2. MC9S12DJ256 microcontroller ports

2.1 The purpose of the work

This paper aims to familiarize at one hand, to the concepts of input port, output port and
configuration of general purpose ports within a microcontroller. On the other hand, the specific
methodology presented is wused in the development of an embedded application.
At the end of the lab skills to be learned are:
using the CodeWarrior development environment, the application PcanView and the

methodology presented;

MC9S12DJ256 microcontroller port configuration depending on a particular application;

develop and test an application that involves the use of general-purpose ports;

recognition of component sections and facilities offered by the development board ZK-12-B.

2.2 MC9S12DJ256 microcontroller

MC9S12DJ256 microcontroller (MCU for short) is a 16-bit microcontroller comprising:
. One 16-bit HCS12 CPU;

. 256 KB Flash memory;

.12 MB RAM;

.4 KB EEPROM,;

. two asynchronous serial communication interface (SCI);

. three serial peripheral interface (SPI);

. 8-channel timer;

. two 8-channel, 10-bit analogue to digital converts (ADC);
. PWM module (Pulse-Width Modulator) with 8 channels;
10. Byte Data Link Controller module (BDLC);

11. input / output digital channels

© 00 N o o B~ W DN B

12. lines of digital input / output with interrupt and wake-up facilities;

13. 2 modules CAN 2.0 (CAN 0 and CAN 4);

14. Inter-1C bus.

The configuration of the terminals is shown in Figure 15, and Figure 16 shows the block diagram
(Freescale, 2005).

(=1
% g
|
o {783
gEg @ Edg
=58 ZEI9L
[=3 ﬂ g = = g g
§ mugng
LRk Egﬁg?gié .
EEXEx<CECCEESROERER
ifEBdzzzzseacingeele
aoooaooooononnonnnnnn
fEEERERHERER = T
TETFWMIKWPAFPE 1 B 2BosE38es 8= vRH
seKIPWMIKWPIEP 92 O B/ WIDA
MOSHPWMIKWPIPPT .3 1 FADDTIANDTIETRIGD
MISDTVPNMIKWPIPPD 4 BT PADDE/ANDE
QCOPTD [BA] PADIOSIANDS
QC1PTY 8 B PATIDS/ANDE
QCHPT2 7 541 PADDYIANDY
QCIPTI 8 1 PATOZIAND?
WoDt e B PADDY/ANDY
vss1 1o MCIS 1200755 517 FADO0ANDD
OCARTE 10 30 QFP B/ WERD
QCEPTE 12 48/ vooz
OCEPTE 913 48 FATIADCRISMDATATS
QCTRTY 14 1 FAGIADORI4MTATA
MODCITAGHTBKGD 15 47 PASIADDR1ADATATI
ADDRIDATAD®PBD 18 497 PA4IADDR12DATAZ
ADDRUDATAIPBY 17 447 FASADDR 1 1/DATATT
ADDR2DATAZPE2 [18 417 PAZADDR1DDATAD
ADDRADATAIPB 18 417 PANADDRADATAR
ADDR4DATA4FRS 20 41 FADADCRAMDATAR
EHOINERERRFHRINERERY
goooouriougorooooaou
P P 0D WD W E|— o =l = P
EEREEEIgEpocyeEpilEd
EEE%EEé #E 20 9§EE
Zea@aaa ERE
Wl = u‘:lj g E
Eéé 3 E

Figure 15 - Terminal configuration to MC9S12DJ256 (Freescale, 2005)

y E VRH VRH je—vRH
| 256K Byte Flash EEPROM | ATDOD el ATDY veL |le—weL
VDDA WODA |e—wDD
| 12K Byte RAM | WESA VESA fe—WSSA
AMD | <— FADIO0 AND | Jw—PaDos
| 4K Byte EEPROM | AN |~—PFaDo1 AN f-—] l=—PAD02
AM2 |=—pamoz ANz =] |=—PaD10
VDDA —m- AM3I S |=—Paooz ANZ =] o lm—PAD11
WS SR —=] AM4 < |=—Facos £n4g =] < |=—PaD1z
WREGEM—#= Woltage Regulator AMNES |=—PADOS ANE -] l=—pPaD12
WDD,2 = AMNB |-=— FADOE AME f-—] l=—FAD14
W551.2 -] AMNT l=—PaD0O7 ANT =] l=—PaD15
~ Single-wire Background PO [<= FK0 |, XADDR14,
BrGD = Debug Meduls cPU1Z PPAGE eIl | <= PK1 ' XADDR15!
. ’ Pix2 |==lx | . |==PKz XADDR1S,
VOOPLL] Clock and Pixa == |F == P31 xADDR1T:
mem plL Resst T mrm—— Pix4 == == PK4 | XADDR1E,
JE;?::‘_ Generation EC"; J; :'c: e PIxS e == PK5 | XADDR12.
(T AL —= Module C atchdog == | T .
HTAL] Clock Manitar ECS == == PK7 | ECS __ _
RESET == Breakpoints IDC0 = - P T0
PED wED IDCT = i F'_]
IT=Te IDC2 = jt-= pT2
— =1 TRC = = —
] les] R System Enhanced Capture 1003] o E lt= P73
L TETSE Integration Timer 1ocs [2 e pra
e W |-] [STRE Modul -
=15 - oCLie D5 == PT5
i [N =] ECLK 5 _
O . {SIM) 100G | le= P78
MoDA 10CT | =TT
-] |1 MOOS
-] je] NOACC/HTLRS SCI0 RO] |- =30
I THD =i - 251
TEST sCI RXD |- o [t 250
I EEEEEEEERERER RN no [~2 [f= - N
- =0 = P54
Multiplexed Address/Data Bus oS! [a) £
SPIn = <> PSS =
I EEEEEEE IR EEEEE R - Fse =
DDRA DDRE — PN A A] FsT s
BDLC FoE =] E
PTA PTB (J1860) TxE b—a=| o — e =110 =
RACAN |=—o~, £ a s P11 =
FEIRARE Y SRR AAEYY [canoTEN 8 3
EERIPYZF HEBIEEERS z ® = o 2
oo oo [T T CA‘NAIRXH-A'\"'_]] = | = fe=FPM2 (=]
wEaN-e R - - " THCAN |—= o -H-E E le=rma j;
EERZEEEE EERIEREE [cpproan|+| g [+ [+ FMe 5
cooooooo oocoooaan _ THCAN —=1 7 -t = FME s
<L € af <L <L < <[<[of, off <f of <f <f <f <L RACAN fe— = . lt= P T %
P e EmaTs o o T L A nean b B 3
yMulliplexed & S s s xsaagax S oo daaxa FACAN <
Wide Bus EEEEEEEZ CANg 07 =
: SEEE5555 EEE5EEES! XCAN 5
g Mm e e o= - =
') - - | FWJD e == Fu0 -
+ Multiplesxed & faddddas ! ka1 fe=lcd | 2 fem Pt £
(NamowBusE S ZZ 3535 | Rl e = e
bom - - - - - m - —— - - 4 FWWJT fa] e 207
Internal Logic 2.5V /0 Driver 5V —— — -
[-t s o | | -
'f’gg:'f. ";_EEﬁ - PwM1 |tb—a] WP [== P
e 1 == 1 PWMZ |mp—a=] KWPZ =] | mP2
Pyt PWME] kwPs el e | O fee PR3
o , AfD Converter 3V & Pwnad et —=] kwpr4 e 2 o |e=rFRs
LL 2.5 Woltage Regulator Reference onas el Ll iowves les] = s FF5
VDDPLL - VDDA —s= PWME | wPs e == PPE
WESPLL __L WESA __L PWMT | =] FIWPT | | PPT
= = () FONWHD J=] <= PHO
—) MOSH |- KWWH] e PH1
WVoltage Regulator 5V & /O SPN \
- i e it oo P Y g
VESR 5 i E i S |-
=
== MISC] [[E o | PH4
sPI2 Mos) |Gl s e o= PHS
scK gl KwHE - > P HE
55 || VT || e PHT

Figure 16 - Block diagram of MC9S12DJ256 (Freescale, 2005)

Internal

Pin name | Pin name Pinname |Pinname |Pinname | Voltage resistor Description
Function. 1| Function. 2 | Function. 3 | Function. 4| Function.
CTRL
5 Reset State
EXTAL — — — — VDDPLL | NA NA
Oscillator Pins
XTAL — — — — VDDPLL | NA NA
RESET — — — — VDDR None | None Extern Reset
TEST — — — — N.A. NA NA Test Input
VREGEN — — — — VDDX | NA NA \oltage Regulator
XFC — — — — VDDPLL | NA NA PLL Filter
BKGD TAGHI MODC — — VDDR Up Up Debug
ADC pins
PADI[15] AN1[7] ETRIG1 — — VDDA | None | None
PAD[14:8] | AN1[6:0] — — — VDDA None | None
ADC pins
MD[7] | ANO[7] | ETRIGO — — | vDDA | None | None ADC prs
ADCpirs
PAD[6:0] | ANO[6:0] — . — | VDDA | None | None o
. ADDR[15:8]/ . Port A, Bus A/D
PA[7:0] DATA[15:8] — — — VDDR PUCR | Deactivated multiplexed
. ADDR[7:0}/] Port A, Bus. A/D
PB[7:0] DATA[7:0] — — — VDDR PUCR | Deactivated | mjtiplexed
PE7 NOACC XCLKS — — VDDR PUCR| Up Port E, Access,
Clock Select
Down, if
PE6 IPIPE1 MODB — — VDDR RESET is Port E, Pipe
driven Status, Mode
Input
Down, if Port E, Pipe
PE5 IPIPEO MODA — — VDDR RESET is Status, Mode
driven Input
PE4 ECLK — — — VDDR PUCR| Up Port E, Bus Clock
Output
PE3 LSTRB TAGLO — — VDDR PUCR Up Port E, Byte
Strobe, Tag Low
PE2 RIW — — — VDDR PUCR| Up Port E, R/W in
expanded modes
PE1 IRQ — — — VDDR Port E Input,
Up Interrupt may be
masked
PEO XIRQ — — — VDDR Port E Input,
Interrupt may be
masked
PERH
PH7 KWH7 SS2 — — VDDR Deactivated| Port H,
PPSH
Interrupt /SS

from SPI2

PH6

KWHG6

SCK2

VDDR

PERH
PPSH

Deactivated

Port H,

Interrupt SCK
from SPI12

Table 1 - Functionalities of terminals (those shown in bold are not available in 80-pin version)

Pin Name Pin Name Pin Name | PinName | Pin Name | Voltage Intgrn Description
Function. 1 Function. 2| Function. 3| Function. 4 Function. 5 Resistor
PERHPPS PortH,
PH5 KWH5 MOSI2 — — VDDR | |, Deactivated | |nterrupt,
MOSI SPI2
PERHPPS . PortH,
PH4 KWH4 MISO2 — — VDDR H Deactivated | |nterrupt,
MISO SPI2
PERHPPS . Port H,
PH3 KWH3 SS1 — — VDDR H Deactivated |nterrupty SS
la SPI11
PERH] PortH
PH2 KWH2 SCK1 — — VDDR | ppgyy Deactivated | Interrupt,
SCKla SPI1
PERHPPS . PortH,
PH1 KWH1 MOSI1 — — VDDR H Deactivated Interrupt,
MOSI SPI1
PERHPPS] PortH,
PHO KWHO0 MISO1 — — VDDR H Deactivated Interrupt,
MISO SPI1
PERJPPSJ Port J, Interrupt,
PJ7 KWJ7 TXCAN4 SCL TXCANO VDDX Up TX at CAN4,
SCLat 1IC, TX
lat CANO
PERJPPSJ Port J, Interrupt,
PJ6 KWJ6 RXCAN4 SDA RXCANO VDDX Up RX at CAN4,
SDAat 11C, RX
lat CANO
PERJPSJ Port J,
PJ[1:0] KWJ[1:0] — — — VDDX Up Interrupt
Port K, Emulation
Chip Select, ROM
PK7 ECS ROMONE — — VDDX | PUCR Up On Enable
XADDR Port K,
PKI5:0] [19:14] — — — VDDX | PUCR Up Extended
|Addresses
PERMPPS . Port M, TX
PM7 TXCAN3 TXCAN4 — — VDDX M Deactivated [t CAN3, TX
at CAN4
PERMPPS Port M, RX at
PM6 RXCAN3 | RXCAN4 — — VDDX Deactivated [CAN3, RX at
M CAN4
PERMPPSM | Deactivated [Port M, TX at
PM5 TXCAN2 TXCANO TXCAN4 SCKO0 VDDX CAN2, CANO,
CAN4, SCK at
SPI0
PERMPPSM _ Port M, RX at
PM4 RXCAN2 RXCANO RXCAN4 MOSIO VDDX Deactivated [CAN2, CANO,
CAN4, MOSI at
SPI0
PERMPPSM . Port M, TX at
PM3 TXCAN1 TXCANO — SSO VDDX Deactivated [CAN1, CANO,
SS at SPI0
PERMPPSM Port M, RX at
PM2 RXCAN1 RXCANO — MISO0 VDDX Deactivated [CAN1, CANO,
MISO at SPI0
PERMPPSM Port M, TX at
PM1 TXCANO TXB — — VDDX Deactivated [CANO, TX at
BDLC

PMO

RXCANO

RXB

VDDX

PERMPPSM

Deactivated

Port M, RX at
CANO, RX at
BDLC

PP7

KWP7

PWM7

SCK2

VDDX

PERPPPSP

Deactivated

Port P, Interrupt,
Channel 7 at
PWM SCK at
SPI2

Table 2 - Functionalities of terminals (those shown in bold are not available in 80-pin version)

Intern
; Description
Pin Name | Pin Name | PinName | PinName | Pin Name | Voltage Resistor P
Function. 1| Function. 1| Function. 1| Function. 1| Function. 1| Reset State
CTRL
PERP Port P, Interrupt, Channel
PP6 KWP6 PWM6 SS2 _ VDDX ppsp | Deactivated 6 at PWM, SS at SPI2
PERP Port P, Interrupt, Channel 5 af]
PP5 KWP5 | PWM5 MOSI2 — VDDX | ppgp |Deactivated [V MOS!#tSH2
PERP Port P, Interrupt, Channel 4 af]
PP4 KWP4 | PWM4 MISO2 — VDDX | ppgp | Deactivated [MISO2et SF12
PERP Port P, Interrupt, Channel 3 af]
PP3 KWP3 PWM3 SS1 — VDDX PPSP Deactivated [FWM. SSatSPI1
PERP Port P, Interrupt, Channel 2 af]
PP2 KWP2 | PWM2 SCK1 — VDDX | ppgp | Deactivated [SCHt P12
PERP Port P, Interrupt, Channel 1 af]
PP1 KWPL | PWM1 MOSI1 — VDDX | ppgp | Deactivated [V MOStatS#It
PERP Port P, Interrupt, Channel O af]
PPO KWPO | PWMO MISO1 — VDDX | ppgp | Deactivated [V MISO2aSPIL
PERS
PS7 SSO — — — VDDX PPSS Up Port S, SS at SP10
PERS
PS6 SCKO — — — VDDX PPSS Up Port S, SCK at SP10
PERS
PS5 MOSIO — — — VDDX PPSS Up Port S, MOSI at SP10
PERS
PS4 MISO0 — — — VDDX PPSS Up Port S, MISO at SPI0
PERS
PS3 TXD1 — — — VDDX PPSS Up Port S, TXD at SCI1
PERS
PS2 RXD1 — — — VDDX PPSS Up Port S, RXD at SCI1
PERS
PS1 TXDO — — — VDDX PPSS Up Port S, TXD at SCIO
PERS
PSO RXDO0 — — — VDDX PPSS Up Port S, RXD at SCIO
PERT
PT[7:0] 10C[7:0] - — — VDDX | ppor | Deactivated [Port T, Timer

Table 3 - Functionalities of terminals (those shown in bold are not available in 80-pin version)
Most of terminals have one or more functions, shown in Table 1, Table 2 and Table 3.

2.3. Presentation of MC9S12DJ256 microcontroller ports

Family of microcontrollers HCS12 with 120 pins has ports A, B, E, K, T, S, M, P, H, J (Figure 17). As can
be seen in Table 1, Table 2 and Table 3, in the variant with 80 pins some of the terminals pin are not reflected.
Thus, in this variant the ports will not include H, J [1: 0], K, M, [6: 7], P [6], S [4: T7].
The designer has available the facility to configure an input / output (I/O) port as input or output by
programming the direction register (DDRX) associated. When programmed as output, the user writes data to the
port. If the port is programmed as input, designer reads data from the port. Most of these ports have several other
registers that can control their operations. Terminals of the ports also perform other functions in addition to the
characteristic of ports as input / output, as can be traced in Table 1, Table 2 and Table 3.

Port Integration Module
e 3 0G0 > PT0
oo 8 I0C1 > PT1
bia 5 2 loc3 + P73
s E oca G |« PTA
PHS 0 F locs o & prs
PHG <. I0C6 > PTG
PH7 5
. I0C7 | P17
Ej? Ik PWAO— WSO o PPO
3 PWMI— MOSIHEH B— PP1
vl - 2 —
3| 15 PSP s] & (3 5t
| B R i | (B Pwme MSOHH S G | P4
PJ6 < 9 {SDA PWMS MOSIHH § & (< PP5
| |9 BsRXCAN PWMeL—] SSHiH 2 — PP6
PIT 4 1 "fBrxcan CANY | pymr—{SP12 se S| & pp7
R¥B —
PMO e BOLC scio¥D e
RXCAN
PM1 rxcan CAND RXD PS2
! 5 SCH 1xp PS3
ohe T 2 [HEE RO CAN Mis0 PS4
P4 = = 'Elgl RXCAN Mos Pt
oM A BIETy Cay CAN2 spip SCK PS6
PME : RXCAN -y = 5 PST
PM7 | [TXCAN
— BRGOMODCITAGH] BKGD
PBO < ADDRO/DATAQ XIRQ PEO
PB1 & ADDR1/DATAT PE1
PB2 = ADDR2/DATA2 RW PE2
PBI» J ADDR3/DATA3 [STRBITAGLY PE3
PB4 <» o ADDRA/DATA4 ECLK PE4
PB5 <> O ADDRS/DATAS IPIPEO/MODA PES5
PBE < ADDRG/DATAG IPIPE1/MODH PEG
PE7 <> | ADDR7/DATAT NOACC/XCLKY PET
CORE
PAD]] ADDRS/DATAS XADDR14 PKO
PAT <8 ADDR9/DATAY XADDRI14 PK1
PA2 ADDR10/DATA10 XADDR1§ PK2
PA3 | D ADDR11/DATA11 XADDRI PK3
PAL <] 3 ADDR12/DATA12 XADRR14 PK4
PAS < T ADDR13/DATA13 XADDRI14 PK5
PAG b ADDR14/DATA14 -
PAT b ADDR15/DATA15 ECS/ROMONE PK7

Figure 17 — Ports of HCS12 (Freescale, 2002)

Port A

Terminals PA[7: 0] are general input / output terminals. Can be used for multiplexed address and data buses.
Port B

Terminals PB[7: O] are general input / output terminals. Can be used for multiplexed address and data buses.
Port E

Terminals PE[7: 2] are general input / output terminals, but also have associated other functions.

Refer to pages 61 and 62 of 9512DP256BDGV2-userguide.pdf in the

Reférences commented section . Worksheet to be completed.

PE1 and PEO are general input terminals, but can be used as terminals for unmasked interrupt request for
asynchronous interrupts. When the port's terminals do not meet these interruptions related functions, they can be
used as general input / output terminals. In this sense, for setting port's direction and for access we are provided
with DDRE and PORTE registers.

Port J

This port is associated with CAN4 and 11C modules. The terminals can be used either for I / O operations or with
CAN and IIC subsystems. By default PJ6 and PJ7 are shared between CAN4 and IIC. If CAN4 is enabled,
terminals are terminals for CAN transmitting and receiving. If the I11C is enabled, CAN4 disabled, the terminals
are open collector I1C terminals.

Port M

This port is associated with the two CAN modules and BLDC (J1850). The terminals can be used either for 1/ O
operations, or with subsystems CAN and BLDC. By default PMO and PML1 are shared between CANO and
BLDC. If CANO is enabled, terminals are terminals for CAN transmitting and receiving. If BLDC is
enabled,CANO disabled, terminals are BLDC transmitting and receiving terminals.

Port P

This port is associated with PWM and SPI modules. The terminals can be used either for | / O operations, or
with PWM and SPI subsystems. The terminals are shared between PWM channels and SPI1 and SPI2 modules.
If the PWM is enabled, terminals become PWM output channels, except pin 7 which can be input or output. If
SPI1 or SPI2 are enabled and PWM disabled, terminals configuration is determined by the status bits in the SPI
modules. Has several registers that are described in detail in the datasheet, among which PTP (register to
initialize port P), DDRP (port direction register setup).

Each port is associated with different registers described in detail in the
S12DP256FIMV2-portguide. pdf. Worksheet must be completed.

Port S

This port is associated with SCI and SPI modules. The terminals can be used either for I / O operations, or with
SCI and SPI subsystems.

Port T

This port is associated with Enhanced Capture Timer module. Terminals PT [7: O] can be used either for input-
output operations (1 / O) or SCI and SPI subsystems.

2.4. The methodology implemented in conducting the work

The system used in this laboratory work consists of ZK-S12-B board, which on one hand, connects to the PC via
USB port. On the other hand, the board will communicate with PC unit via CAN bus, using adapter USBtoCAN
from Systec Electronic, that is USB-CANmodul. This adapter has an associated program called PcanView
(USBCAN) through which you can send and accept various messages in hexadecimal format to / from the S12
microcontroller from ZK-S12-B board (Figure 18).

CAN bus
Personal
Computer
USB-CANmodul ZK-512 board

Figure 18 — System Architecture
(Start)

Receive request from PcanView
via CAN bus

W
Perform a certain task

v

Send back the results obtained
by performing the task

No

The results are
as expected

Figure 19 — The methodology used

The microcontroller will be equipped with a program developed in such a way as to accept certain requests on
the CAN bus, then make certain requirements of these requests, and finally send the results via CAN bus in the
form of responses or board changes (activation of LEDs etc.). The format of these messages will be discussed in
the Development of the work section .
In other words, the microcontroller is equipped with a code that can receive commands (or requests) from the
PcanView via CAN bus. When such a request is received, a specific requirement should run, namely the
requirement of programming to be implemented in the laboratory (eg, programming ports). Further, the
microcontroller will send the results of running these requirements. According to the results received, we can test
whether the programming was done correctly or not (Figure 19). The response can be observed depending on the
requirement to implement: as PcanView message, as a result of board, usually in OUTPUTS section etc.

The development of a system Application of the process in the laboratory

Specifications Theme of the lab (programming ports, control of
ADC, PWM signal generation, etc.)

Development Using laboratory paper, data sheet, commented
references and recommendations made, make the
given theme

Testing Testing results throught industrial — way

(request/response) of embedded systems
development

Providing customer (Delivery) Providing worksheets with the results obtained

Table 4 - Implementation of industrial process of developing a system in the laboratory work

This way of working is specific to industrial development of embedded systems. It can further be
understood as an analogy with classic development of a system, as can be seen in Table 4, based on
some specification, following development, testing what was developed, and finally, supply the system
to customer.

2.5. PcanView application (USBCAN)

Start from 'quick start menu' or Start> All Programs> USB-CAN Module Utilities> Tools>
PcanView and configure as shown in Figure 20 and Figure 21.

USB-CANmodul settings ==

DevieeMr: E D
Baudrate:

listen anly: [
r obsolete devices [GWw-001/GWw-002)
15
. BTRO; (00
Automation
BTR1; [1C
new devices

BTR Ext: | 00050741
S¥S TEC alactronic GmbH
August-Bebal-5tr. 29

D-07971 Gralz two channel devices

Germany .
Tal. +49 3661 6279-0 CAMN Channel 0 @)
www . systec-electronic.com CAM Channel 1 ()

sUpport&@systac-electronic.cam

Figure 20 - Setup "'settings" Window in the USB-CANmodul

[PCAMNView - Connect to net m
2 PCANView

Available nets:

Mame: Hardware: Baud rate:

USBCAN-any CHO SYS TEC USB-CAMmodul | 500 KBitfsec

Message filter
(" Standard

o From: |00000000 (Hex) To: |IFFFFFFF (Hex)

OK I Cancel | Help |

Figure 21 - Setting window "*Connect to net" under USB-CANmodul

Attention! It will only be send messages with ‘extended ID’ in the PcanView!

Introducing a new message is done by pressing the button called New Message.
2.6. Charging code to ZK-S12-B board

ZK-S12-B board is associated with CodeWarrior development environment, which brings together an
editor, assembler, compiler, and debugger for C language and interface Freescale BDM (Background Debug
Mode), which allows the download and debug procedure of the application loaded in the Flash memory of the
microcontroller.

Accessing CodeWarrior environment shall be: Start> All Programs> Softec Microsystems> SK and

ZK-S12 (X) Series> CodeWarrior Development Studio

e To create a new application using the CodeWarrior environment follow the steps:
1. From the main menu, select ""File> New"".
2. A dialog window appears. Select ""HC(S)12 New Project Wizard"'.
3. Enter the project name and set the desired location (eg working directory on drive E:\Labs\S \)
4. Follow the steps provided by the Project Wizard, at microcontroller choice enter
MC9S12DJ25B.

e To launch an existing project to make further modifications follow the following steps:
1. Ensure that the board is connected first (you can check this by lighting the green LED), then
connected via USB to the workstation.
2. All the connectors are in position recommended (possibly original).
3. From the main menu, select "File> Open". Select the file ending .mcp from the desired
location. A window will appear as that shown in Figure 22.
4. C code is in file main.c. By double-clicking, you can access any file in the project.

r

Fia Ed Vem Zasch Pamct Cebsy Procmex Expad Mndss Halp
-1 A GEFES Y TEERE LKLY BN

==l
oy |
EEs ~lBw By =B
Fist | Link O | Tawgedt |
- Fie Cote | Dan W'el [
gm'-el-l na wa = m =
E=T I8 0« ==
Wi m 0« » =
el ige We 0. s«
2] et Coda [R I
=ESPm 1] a - &
B bunar kbl ' rea ® =
Srwdsiar_inkm pn s re'n al
Bl Tom:_lk o4 e m nda s =
Lindid s 0 Q-]
Litwies [FURERER |
D ibasgugd Propuct Pl o a - =
Crwidsarn ' rem =
B o Tacim i rea ® =
29 Dabupgm Crd Fila a = =
s o] =
Bl T o []
T - -

Figure 22 — CodeWarrior Window

l Trus-Tamie Saminlstes & Hesd-Tame Debaogger O \Poogasm FilesiSed Tee Mo resystems VS0 and K47 2000 SeriesadeWarriar Beosmples 0050 -8 W00 ;Eﬁ

Fla ‘W Bn nOARTHCHZ Coporant Mesary ‘Windome Heip

S| 0e| 2| - |z|eisl] B
L \Pragan Flsz"Eol T ec Hcosystere A F. snd 255 1274] S oo s E-amplar. . ineinc L 56 St
= COO BRESET (C032,62,"4 mba = CO =
wodd mainivedd| Cids 1ra [<ih T
Ik CO0R CALL os Bl 35, (el
Paciphlnl el ; COO0 CALL [QzQ003,7C]
COLD BRA *=16 JaDa = (000
2130 CoLl BEHT
i8 COLY SI|A FI2
spds he X T COLE FULX
whilg |! |ATOOSTATY &+ GwdD| bt
=
FIRTE = ATCODRDH; v s e
m o b & [0 E [
. L oI o
IF COOD BT (COOD FRAGLE | D
| Stactop 1) 5F O [CR | DEIN
F T =
E “ﬂ wry -\'_g
| a1 Auda Spsh Okl Ak
a L e R M e D 0 Q0 0 0 0200 M M .., ..., =
e B a0 iD M) 00 a0 W FF
0D 0 00 0 0 00 00 0
MEI0AE [OO0 0 00 OC a0 050 B8]euee
0D 00 0D 0D 00 00 0D) w
F
H =]
Cdwhp fuka | Smh | Local
Poaklasd coammnd file cacrectly szecoted.
Lrs
s »
Par Halg. rai Pl VoIS e derva . (e ted Tae_pathand crd

Figure 23 — Debug Window

5. From the main menu, choose "Project> Debug". This will compile the source code, will generate an

executable and download it to the board.

6. A debug environment opens that will be as shown in Figure 22.

7. From the main menu, choose "Run> Start / Continue". The program will run in real-time.
8. From the main menu, choose "Run> Halt". Program execution will stop. The next instruction to be executed

will be highlighted in the Source window.

9. From the main menu, choose "Run> Single Step". Instruction highlighted in Source window will be

executed, program execution will be stopped immediately thereafter.

10. From the main menu, choose "Run> Start / Continue". The application will continue to run from where it

was stopped.

2.7. Carrying out the work

1. Define the work requirements

a. Configure the ports A and P as input ports, which involves reading values from these ports. In
port P case, read the values of PPO-PP3 buttons from INPUTS section of the development board.
Correct programming of port P must be tested in PcanView by the change of the value from 1 to

0.

b. Configure port B as output port, which involves writing some value to this port. Ensure the
correct programming of the port by following PBO - PB7 LEDs from OUTPUTS section of the

development board.

2. Open the CodeWarrior project related the work two, namely the file with .mcp ending. The code for this
work is presented in the following (main.c).

T T T

i

/I Sample for SofTec Microsystems ZK-S12-B Starter Kit
I
I
I
/I This project has been written for CodeWarrior 3.1 for HC(S)12

/I and uses Registers Files (MC9S12DJ256.h and MC9S12DJ256.c) v. 1.052
1
1
1
/I Copyright (c) 2005 SofTec Microsystems

/I http://www.softecmicro.com/

I
o

#include <hidef.h>

#include "mc9s12dj256.h"

#include "mscan.h"

#pragma LINK_INFO DERIVATIVE "mc9s12dj256b"

M T |
/I Defines and variables
T |
unsigned char potentiometer_value;

Bool can_send_enable;

i
/I Variables
i
extern unsigned char *can_periph[];

M T
/I Peripheral Initialization
M T |
#pragma CODE_SEG DEFAULT

void Periphlnit(void)
{

/[Configuration of PB[7..0] as output port
//[DDRB =
/[PORTB =;

/I Configuration of PA[7..0] as input port
/IDDRA =;

/[Configuration of PP[7..0] as input port and activation of internal resistance
IIPTP =;

//DDRP =;

I/PERP =;

/IPPSP =;

CANInit(0);
Enablelnterrupts;

}
M T

I/l Entry point
T e |
void main(void)
{ unsigned char i=0;

struct can_msg msg_send;

struct can_msg *msg;

PeriphInit();

msg=msg_rdy=&msg_buff[0];

asm("cli");

for(;;)

if (msg!=msg_rdy){
/I message received on CAN BUS
msg_send.id = (unsigned int)0x000F00|msg->id;

if(msg->id==CAN_MSG_ID_CMD){
// decoding command message
switch(msg->data[0]){

case 0:{ // COMMAND 00: software version

memcpy(msg_send.data,"SI-SW1.0",8);
msg_send.len = 8;

break;

}

case 1:{// COMMAND 01: digital read (read from corresponding port)
char *p;

/I message length is less than 3-digit hexadecimal
if(msg->len<3){

memcpy(msg_send.data,"bad-len”,7); // sending an error message
msg_send.len = 7;

/I the readings have to do with A or P ports
else if(msg->data[1]!'="A'&&msg->data[1]!="P"){
memcpy(msg_send.data,"bad-port",8); // sending an error message
msg_send.len = 8;
}
/I maximum 8 pins can be read
else if(msg->data[2]>7){
memcpy(msg_send.data,"bad-pin™,7); //sending an error message
msg_send.len = 7;
}
else{unsigned char i=1;
p=msg->data[1]!='"A"?&PTP:&PORTA,
i<<=msg->data[2];
msg_send.data[0]=(*p&i)>>msg->data[2];
msg_send.len = 1;

}
break;

case 2:{// COMMAND 02: digital write (writing to the corresponding port)

/I message length is less than 4-digit hexadecimal

if(msg->len<4){
memcpy(msg_send.data,"bad-len",7); // sending an error message
msg_send.len = 7;
}

// writing, it's about port B

else if(msg->data[1]!='B"){
memcpy(msg_send.data,"bad-port",8); // sending an error message
msg_send.len = 8;

// maximum 8 pins
else if(msg->data[2]>7){
memcpy(msg_send.data,"bad-pin",7); // sending an error message
msg_send.len = 7;
}
else{unsigned char i=1;
i<<=msg->data[2];
PORTB =msg->data[3]?PORTB|i:PORTB&(~i);
Il memcpy(msg_send.data,"out:",4);
msg_send.data[0]=PORTB;
msg_send.len = 1;
}

break;

}

default; {// sending error message
memcpy(msg_send.data,"bad_cmd",7);
msg_send.len =7;
}
}
}
else{// sending error message
memcpy(msg_send.data,"bad_msg",7);
msg_send.len = 7;

}

/I prepare for next message
SendCANMessage(msg->dev, msg_send);
msg=msg_rdy;
}
}
}

M T

#pragma CODE_SEG __NEAR_SEG NON_BANKED

interrupt void CANORcVISR(void){
ReceiveCANMessage(0);

}

#pragma CODE_SEG DEFAULT
M|

#pragma CODE_SEG _ NEAR_SEG NON_BANKED

interrupt void CAN4RcvISR(void){
ReceiveCANMessage(1);

}
#pragma CODE_SEG DEFAULT

3. Configure ports A and P as digital inputs and port B as digital output by removing comments from
main.c file (see code above), Periphinit function () and completing the corresponding values of each
register (PORTB, DDRB, DDRA, DDRP, PERP, PPSP). After setting pins, send the program on the
development board and run it. For programming registers use the descriptions from data sheet:
S12MEBIV3-mux-extbus.pdf and S12DP256PIMV2-portguide.pdf.

4. Commands used in PcanView are (follow the code and presented comments above):

a. Command 00: involve returning as the message the software version used
b. Command 01: command for reading a channel configured as digital input. Has the structure:
i. Byte 0: command [01]
ii.Byte 1: port [41 (port A), 50 (port P)]
iii.Byte 2: pin value
Example:

01 41 01 introduced in PcanView as test message, if the programming was done correctly, should return also in
PcanView, as a response to the test message, 0 or 1 depending on the value of the terminal (development phase
test!)

c. Command 02: control for change the value in a channel configured as digital output. Has the
structure:

i. Byte 0: command [02]

ii.Byte 1: port [42 (ie B)]

iii. Byte 2: terminal

iv. Byte 3: value of the terminal

Example:

02 42 06 01 inserted into PcanView as test message, if the programming was done correctly, should activate the
LED 06, as value one was sent it (development phase test!).

5. Manually send these commands from application PcanView:
5.a ID: 00000h MSG: 00h
5.b ID: 00001h MSG: 00h
5.c ID: 00001h MSG: 03h
5.d ID: 00001h MSG: 01h
5.e ID: 00001h MSG: 01h 41h 11h
5.f ID: 00001h MSG: 01h 42h O1h
5.9 ID: 00001h MSG: 01h 41h 01h
5.h ID: 00001h MSG: 01h 50h 01h

6. Send with a recurrence of 500ms the following commands from PcanView application, identifying the

value returned if pressing the 4 buttons from INPUTS section of the development board:
6.a ID: 00001h MSG: 01h 50h 01h
6.b ID: 00001h MSG: 01h 50h 02h
6.c ID: 00001h MSG: 01h 50h 06h
6.d ID: 00001h MSG: 01h 50h 07h

7. Send the following commands manually from the Pcan View application and follow the configuration on
LEDs:

7.a1D: 00001h MSG: 02h

7.b ID: 00001h MSG: 02h 41h 01h 00h
7.c 1D: 00001h MSG: 02h 42h 01h 01h
7.d ID: 00001h MSG: 02h 42h 02h 01h
7.e 1D: 00001h MSG: 02h 42h 07h 01h
7.f 1D: 00001h MSG: 02h 42h 06h 01h
7.9 ID: 00001h MSG: 02h 42h 02h 00h

2.8. Abstract of the work

Direction of different HCS12 microcontroller ports can be set by the related DDRXx registers.

. Setting values for all registers shall be done as required, based on the data sheet.

. Code is developed using CodeWarrior IDE.

. Testing an implemented portion of the code is based on message system.

o Messages are entered in hexadecimal in PcanView application. Depending on the requirement, the result
of running the code can be seen throughout in PcanView, as a response message in hexadecimal, in
OUTPUTS section of the board or at terminals.

2.9. References commented

1. Datasheet for family HCS12: 9S12DP256BDGV2-userguide.pdf (Freescale, 2005) presents the various
functions that the microcontroller terminals may have.

2. Datasheet of microcontroller related ports: S12DP256PIMV2-portguide.pdf (Freescale, Port Integration
Module, 2002) presents a description of the various port registers.

3. Datasheet related to external bus multiplexing: S12MEBIV3-mux-extbus.pdf (Freescale Multiplexed

External Bus Interface, 2003) presents a description of the various port registers.

Deepening HCS12 microcontroller ports may be done by referring to Sections 4.10, 7.5, 7.6, 7.9 in
(Huang, 2010).

Compulsory consultation (Popa, 2011).

2.10. Worksheet

Section 2.7.5. Contents of registerd
PORTB: DDRB: DDRA:
DDRP: PERP: PPSP:

Section 2.7.6. Messages received in PcanView application

5.a1D: MSG:
5.b ID: MSG:
5.cID: MSG:
5.d ID: MSG:
5.e ID: MSG:
5.fID: MSG:
5.9 ID: MSG:
5.hID: MSG:
6.a ID: MSG:
6.b ID: MSG:
6.c ID: MSG:
6.d ID: MSG:

Section 2.7.7. LEDs configuration
7.a

7.b

7.c
7d
7.e

7.f

7.9

After consulting the documentation, write to the port E other functions (see first box in section 2.3).

After consulting the documentation, write which are the common functions found at different ports, carried out
different registries. What registers are specific to certain ports? What are these? (see the second box in section
2.3).

Observations

