
2. MC9S12DJ256 microcontroller ports

2.1 The purpose of the work

 This paper aims to familiarize at one hand, to the concepts of input port, output port and

configuration of general purpose ports within a microcontroller. On the other hand, the specific

methodology presented is used in the development of an embedded application.

At the end of the lab skills to be learned are:

 using the CodeWarrior development environment, the application PcanView and the

methodology presented;

 MC9S12DJ256 microcontroller port configuration depending on a particular application;

 develop and test an application that involves the use of general-purpose ports;

 recognition of component sections and facilities offered by the development board ZK-12-B.

2.2 MC9S12DJ256 microcontroller

 MC9S12DJ256 microcontroller (MCU for short) is a 16-bit microcontroller comprising:

1. One 16-bit HCS12 CPU;

2. 256 KB Flash memory;

3. 12 MB RAM;

4. 4 KB EEPROM;

5. two asynchronous serial communication interface (SCI);

6. three serial peripheral interface (SPI);

7. 8-channel timer;

8. two 8-channel, 10-bit analogue to digital converts (ADC);

9. PWM module (Pulse-Width Modulator) with 8 channels;

10. Byte Data Link Controller module (BDLC);

11. input / output digital channels

12. lines of digital input / output with interrupt and wake-up facilities;

13. 2 modules CAN 2.0 (CAN 0 and CAN 4);

14. Inter-IC bus.

The configuration of the terminals is shown in Figure 15, and Figure 16 shows the block diagram

(Freescale, 2005).

Figure 15 - Terminal configuration to MC9S12DJ256 (Freescale, 2005)

Figure 16 - Block diagram of MC9S12DJ256 (Freescale, 2005)

Pin name

Function. 1

Pin name

Function. 2

Pin name

Function. 3

Pin name

Function. 4

Pin name

Function.

5

Voltage

Internal

resistor

Description

CTRL

 Reset State

EXTAL — — — — VDDPLL NA NA

Oscillator

pins

Oscillator Pins

Oscillator

pins

Oscillator

pins

Oscillator

pins

XTAL — — — — VDDPLL NA NA

RESET — — — — VDDR None None Extern Reset

TEST — — — — N.A. NA NA Test Input

VREGEN — — — — VDDX NA NA Voltage Regulator

XFC — — — — VDDPLL NA NA PLL Filter

BKGD

TAGHI

MODC

—

—

VDDR

Up

Up

Debug

PAD[15]

AN1[7]

ETRIG1

—

—

VDDA

None

 None

 ADC pins

PAD[14:8]

AN1[6:0]

—

—

—

VDDA

None

 None

ADC pins

PAD[7]

AN0[7]

ETRIG0

—

—

VDDA

None

 None
ADC pins

PAD[6:0]

AN0[6:0]

—

—

—

VDDA

None

 None

 ADC pins

PA[7:0]

ADDR[15:8]/

DATA[15:8]

—

—

—

VDDR

PUCR

 Deactivated

Port A, Bus A/D
multiplexed

PB[7:0]

ADDR[7:0]/

DATA[7:0]

—

—

—

VDDR

PUCR

 Deactivated

Port A, Bus. A/D
multiplexed

 PE7 NOACC XCLKS — — VDDR PUCR Up Port E, Access,

Clock Select

 PE6

IPIPE1

MODB

—

—

VDDR

Down, if

RESET is

driven

Port E, Pipe
Status, Mode

Input

 PE5

IPIPE0

MODA

—

—

VDDR

Down, if

RESET is

driven

Port E, Pipe
Status, Mode

Input

 PE4 ECLK — — — VDDR PUCR Up Port E, Bus Clock

Output

 PE3 LSTRB TAGLO — — VDDR PUCR Up Port E, Byte
Strobe, Tag Low

 PE2 R/W — — — VDDR PUCR Up Port E, R/W in

expanded modes

 PE1 IRQ — — — VDDR

 Up
Port E Input,

Interrupt may be
masked

 PE0 XIRQ — — — VDDR Port E Input,

Interrupt may be
masked

PH7

KWH7

SS2

—

—

VDDR

PERH

PPSH

Deactivated

Port H,

Interrupt /SS

from SPI2

PH6

KWH6

SCK2

—

—

VDDR

PERH

PPSH

Deactivated

Port H,

Interrupt SCK

from SPI2

Table 1 - Functionalities of terminals (those shown in bold are not available in 80-pin version)

Pin Name

Function. 1

Pin Name

Function. 2

Pin Name

Function. 3

Pin Name

Function. 4

Pin Name

Function. 5

Voltage

Intern

Resistor

Description

 PH5

KWH5

MOSI2

—

—

VDDR

PERHPPS

H

 Deactivated

Port H,

Interrupt,

MOSI SPI2

 PH4

KWH4

MISO2

—

—

VDDR

PERHPPS

H

 Deactivated

Port H,

Interrupt,

MISO SPI2

 PH3

KWH3

SS1

—

—

VDDR
PERHPPS

H

 Deactivated

Port H,

Interrupt, SS

la SPI1

 PH2

KWH2

SCK1

—

—

VDDR
PERH

PPSH

 Deactivated

Port H,

Interrupt,

SCK la SPI1

 PH1

KWH1

MOSI1

—

—

VDDR

PERHPPS

H

 Deactivated

Port H,

Interrupt,

MOSI SPI1

PH0

KWH0

MISO1

—

—

VDDR
PERHPPS

H

 Deactivated

Port H,

Interrupt,

MISO SPI1

 PJ7

KWJ7

TXCAN4

SCL

TXCAN0

VDDX

PERJPPSJ
Up

Port J, Interrupt,

TX at CAN4,

SCL at IIC, TX

at CAN0

 PJ6

KWJ6

RXCAN4

SDA

RXCAN0

VDDX
PERJPPSJ

Up

Port J, Interrupt,

RX at CAN4,

SDA at IIC, RX

at CAN0

 PJ[1:0]

KWJ[1:0]

—

—

—

VDDX
PERJPSJ

Up
Port J,

Interrupt

 PK7

 ECS

ROMONE

—

—

VDDX

PUCR

Up

Port K, Emulation

Chip Select, ROM

On Enable

 PK[5:0]

XADDR

[19:14]

—

—

—

VDDX

PUCR

Up

Port K,

Extended

Addresses

PM7

TXCAN3

TXCAN4

—

—

VDDX

PERMPPS

M

 Deactivated

Port M, TX

at CAN3, TX

at CAN4

PM6

RXCAN3

RXCAN4

—

—

VDDX

PERMPPS

M

 Deactivated

Port M, RX at

CAN3, RX at

CAN4

PM5

TXCAN2

TXCAN0

TXCAN4

SCK0

VDDX

PERMPPSM Deactivated Port M, TX at

CAN2, CAN0,

CAN4, SCK at

SPI0

PM4

RXCAN2

RXCAN0

RXCAN4

MOSI0

VDDX

PERMPPSM
 Deactivated

Port M, RX at

CAN2, CAN0,

CAN4, MOSI at

SPI0

PM3

TXCAN1

TXCAN0

—

 SS0

VDDX

PERMPPSM
 Deactivated

Port M, TX at

CAN1, CAN0,

SS at SPI0

PM2

RXCAN1

RXCAN0

—

MISO0

VDDX

PERMPPSM
Deactivated

Port M, RX at

CAN1, CAN0,

MISO at SPI0

PM1

TXCAN0

TXB

—

—

VDDX

PERMPPSM
Deactivated

Port M, TX at

CAN0, TX at

BDLC

PM0

RXCAN0

RXB

—

—

VDDX

PERMPPSM
Deactivated

Port M, RX at

CAN0, RX at

BDLC

 PP7

KWP7

PWM7

SCK2

—

VDDX

PERPPPSP
Deactivated

Port P, Interrupt,
Channel 7 at

PWM SCK at

SPI2

Table 2 - Functionalities of terminals (those shown in bold are not available in 80-pin version)

Pin Name

Function. 1

 Pin Name

Function. 1

Pin Name

Function. 1

Pin Name

Function. 1

Pin Name

Function. 1

 Voltage

 Intern

Resistor

Description

CTRL

 Reset State

 PP6

KWP6

PWM6

SS2

—

VDDX

PERP

PPSP

 Deactivated

Port P, Interrupt, Channel

6 at PWM, SS at SPI2

 PP5

KWP5

PWM5

MOSI2

—

VDDX

PERP

PPSP

 Deactivated

Port P, Interrupt, Channel 5 at

PWM, MOSI at SPI2

 PP4

KWP4

PWM4

MISO2

—

VDDX

PERP

PPSP

Deactivated

Port P, Interrupt, Channel 4 at

PWM, MISO2 at SPI2

 PP3

KWP3

PWM3

SS1

—

VDDX

PERP

PPSP

Deactivated

Port P, Interrupt, Channel 3 at

PWM, SS at SPI1

 PP2

KWP2

PWM2

SCK1

—

VDDX

PERP

PPSP

Deactivated

Port P, Interrupt, Channel 2 at

PWM, SCK at SPI1

 PP1

KWP1

PWM1

MOSI1

—

VDDX

PERP

PPSP

Deactivated

Port P, Interrupt, Channel 1 at

PWM, MOSI at SPI1

 PP0

KWP0

PWM0

MISO1

—

VDDX

PERP

PPSP

Deactivated

Port P, Interrupt, Channel 0 at

PWM, MISO2 at SPI1

 PS7

 SS0

—

—

—

VDDX

PERS

PPSS

Up

Port S, SS at SPI0

 PS6

SCK0

—

—

—

VDDX

PERS

PPSS

Up

Port S, SCK at SPI0

 PS5

MOSI0

—

—

—

VDDX

PERS

PPSS

Up

Port S, MOSI at SPI0

 PS4

MISO0

—

—

—

VDDX

PERS

PPSS

Up

Port S, MISO at SPI0

 PS3

TXD1

—

—

—

VDDX

PERS

PPSS

Up

Port S, TXD at SCI1

 PS2

RXD1

—

—

—

VDDX

PERS

PPSS

Up

Port S, RXD at SCI1

 PS1

TXD0

—

—

—

VDDX

PERS

PPSS

Up

Port S, TXD at SCI0

 PS0

RXD0

—

—

—

VDDX

PERS

PPSS

Up

Port S, RXD at SCI0

 PT[7:0]

IOC[7:0]

—

—

—

VDDX

PERT

PPST

Deactivated

Port T, Timer

Table 3 - Functionalities of terminals (those shown in bold are not available in 80-pin version)

Most of terminals have one or more functions, shown in Table 1, Table 2 and Table 3.

2.3. Presentation of MC9S12DJ256 microcontroller ports

 Family of microcontrollers HCS12 with 120 pins has ports A, B, E, K, T, S, M, P, H, J (Figure 17). As can

be seen in Table 1, Table 2 and Table 3, in the variant with 80 pins some of the terminals pin are not reflected.

Thus, in this variant the ports will not include H, J [1: 0], K, M, [6: 7], P [6], S [4: 7].

The designer has available the facility to configure an input / output (I/O) port as input or output by

programming the direction register (DDRx) associated. When programmed as output, the user writes data to the

port. If the port is programmed as input, designer reads data from the port. Most of these ports have several other

registers that can control their operations. Terminals of the ports also perform other functions in addition to the

characteristic of ports as input / output, as can be traced in Table 1, Table 2 and Table 3.

 Figure 17 – Ports of HCS12 (Freescale, 2002)

Port A

Terminals PA[7: 0] are general input / output terminals. Can be used for multiplexed address and data buses.

Port B

Terminals PB[7: 0] are general input / output terminals. Can be used for multiplexed address and data buses.

Port E

Terminals PE[7: 2] are general input / output terminals, but also have associated other functions.

PE1 and PE0 are general input terminals, but can be used as terminals for unmasked interrupt request for

asynchronous interrupts. When the port's terminals do not meet these interruptions related functions, they can be

used as general input / output terminals. In this sense, for setting port's direction and for access we are provided

with DDRE and PORTE registers.

Port J

This port is associated with CAN4 and IIC modules. The terminals can be used either for I / O operations or with

CAN and IIC subsystems. By default PJ6 and PJ7 are shared between CAN4 and IIC. If CAN4 is enabled,

terminals are terminals for CAN transmitting and receiving. If the IIC is enabled, CAN4 disabled, the terminals

are open collector IIC terminals.

Port M

This port is associated with the two CAN modules and BLDC (J1850). The terminals can be used either for I / O

operations, or with subsystems CAN and BLDC. By default PM0 and PM1 are shared between CAN0 and

BLDC. If CAN0 is enabled, terminals are terminals for CAN transmitting and receiving. If BLDC is

enabled,CAN0 disabled, terminals are BLDC transmitting and receiving terminals.

Port P

This port is associated with PWM and SPI modules. The terminals can be used either for I / O operations, or

with PWM and SPI subsystems. The terminals are shared between PWM channels and SPI1 and SPI2 modules.

If the PWM is enabled, terminals become PWM output channels, except pin 7 which can be input or output. If

SPI1 or SPI2 are enabled and PWM disabled, terminals configuration is determined by the status bits in the SPI

modules. Has several registers that are described in detail in the datasheet, among which PTP (register to

initialize port P), DDRP (port direction register setup).

Port S

This port is associated with SCI and SPI modules. The terminals can be used either for I / O operations, or with

SCI and SPI subsystems.

Port T

This port is associated with Enhanced Capture Timer module. Terminals PT [7: 0] can be used either for input-

output operations (I / O) or SCI and SPI subsystems.

Each port is associated with different registers described in detail in the
S12DP256PIMV2-portguide.pdf. Worksheet must be completed.

Refer to pages 61 and 62 of 9S12DP256BDGV2-userguide.pdf in the

References commented section . Worksheet to be completed.

2.4. The methodology implemented in conducting the work

The system used in this laboratory work consists of ZK-S12-B board, which on one hand, connects to the PC via

USB port. On the other hand, the board will communicate with PC unit via CAN bus, using adapter USBtoCAN

from Systec Electronic, that is USB-CANmodul. This adapter has an associated program called PcanView

(USBCAN) through which you can send and accept various messages in hexadecimal format to / from the S12

microcontroller from ZK-S12-B board (Figure 18).

 Figure 18 – System Architecture

Figure 19 – The methodology used

The microcontroller will be equipped with a program developed in such a way as to accept certain requests on

the CAN bus, then make certain requirements of these requests, and finally send the results via CAN bus in the

form of responses or board changes (activation of LEDs etc.). The format of these messages will be discussed in

the Development of the work section .

In other words, the microcontroller is equipped with a code that can receive commands (or requests) from the

PcanView via CAN bus. When such a request is received, a specific requirement should run, namely the

requirement of programming to be implemented in the laboratory (eg, programming ports). Further, the

microcontroller will send the results of running these requirements. According to the results received, we can test

whether the programming was done correctly or not (Figure 19). The response can be observed depending on the

requirement to implement: as PcanView message, as a result of board, usually in OUTPUTS section etc.

The development of a system Application of the process in the laboratory

Specifications Theme of the lab (programming ports, control of

ADC, PWM signal generation, etc.)

Development Using laboratory paper, data sheet, commented

references and recommendations made, make the

given theme

Testing Testing results throught industrial way

(request/response) of embedded systems

development

Providing customer (Delivery) Providing worksheets with the results obtained

 Table 4 - Implementation of industrial process of developing a system in the laboratory work

This way of working is specific to industrial development of embedded systems. It can further be

understood as an analogy with classic development of a system, as can be seen in Table 4, based on

some specification, following development, testing what was developed, and finally, supply the system

to customer.

2.5. PcanView application (USBCAN)

Start from 'quick start menu' or Start> All Programs> USB-CAN Module Utilities> Tools>

PcanView and configure as shown in Figure 20 and Figure 21.

Figure 20 - Setup "settings" Window in the USB-CANmodul

Figure 21 - Setting window "Connect to net" under USB-CANmodul

Introducing a new message is done by pressing the button called New Message.

 2.6. Charging code to ZK-S12-B board

 ZK-S12-B board is associated with CodeWarrior development environment, which brings together an

editor, assembler, compiler, and debugger for C language and interface Freescale BDM (Background Debug

Mode), which allows the download and debug procedure of the application loaded in the Flash memory of the

microcontroller.

Attention! It will only be send messages with 'extended ID' in the PcanView!

 Accessing CodeWarrior environment shall be: Start> All Programs> Softec Microsystems> SK and

ZK-S12 (X) Series> CodeWarrior Development Studio

 To create a new application using the CodeWarrior environment follow the steps:

1. From the main menu, select "File> New".

2. A dialog window appears. Select "HC(S)12 New Project Wizard".

3. Enter the project name and set the desired location (eg working directory on drive E:\Labs\S \)

4. Follow the steps provided by the Project Wizard, at microcontroller choice enter

MC9S12DJ25B.

 To launch an existing project to make further modifications follow the following steps:

1. Ensure that the board is connected first (you can check this by lighting the green LED), then

connected via USB to the workstation.

2. All the connectors are in position recommended (possibly original).

3. From the main menu, select "File> Open". Select the file ending .mcp from the desired

location. A window will appear as that shown in Figure 22.

4. C code is in file main.c. By double-clicking, you can access any file in the project.

 Figure 22 – CodeWarrior Window

 Figure 23 – Debug Window

5. From the main menu, choose "Project> Debug". This will compile the source code, will generate an

executable and download it to the board.

6. A debug environment opens that will be as shown in Figure 22.

7. From the main menu, choose "Run> Start / Continue". The program will run in real-time.

8. From the main menu, choose "Run> Halt". Program execution will stop. The next instruction to be executed

will be highlighted in the Source window.

9. From the main menu, choose "Run> Single Step". Instruction highlighted in Source window will be

executed, program execution will be stopped immediately thereafter.

10. From the main menu, choose "Run> Start / Continue". The application will continue to run from where it

was stopped.

2.7. Carrying out the work

1. Define the work requirements

a. Configure the ports A and P as input ports, which involves reading values from these ports. In

port P case, read the values of PP0-PP3 buttons from INPUTS section of the development board.

Correct programming of port P must be tested in PcanView by the change of the value from 1 to

0.

b. Configure port B as output port, which involves writing some value to this port. Ensure the

correct programming of the port by following PB0 - PB7 LEDs from OUTPUTS section of the

development board.

2. Open the CodeWarrior project related the work two, namely the file with .mcp ending. The code for this

work is presented in the following (main.c).

//

//

// Sample for SofTec Microsystems ZK-S12-B Starter Kit

//

// --- ------

//

// This project has been written for CodeWarrior 3.1 for HC(S)12

// and uses Registers Files (MC9S12DJ256.h and MC9S12DJ256.c) v. 1.052

//

// ---

//

// Copyright (c) 2005 SofTec Microsystems

// http://www.softecmicro.com/

//

//

#include <hidef.h>

#include "mc9s12dj256.h"

#include "mscan.h"

#pragma LINK_INFO DERIVATIVE "mc9s12dj256b"

//

// Defines and variables

//

unsigned char potentiometer_value;

Bool can_send_enable;

//

// Variables

//

extern unsigned char *can_periph[];

//

// Peripheral Initialization

//

#pragma CODE_SEG DEFAULT

void PeriphInit(void)

{

 //Configuration of PB[7..0] as output port

 //DDRB = ;

 //PORTB = ;

 // Configuration of PA[7..0] as input port

 //DDRA =;

 //Configuration of PP[7..0] as input port and activation of internal resistance

 //PTP = ;

 //DDRP = ;

 //PERP = ;

 //PPSP = ;

 CANInit(0);

 EnableInterrupts;

}

//

// Entry point

//

void main(void)

{ unsigned char i=0;

 struct can_msg msg_send;

 struct can_msg *msg;

 PeriphInit();

 msg=msg_rdy=&msg_buff[0];

 asm("cli");

 for(;;)

 {

 if (msg!=msg_rdy){

 // message received on CAN BUS

 msg_send.id = (unsigned int)0x000F00|msg->id;

 if(msg->id==CAN_MSG_ID_CMD){

 // decoding command message

 switch(msg->data[0]){

 case 0:{ // COMMAND 00: software version

 memcpy(msg_send.data,"SI-SW1.0",8);

 msg_send.len = 8;

 break;

 }

 case 1:{ // COMMAND 01: digital read (read from corresponding port)

 char *p;

 // message length is less than 3-digit hexadecimal

 if(msg->len<3){

 memcpy(msg_send.data,"bad-len",7); // sending an error message

 msg_send.len = 7;

 }

 // the readings have to do with A or P ports

 else if(msg->data[1]!='A'&&msg->data[1]!='P'){

 memcpy(msg_send.data,"bad-port",8); // sending an error message

 msg_send.len = 8;

 }

 // maximum 8 pins can be read

 else if(msg->data[2]>7){

 memcpy(msg_send.data,"bad-pin",7); //sending an error message

 msg_send.len = 7;

 }

 else{unsigned char i=1;

 p=msg->data[1]!='A'?&PTP:&PORTA;

 i<<=msg->data[2];

 msg_send.data[0]=(*p&i)>>msg->data[2];

 msg_send.len = 1;

 }

 break;

 }

 case 2:{ // COMMAND 02: digital write (writing to the corresponding port)

 // message length is less than 4-digit hexadecimal

 if(msg->len<4){

 memcpy(msg_send.data,"bad-len",7); // sending an error message

 msg_send.len = 7;

 }

 // writing, it's about port B

 else if(msg->data[1]!='B'){

 memcpy(msg_send.data,"bad-port",8); // sending an error message

 msg_send.len = 8;

 }

 // maximum 8 pins

 else if(msg->data[2]>7){

 memcpy(msg_send.data,"bad-pin",7); // sending an error message

 msg_send.len = 7;

 }

 else{unsigned char i=1;

 i<<=msg->data[2];

 PORTB =msg->data[3]?PORTB|i:PORTB&(~i);

 // memcpy(msg_send.data,"out:",4);

 msg_send.data[0]=PORTB;

 msg_send.len = 1;

 }

 break;

 }

 default: {// sending error message

 memcpy(msg_send.data,"bad_cmd",7);

 msg_send.len = 7;

 }

 }

 }

 else{// sending error message

 memcpy(msg_send.data,"bad_msg",7);

 msg_send.len = 7;

 }

 // prepare for next message

 SendCANMessage(msg->dev, msg_send);

 msg=msg_rdy;

 }

 }

}

///

#pragma CODE_SEG __NEAR_SEG NON_BANKED

interrupt void CAN0RcvISR(void){

 ReceiveCANMessage(0);

}

#pragma CODE_SEG DEFAULT

 ///

#pragma CODE_SEG __NEAR_SEG NON_BANKED

interrupt void CAN4RcvISR(void){

 ReceiveCANMessage(1);

}

#pragma CODE_SEG DEFAULT

3. Configure ports A and P as digital inputs and port B as digital output by removing comments from

main.c file (see code above), PeriphInit function () and completing the corresponding values of each

register (PORTB, DDRB, DDRA, DDRP, PERP, PPSP). After setting pins, send the program on the

development board and run it. For programming registers use the descriptions from data sheet:

S12MEBIV3-mux-extbus.pdf and S12DP256PIMV2-portguide.pdf.

4. Commands used in PcanView are (follow the code and presented comments above):

a. Command 00: involve returning as the message the software version used

b. Command 01: command for reading a channel configured as digital input. Has the structure:

i. Byte 0: command [01]

ii. Byte 1: port [41 (port A), 50 (port P)]

iii.Byte 2: pin value

Example:

01 41 01 introduced in PcanView as test message, if the programming was done correctly, should return also in

PcanView, as a response to the test message, 0 or 1 depending on the value of the terminal (development phase

test!)

c. Command 02: control for change the value in a channel configured as digital output. Has the

structure:

i. Byte 0: command [02]

ii. Byte 1: port [42 (ie B)]

iii. Byte 2: terminal

iv. Byte 3: value of the terminal

Example:

02 42 06 01 inserted into PcanView as test message, if the programming was done correctly, should activate the

LED 06, as value one was sent it (development phase test!).

5. Manually send these commands from application PcanView:

 5.a ID: 00000h MSG: 00h

 5.b ID: 00001h MSG: 00h

 5.c ID: 00001h MSG: 03h

 5.d ID: 00001h MSG: 01h

 5.e ID: 00001h MSG: 01h 41h 11h

 5.f ID: 00001h MSG: 01h 42h 01h

 5.g ID: 00001h MSG: 01h 41h 01h

 5.h ID: 00001h MSG: 01h 50h 01h

6. Send with a recurrence of 500ms the following commands from PcanView application, identifying the

value returned if pressing the 4 buttons from INPUTS section of the development board:

6.a ID: 00001h MSG: 01h 50h 01h

6.b ID: 00001h MSG: 01h 50h 02h

6.c ID: 00001h MSG: 01h 50h 06h

6.d ID: 00001h MSG: 01h 50h 07h

7. Send the following commands manually from the Pcan View application and follow the configuration on

LEDs:

 7.a ID: 00001h MSG: 02h

 7.b ID: 00001h MSG: 02h 41h 01h 00h

 7.c ID: 00001h MSG: 02h 42h 01h 01h

 7.d ID: 00001h MSG: 02h 42h 02h 01h

 7.e ID: 00001h MSG: 02h 42h 07h 01h

 7.f ID: 00001h MSG: 02h 42h 06h 01h

 7.g ID: 00001h MSG: 02h 42h 02h 00h

2.8. Abstract of the work

 Direction of different HCS12 microcontroller ports can be set by the related DDRx registers.

 Setting values for all registers shall be done as required, based on the data sheet.

 Code is developed using CodeWarrior IDE.

 Testing an implemented portion of the code is based on message system.

 Messages are entered in hexadecimal in PcanView application. Depending on the requirement, the result

of running the code can be seen throughout in PcanView, as a response message in hexadecimal, in

OUTPUTS section of the board or at terminals.

2.9. References commented

1. Datasheet for family HCS12: 9S12DP256BDGV2-userguide.pdf (Freescale, 2005) presents the various

functions that the microcontroller terminals may have.

2. Datasheet of microcontroller related ports: S12DP256PIMV2-portguide.pdf (Freescale, Port Integration

Module, 2002) presents a description of the various port registers.

3. Datasheet related to external bus multiplexing: S12MEBIV3-mux-extbus.pdf (Freescale Multiplexed

External Bus Interface, 2003) presents a description of the various port registers.

4. Deepening HCS12 microcontroller ports may be done by referring to Sections 4.10, 7.5, 7.6, 7.9 in

(Huang, 2010).

5. Compulsory consultation (Popa, 2011).

2.10. Worksheet

Enter you name:………………………………………………………………………

Semigroup:………………………..

Section 2.7.5. Contents of registerd

PORTB: DDRB: DDRA:

DDRP: PERP: PPSP:

Section 2.7.6. Messages received in PcanView application

 5.a ID: MSG:

 5.b ID: MSG:

 5.c ID: MSG:

 5.d ID: MSG:

 5.e ID: MSG:

 5.f ID: MSG:

 5.g ID: MSG:

 5.h ID: MSG:

6.a ID: MSG:

6.b ID: MSG:

6.c ID: MSG:

6.d ID: MSG:

Section 2.7.7. LEDs configuration

7.a

7.b

7.c

7.d

7.e

7.f

7.g

After consulting the documentation, write to the port E other functions (see first box in section 2.3).

__

__

__

__

After consulting the documentation, write which are the common functions found at different ports, carried out

different registries. What registers are specific to certain ports? What are these? (see the second box in section

2.3).

__

__

__

__

__

__

__

Observations

