
Problem A : Integer

Given an integer N, express it as the sum of at least two consecutive positive integers. For example:
10=1+2+3+4
24=7+8+9
If there are multiple solutions, output the one with the smallest possible number of summands.

INPUT:
The first line of input contains the number of test cases T. The description of the test cases follow:
Each test case consists of one line containing an integer N (1<=N<=10^9)

OUTPUT:
For each test case, output a single line containing an equation in the format:
N=a+(a+1)+...+b
as in the example. If there is no solution, output a single word `IMPOSSIBLE' instead.

~~~~~~~~
Sample Input:
3
8
10
24

~~~~~~~~
Sample Output:
IMPOSSIBLE
10=1+2+3+4
24=7+8+9
~~~~~~~~

Time limit: 3 seconds

Note: The input is always from standard input, the output is always to standard output



Problem B : Objects

Consider a closed world and a set of features that are defined for all the objects in the world. Each feature can be
answered with ``yes" or ``no". Using those features, we can identify any object from the rest of the objects in the world.
In other words, each object can be represented as a fixed-length sequence of booleans. Any object is different from
other objects by at least one feature.

You would like to identify an object from others. For this purpose, you can ask a series of questions to someone who
knows what the object is. Every question you can ask is about one of the features. He/she immediately answers each
question with ``yes" or ``no" correctly. You can choose the next question after you get the answer to the previous
question.

You kindly pay the answerer 10 lei as a tip for each question. Because you don't have surplus money, it is necessary to
minimise the number of questions in the worst case. You don't know what is the correct answer, but fortunately know all
the objects in the world. Therefore, you can plan an optimal strategy before you start questioning.

The problem you have to solve is: given a set of boolean-encoded objects, minimise the maximum number of questions
by which every object in the set is identifiable.

INPUT:
The input is a sequence of multiple datasets. Each dataset begins with a line which consists of two integers, m and n:
the number of features, and the number of objects, respectively. You can assume 0 < m<=11 and 0 < n <=128. It is
followed by n lines, each of which corresponds to an object. Each line includes a binary string of length m which
represent the value (``yes" or ``no") of features. There are no two identical objects.

The end of the input is indicated by a line containing two zeros. There are at most 100 datasets.

OUTPUT:
For each dataset, minimise the maximum number of questions by which every object is identifiable and output the
result.

Time limit: 3 seconds

Note: The input is always from standard input, the output is always to standard output



Problem C : Hunter

A good hunter kills two rabbits with one shot. Of course, it can be easily done since for any two points we can always
draw a line containing the both. But killing three or more rabbits in one shot is much more difficult task. To be the best
hunter in the world one should be able to kill the maximal possible number of rabbits. Assume that rabbit is a point on
the plane with integer x and y coordinates. Having a set of rabbits you are to find the largest number of rabbits that can
be killed with single shot, i.e. maximum number of points lying exactly on the same line. No two rabbits sit at one point.

INPUT:
The first line in the input contains an integer N (3 <= N <= 200) specifying the number of rabbits.
Each of the next N lines in the input contains the x coordinate and the y coordinate (in this order) separated by a space
(?2000 <= x, y <= 2000).

OUTPUT
The output contains the maximal number of rabbits situated in one line that can be killed with one shot.

Time limit: 3 seconds

Note: The input is always from standard input, the output is always to standard output



Problem D : Slides

There are N slides lying on the table. Each of them is transparent and formed as a rectangle. In a traditional problem,
one may have to calculate the intersecting area of these N slides. The definition of intersection area is such area which
belongs to all of the slides.

But this time I want to take out some one of the N slides, so that the intersecting area of the left N-1 slides should be
maximal. Tell me the maximum answer.

INPUT:
The first line of the input contains a single integer T, which is the number of test cases.
The following lines contain the input data for each test case. The first line of each test case contains a single integer N
(1<=N<=100) , the number of rectangles. Followed by N lines, each line contains four integers x1 , y1 , x2 , y2 ( -10000
<= x1 < x2 <= 10000, -10000 <= y1 < y2 <= 10000) , pair (x1, y1) gives out the bottom-left corner and pair (x2, y2)
gives out the top-right corner of the rectangle.

OUTPUT:
There should be one line per test case containing the maximum intersecting area of corresponding N-1 slides.

Time limit: 3 seconds

Note: The input is always from standard input, the output is always to standard output



Problem E: Balanced parantheses

How many balanced sequences of 2n parantheses ( ) have at most k consecutive equal characters ?

A sequence of parantheses is balanced if open and closed parantheses are matched one-to-one,
with each closed paranthesis after the matching open one.

Input: a line with the number T of tests, followed by T lines, each with two natural numbers n and k.

Output: T lines, each with the corresponding result.

Example: Input
2

2 2

3 1

Output
2

1

Inputs and result fit in 64 bits. Time: 1s

Note: The input is always from standard input, the output is always to standard output



Problem F: Zebra Herd

File Name: zebras.cpp|zebras.java

Input File: zebras.in

Description

Zebras are very social animals. Like other members of the horse family, they form groups that tend to stick together and
hang out fairly regularly, though not exclusively. (Humans also come to mind in this respect.) Lately, researchers have
been trying to understand just how the communities of zebras evolve over time, what triggers changes, and so forth. Of
course, all they have to go by is observations of where the zebras are over time. From that, we’d like to figure out what
are the most natural groups. The assumptions are that (a) if a zebra is part of a group, it tends to spend time close to
others in that group, (b) if a zebra is not part of a group, it tends to spend time further away from others in that group,
and (c) zebras don’t change their group membership very often.

Let’s make this more precise. You will be given a sequence of observations of zebras. For each observation time, you will
have the exact location of each zebra. The distance between two zebras is exactly their Euclidean (straight-line) distance.
We assume that there are exactly two groups of zebras in the herd, and will denote them by two colors. What we want to
do is color each zebra either red or blue for each time step, expressing membership to one or the other group. To express
assumption (c) above, we will assess a penalty of some given number c every time a zebra changes colors. To express
assumptions (a) and (b), we look at the distance d(i, j) between every pair i, j of zebras. If i and j are of the same color,
then we assess a penalty of a · d(i, j) for this pair. If i and j are of opposite colors, then we assess a penalty of −b · d(i, j)
(i.e., we give a bonus).

Thus, if you are given a proposed labeling of all zebras with either red or blue for each time step, you can compute how
good an explanation of zebra activity it is. Your goal is to find the best possible labeling, in the sense that it has the
smallest possible total penalty. But you’ll only need to output the total penalty of the labeling, not the labeling itself.

Input

The first line is the number K of input data sets, followed by the K data sets, each of the following form:

The first line of each data set contains two integers z, t, the number of zebras 2 ≤ z ≤ 10, and the number of time steps
2 ≤ t ≤ 50. Next comes a line with three floating point numbers a, b, c ≥ 0, the penalty multipliers. This is followed by
t lines, describing zebra positions. Each line contains 2z floating point numbers, giving the positions of the zebras in the
form x1 y1 x2 y2 . . . xz yz. The first line contains the positions at time 1, the second line at time 2, and so forth.

Output

For each data set, output “Data Set x:” on a line by itself, where x is its number. On the next line, output the minimum
penalty that can be achieved by any grouping over time of the zebras, rounded to two decimals. Each data set should be
followed by a blank line.

Sample Input/Output

Sample input zebras.in

1
5 10
1.0 1.0 20.0
0.0 0.0 0.0 0.5 0.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 10.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 0.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 8.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 0.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 0.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 9.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 9.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 9.0 1.0 10.0 0.0 10.0 0.5
0.0 0.0 0.0 0.5 9.0 1.0 10.0 0.0 10.0 0.5

Corresponding output

Data Set 1:
-476.30

8

Time limit: 10s

Note: The input is always from standard input, the output is always to standard output



Problem G : Decompose

For any three natural numbers, n, k and x, we call a kx-decomposition of number n a posibility of
writing the n number as a sum of k non-null numbers so as the difference between any two terms of
the sum to be at least x.

Given  three  numbers,  n,k  and  x,  determine  how  many  distinct  kx-decompositions exist.  Two
decompositions are considered distinct is they differ by at least one term.

Input:

Read from the standard input three non-null natural numbers, n, k and x, separated by one white
space.

Output:

Write on the standard output a single value representing the reminder of the division of the number
of kx-decompositions by 10007

Notes:

20% of the datasets are going to have 0 < n ≤ 200; 80% are going to have 200 < n ≤ 10000

1 ≤ x,k ≤ n

Time limit: 3s

Example

decompose.in decompose.out Comments

20 2 3 8 The number of kx-decompositions for this case is 8.
These are: 1 şi 19; 2 şi 18; 3 şi 17; 4 şi 16; 5 şi 15; 6 şi 14;
7 şi 13; 8 şi 12

Note: The input is always from standard input, the output is always to standard output



Problem H : Fibonacci base (Time limit: 3s) 
The well known Fibonacci  sequence is obtained by starting with 0 and 1 and then  adding  the two last numbers  to get the 
next one.  For example the third  number  in the sequence is 1 (1=1+0), the forth is 
2 (2=1+1), the fifth is 3 (3=2+1) and so on. 

 
i 0 1 2 3 4 5 6 7 8 9 

F ib(i) 0 1 1 2 3 5 8 13 21 34 

Figure 1 -   The first numbers  in the Fibonacci  sequence 
The  sequence appears  on many  things  in our life, in nature, and  has a great  significance. Ancients did not measure the time 

the way we do today: with past, present and future. The ancients measured time in twinkles, so a man who lived 33 days was considered 
a very happy man. S o  i t  i s  i m p o r t a n t  f o r  a n y o n e  t o  s t a r t  c o u n t i n g  t h e i r  r e a l  a g e  b a s e d  o n  t h e  n u m b e r  
o f  g e n u i n e  t w i n k l e s .  B u t  h a p p i n e s s  w a s  i n s t i t u t i o n a l i z e d .  T h e  H a p p i n e s s  I n s t i t u t i o n  i s  a l w a y s  
l o c a t e d  a t  m y s t e r y  s t a t i o n  3 3 .  All positive  integer  numbers  can be represented as a sum of numbers in the  
Fibonacci  sequence.  More than  that, all positive  integers  can be represented as a sum of a set of Fibonacci  numbers,  that is, 
numbers  from the  sequence,  without repetition.  For  example:  13 can be the  sum  of the  sets  {13},  {5,8}  or {2,3,8} and  17 
is represented by {1,3,13} or {1,3,5,8}.   Since all numbers  have  this  property (do  you want  to  try  to  prove  this  for 
yourself ?)   this  set  could  be a nice way to use as a "base" to represent the  number.   But,  as we have seen, some numbers  
have more than  one set  whose sum  is the  number.   How can  we solve that?  Simple!  If we add  the  constraint that the  
sets cannot  have  two  consecutive  Fibonacci  numbers,  than  we have  a unique  representation for each number!  This 
restriction is because the sum of any two consecutive  Fibonacci  numbers  is just the following Fibonacci  number. 

Now that we know all this we can prepare  a nice way to represent any positive integer.  We will use a binary  sequence (just  
zeros and ones) to do that. For example,  17 = 1 + 3 + 13 (remember  that no two consecutive  Fibonacci  numbers  can be 
used).  Let’s write a zero for each Fibonacci  number  that is not used and one for each one that is used, starting at the right.  
Then,  17 = 100101. See figure 2 for a detailed  explanation. In this representation we should not have zeros at the left, this is, 
we should only write starting with the  first one.  In order  for you to understand better, note  that in this  scheme, not using 
two consecutive Fibonacci numbers  means that the binary  sequence will not have two consecutive ones.  When  we use this  
representation for a number  we say that we are using the  Fibonaccimal base, and we write it like 17 = 100101 (fib). 

 
17 = 1 0 0 1 0 1 

13+3+1 = 13 8 5 3 2 1 

Figure 2 -   Explaining  the representation of 17 in Fibonaccimal base 
Given a set of numbers  in decimal base, your task  is to write them  in the Fibonaccimal base. 

Input 
The  first line of input  contains  a single number  N , representing the  quantity of numbers  that follow 
(1 ≤ N  ≤ 500). 

Than  follow exactly  N  lines, each one containing  a single positive integer  smaller than  100 000 000. These numbers  can 
come in any order. 
Output 
You should output a single line for each of the N  integers  in the input,  with the format  ‘DEC  BASE 
= F I B  BASE (fib)’.   DEC  BASE is the  original  number  in decimal  base  and  F I B  BASE is its representation in 
Fibonaccimal base.  If the FIB_BASE value for 33 can be identified anywhere in the expression of the FIB_BASE 
number, “(fib)” must be uppercase “(FIB)”. See the sample output for an example. 
Sample  Input 

 
10 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
Sample  Output  
1 = 1  (fib) 

2 = 10  (fib) 
3 = 100  (fib) 
4 = 101  (fib) 
5 = 1000  (fib) 
6 = 1001  (fib) 
7 = 1010  (fib) 
8 = 10000  (fib) 
9 = 10001  (fib) 
10  = 10010  (fib) 

Note: The input is always from standard input, the output is always to standard output


