefined
generic interface2 and, based on the used type arguments,
XCORE derives that the corresponding properties should be
associated to an XMethod. However, ECLIPSE complains that
there is no such type in the DemoTool project (as can be seen
in left side of Figure 4).

When we will build the project, XCORE will generate the
code of the XMethod type as can be seen in Figure 5a3. This
includes the declaration of the corresponding operations in
the XMethod interface (i.e., toString() and noOfArguments())
and their implementations (i.e., class XMethodImpl) which
delegate a request to the corresponding property computer.
Next, the way these properties are actually implemented must
be provided by the developers.

XCORE does not depend on the usage of a particular
back-end/fact extractor tool. However, it enables developers
to associate a meta-model entity to an entity from the desired
back-end. In this case (Figure 5b), an XMethod is associated
to a jdt.core.IMethod type declared in the Java Development
Tool component of ECLIPSE. This object is accessible via the
getUnderlyingObject method present in the interface of all
XCORE generated types. Consequently, the developers can im-
plement the properties of an XMethod using the functionalities
provided by the back-end (see Figure 5c).

In a similar fashion, we can declare and implement the
characteristics of an XClass. The relation between a class and
its group of declared methods can be represented using the
RelationBuilder annotation (see Figure 6a). Based on the type
arguments of the required generic interface, XCORE associates
this group to an XClass and it will be clear that the group
contains XMethod entities.

In order to construct such a group, two things are required.
First, we need a way to determine all the methods declared
in a particular class from the analyzed source code. For this
purpose, we have to rely on the back-end and thus, an XClass
is associated to the jdt.core.IType from JDT. Second, we need
a way to instantiate XMethod objects from our meta-model. To

1Installation instructions and other tutorials (including a screencast and
configuration details) are available at https://goo.gl/4BzB4Z

2While we could have relied only on class/method annotations, we also used
interfaces to achieve structural uniformity in the meta-elements definitions

3Be aware that the folder in which Eclipse records the generated code is
usually hidden

463

This is a property
computer deriving a

property for an XMethod

a’
This is a property

computer deriving a
property for an XMethod

a

Fig. 4. Step 1 - Declaring The Characteristics Of An XMethod

a

b

c c’

Fig. 5. Step 2 - Implementing The Characteristics Of An XMethod

464

This is a relation builder
associated to XClasses

and builds a group of
XMethods

a

b

This is a property
computer deriving a

property for an XClass

c This is an action
performer with no

arguments associated to
an XClass

e

d

Fig. 6. Step 3 - Declaring and Implementing The Characteristics Of An XClass

support this task, XCORE also generates a Factory of objects
that also enforces the association of a meta-model element
to its underlying back-end object (e.g., an XMethod must be
associated to a jdt.core.IMethod object as in Figure 6b).

Figure 6c presents the declaration of the AvgMethodParam-
eters metric as a property computer associated to an XClass.
The most important thing to note here is that, to compute
a metric, one can reuse the previously defined metrics and
groups. In our case, to implement AvgMethodParameters we
can reuse the NoOfArguments metric and the MethodGroup of
an XClass. As you can see in Figure 6d, through the XClass
interface the metrics and groups are accessible together with
their documentation.

Finally, Figure 6e exemplifies an action performer. In this
case, the ShowClass action is associated to an XClass and it
can be used to open the implementation of the modeled class
into an ECLIPSE editor.

B. DemoTool At Work

Figure 7 shows the minimalist tool built with XCORE at
runtime. INSIDER is a utility plugin we provide as a generic
front-end for tools developed with XCORE. Via a pop-up
menu, users can access the properties/groups/actions of any
model object from registered tools.

IV. PROS, CONS AND OTHER FEATURES

In the previous section, we have shown how XCORE
can be used during the development of an analysis tool to
automatically generate the implementation of the tool meta-
model. However, this is just one of the advantages offered by

Fig. 7. Step 4 - DEMOTOOL at Runtime

XCORE. In addition, extending the meta-model of an XCORE-
based tool is easy: programmers just add the annotated source
code (e.g., a new relation builder class) into the ECLIPSE
project and rebuild the tool. As a result, XCORE will detect
the new meta-model element and it will properly integrate it
in the regenerated meta-model implementation.

Another pro is the possibility of simple integration of an
XCORE-based tool with another one built also with XCORE.
By mixing them into the same ECLIPSE project, XCORE will
generate the common meta-model that satisfies the expecta-
tions of each tool in part. Consequently, the combined tools
will be able to interact programmatically. To simplify this
merging activity we plan a new feature that is briefly described
in Section VI.

465

Meanwhile, another XCORE feature goes in this direction:
we can declare an analysis instrument (i.e., a sub-tool) as
extending another tool (super-tool) built with XCORE. The
effect is that the meta-model entities of the sub-tool will extend
where possible the meta-model entities of the super-tool. In
other words, the super-tool features will be “inherited” by the
sub-tool where they can be (re)used. The drawback is that a
copy of the super-tool must be packed together with the sub-
tool into a single deployment unit. (i.e., the super-tool cannot
be shared dynamically by different sub-tools because all of
them must use the same meta-model implementation which is
not possible when sub-tools are not aware of each other).

As a disadvantage, incremental compilation of an XCORE-
based tool is difficult because our tool must know the entire de-
scription of the meta-model (i.e., all the relevant annotations)
in order to generate entirely the required implementation.
As another con, at this moment XCORE does not directly
express inheritance between meta-entities in order to factor
out common properties/relations/actions.

V. RELATED WORK

Our tool is related to INCODE [5] and IPLASMA [1] by
the way they express and handle their meta-models. On one
hand, XCORE uses in part the same meta-meta-model as
the previous two analysis infrastructures. Even if their meta-
models are easy to extend, these meta-models are not explicit.
In other words, they exist only at runtime as instances of some
classes representing the meta-meta-model. Consequently, the
compiler cannot be aware of the static structure of the meta-
model making the type checks of Java useless when acting
on a meta-model entity (i.e., the compiler cannot know what
operations can actually be performed on a particular meta-
type). This proved to be problematic for complex meta-models
because it is difficult for a developer to remember exactly all
the characteristics of each entity from a meta-model.

By contrast, XCORE solves this issue because it generates
the Java code of a meta-model and thus, makes it explicit.
As a result, we can rely on the compiler to verify that an
operation can be executed by the meta-model entity we invoke.
Also, a developer can rely on ECLIPSE’s code completion
support to see the documentation of a meta-type operation
at its invocation site.

Similarly, our tool is related to the MOOSE [6] analysis
infrastructure and, more precisely, to the way its meta-model is
manipulated. MOOSE uses the FAMIX meta-model described
using the FM3 meta-meta-model and handled by the FAME
tool [4] also available (at least partially) in Java. In short,
JAVAFAME [7] generates the Java code of a meta-model taking
as input the description of that meta-model from an external
mse file. By contrast, XCORE lets developers describe the
meta-model directly in the source code using Java annotations.
One advantage of our approach is that the actual information is
kept in a single place reducing the risk of de-synchronisation.
Moreover, having the meta-model description in an exter-
nal configuration file is problematic for refactoring engines.

XCORE does not have this problem because the meta-model
description is expressed in Java code constructs.

We also mention that Java annotations are also present in
JAVAFAME. However, to the best of our understanding, they
are not used to produce code. They are used as runtime anno-
tations marking and categorizing the elements of a generated
meta-model in order to build, for example, a generic browser
to interact with the model [4]. It happens that we also use a
similar mechanism to categorize the elements of the XCORE-
generated meta-model (e.g., as a group, a property, or an action
operation) in order to build the INSIDER generic UI. However,
XCORE also uses the Java annotation processing mechanism to
describe and trigger the meta-model code generation including
the “linking” between the meta-model operations and their
actual implementations.

VI. CONCLUSIONS AND FUTURE WORK

In this demo, we introduced XCORE, a meta-tool aimed
to support the development of program analysis tools. We
showed its feasibility and expected advantages by presenting
the construction of a basic analysis instrument in an (almost)
step by step fashion.

As future work, we plan to add the Merge Analysis Tool
feature. In essence, this will help a developer to automatically
copy the source code of an XCORE-based tool into the
ECLIPSE project of another XCORE-based tool and to merge
all the specific settings. As a result, compiling the destination
tool will make XCORE generate the common meta-model of
both tools enabling their interaction even at a programmatic
level. In other words, the new feature will help to merge two
distinct XCORE-based tools into a single one.

We also plan to support the integration of other tools that
are not based on XCORE by offering the possibility to have
multiple underlying objects at one time in an instance from
an XCORE meta-model. Generating a caching mechanism for
properties and groups is also considered for performance pur-
poses. Finally, evaluating the generalisation power of XCORE
with respect to different types of analyses is another TODO.

REFERENCES

[1] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and R. Wettel,
“iPlasma: An integrated platform for quality assessment of object-oriented
design,” in Proceedings of the 21st IEEE International Conference on
Software Maintenance - Industrial and Tool volume, ICSM 2005, 25-30
September 2005, Budapest, Hungary, 2005, pp. 77–80.

[2] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random testing
for Java,” in Companion to the 22Nd ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications Companion, ser.
OOPSLA ’07. New York, NY, USA: ACM, 2007, pp. 815–816.

[3] “Wala - T. J. Watson libraries for analysis,” http://wala.sourceforge.net/
wiki/index.php/Main\ Page, accessed: 2016-03-03.

[4] S. Ducasse, T. Gı̂rba, A. Kuhn, and L. Renggli, “Meta-environment and
executable meta-language using Smalltalk: An experience report,” Journal
of Software and Systems Modeling (SoSyM), vol. 8, no. 1, pp. 5–19, 2009.

[5] G. Ganea, I. Verebi, and R. Marinescu, “Continuous quality assessment
with inCode,” Science of Computer Programming, vol. 134, pp. 19–36,
2017.

[6] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The story of Moose: An agile
reengineering environment,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 5,
pp. 1–10, Sep. 2005.

[7] “FameJava,” https://github.com/girba/FameJava, accessed: 2016-11-20.

466

