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Abstract—Fuzzy set theory has been used to extend different
domains of mathematics and also domains from applied sciences
and from engineering, such that now there exists fuzzy logic,
fuzzy arithmetic, fuzzy expert systems, fuzzy logic controllers
(FLCs), fuzzy automata, fuzzy flip-flops, etc.

In this work we concentrate on fuzzy automata (FA), which are
fuzzy logic extensions of crisp automata (or finite state machines).
Many researchers have noticed that, while crisp automata are
widely used, being incorporated in almost any technical device,
fuzzy automata have very few practical applications, beingrather
a theoretic concept. Among the factors that contributed to this
situation we can enumerate: 1) the lack of controllability of FA
(in certain conditions the degree of membership of the states of
FA decrease towards zero and cannot be increased after that)
and 2) there are too many types of fuzzy automata.

We developed a VHDL framework that can be used for
modeling fuzzy automata and for investigating their performance.

In this paper we use several examples of FA from literature in
order to illustrate how our VHDL framework can investigate t he
efficiency of different functions used for computing the degree of
membership of the next state of a FA. We also show that some
techniques proposed in literature for improving the performance
of FA (more precisely, to avoid the degree of membership of FA
states to decrease toward zero) are not effective on the fuzzy
automata from these examples.

I. I NTRODUCTION

Fuzzy logic has gained acceptance in many domains of
science and engineering, being used now in control engineer-
ing, telecommunications, computer engineering, pattern recog-
nition, information retrieval, linear and non-linear program-
ming, etc. There are many industrial products that incorporate
fuzzy logic, from everyday electronic products like washing
machines, handset cameras, vacuum cleaners, to unmanned
subway trains and chemical plants.

Most of these products are based on fuzzy inference, which
means combining facts with rules expressed in (a subset of) a
natural language in order to obtain control actions. When the
time constraints of an applications are hard, fuzzy inference is
implemented in hardware, such a circuit being named fuzzy
logic controller (FLC).

No matter how complex its implementation is, a FLC’s
outputs depend only on its current inputs, no previous history
is taken into account and no FLC ’state’ is considered. It means
that a FLC behaves like a combinational (i.e. a memoryless)
circuit. Many applications demand the existence of states,the
behaviour of a device being determined not only by its current
inputs, but also by its states.

From the fuzzy logic point of view, we can imagine that the
states of such a device can be expressed by fuzzy sets, which

bring us to the idea of fuzzy automata (FA), that are fuzzy
extensions of classical automata (finite state machines).

Fuzzy automata are a hot research topics, as shown by the
recent publications that deal with theoretical aspects: construc-
tion of FA from regular expressions in [1], bisimulations for
FA [2], nondeterministic fuzzy automata in [3].

There are also applications of FA recently reported: Schmidt
and Boutalis ([4]) use fuzzy discrete event systems (FDES) in
combination with multi-objective control for robot navigation;
Wu, Pang and Han ([5]) apply FA for target recognition based
on image processing, and Bailador and Triviño use temporal
fuzzy automata for pattern recognition ([6]).

An FPGA implementation of the generalized fuzzy au-
tomata (GFA) presented in [7] is reported in [8].

In [9] Chen proposes a new class of FA, that he calls
Generalized Fuzzy Automata, or GFA. The GFAs belong to
the class of FA with fuzzy inputs and states, where the time
is also fuzzy and continuous. With GFAs, he develops a
method of feedback fuzzy control ‘with words’ in [10]. Then,
Chen et al apply their method of fuzzy control with GFA to
telecommunications problems, more precisely to Quality of
Service (QoS) improvement in Wireless LAN networks: [11]
and [12].

However, as observed by Virant and Zimic in [13], classical
finite state machines (i.e. automata) are much more extensively
used in practical applications than fuzzy automata. Virantand
Zimic expect that the role of fuzzy automata will increase.

We believe that there are a number of factors that prevent
fuzzy automata to be widely spread in engineering applica-
tions:

• Non-controlling behaviour: in certain conditions the de-
gree of membership of a fuzzy state can decrease con-
tinuously towards zero, which is obviously not a desired
behaviour. The problem has been reported for example in
[14], [15]. Different techniques have been proposed in or-
der to solve this problem: peak hold in [14], conservation
of state value in [15], or state normalization in [16].

• There are too many types of fuzzy automata: since fuzzy
automata are fuzzy extensions of classical automata, dif-
ferent researchers have proposed different ways to extend
classical (crisp) automata through the framework of fuzzy
logic. A possible classification of fuzzy automata can be
found in [9], but there are also other possibilities to clas-
sify fuzzy automata. This problem, of different extensions
of a classical concept, is very common in the fuzzy set
theory: there are classes of operators for set operations



like union, intersections and complement, different types
(formulae) for fuzzy inference, for defuzzification, etc.
While in fuzzy inference and fuzzy domains with a longer
history of applications, some of these different concepts
have imposed over other similar concepts, in the domain
of FA the practitioneers are still confused by the pletora
of possible fuzzy automata.

• Maybe another confusing issue related to FA is the
relation between automata and flip-flops: while classical
flip-flops are building blocks in the design or synthesis
of automata, there is no such relation between fuzzy
automata and fuzzy flip flops. Some investigations in the
attempt to link fuzzy automata and fuzzy flip-flops have
been reported in [17]. In this work we will concentrate on
FA, leaving the relation between FA and fuzzy flip-flops
for further investigations.

Here we propose a framework that will help the inves-
tigation of fuzzy automata. Our framework will allow the
study of the behaviour of different fuzzy automata in different
circumstances and to use different techniques for solving the
problem of state decreasing membership function.

The rest of the paper is organized as follows: next section
contains a brief description of fuzzy sets and fuzzy automata,
section III described the VHDL implementation of our frame-
work, section IV shows some simulation results, and the paper
ends with a section of conclusions and future developments.

II. FUZZY SETS. FUZZY AUTOMATA

A. Fuzzy sets

Fuzzy set theory was introduced by L.A. Zadeh in 1965.
Fuzzy sets extend the notion of classic, or crisp sets in the
sense that, while for a crisp set, an element either belongs or
it does not belong to that set, for a fuzzy set, an element can
belong to that setin a certain degree.

More formally, given an universe of discourseX (a crisp
set) and a crisp subsetA ⊂ X , for each elementx ∈ X , either
x ∈ A or x /∈ A.

According to [18], a fuzzy set̃A ⊂ X is the set of ordered
pairs

Ã = {(x, µÃ(x))|x ∈ X}

whereµÃ(x) : X → [0, 1] is called membership function or
degree of membership. When the closed real interval [0, 1]
is replaced with the discrete set{0, 1}, then the fuzzy set̃A
becomes a crisp set.

With fuzzy sets in the same universe of discourse we can
perform operations of intersection, reunion and complement.
Zadeh defined the union of two fuzzy sets as the maximum
between their membership functions, the intersection, as the
minimum of their membership functions, and the complement
of a fuzzy setÃ, the set having the membership function
1− µÃ(x).

The minimum and maximum operations have been extended
by t-norms and s-norms. From [18], page 30, t-norms are two-

valued functions defined on[0, 1] × [0, 1] → [0, 1] with the
properties:

1) t(0, 0) = 0, t(µÃ(x), 1) = t(1, µÃ(x)) = µÃ(x), x ∈ X
2) monotonicity
3) commutativity
4) associativity

Similarly (see [18]) can be defined s-norms, or t-conorms,
as two valued functions defined on[0, 1]× [0, 1] → [0, 1] with
the properties:

1) s(1, 1) = 1, s(µÃ(x), 0) = s(0, µÃ(x)) = µÃ(x), x ∈
X

2) monotonicity
3) commutativity
4) associativity.

Examples of t- and s-norms:

• drastic producttw and drastic sumsw:

tw(µÃ(x), µB̃(x)) =















µÃ(x), if µB̃(x) = 1
µB̃(x), if µÃ(x) = 1
0, if µÃ(x) < 1

and µB̃(x) < 1

sw(µÃ(x), µB̃(x)) =















µÃ(x), if µB̃(x) = 0
µB̃(x), if µÃ(x) = 0
1, if 0 < µÃ(x)

and 0 < µB̃(x)

• bounded differencet1 and bounded sums1:

t1(µÃ(x), µB̃(x)) = max{0, µÃ(x) + µB̃(x)− 1}

s1(µÃ(x), µB̃(x)) = min{1, µÃ(x) + µB̃(x)}

• algebraic productt2 and algebraic sums2:

t2(µÃ(x), µB̃(x)) = µÃ(x) · µB̃(x)

s2(µÃ(x), µB̃(x)) = µÃ(x) + µB̃(x) − µÃ(x) · µB̃(x)

• min and max (minimum and maximum).

B. Fuzzy automata

According to [7], automata in general are computational
systems having inputs, states, outputs, a function that computes
the transition from the current state to next state (transition
function) and a function that computes the outputs based
either on the current state (Moore automata), or based on the
current state and the input (Mealy automata). Automata may
have also initial and final states. The classic automata can be
deterministic, non-deterministic and probabilistic.

Fuzzy logic has been used to extend the classical automata,
resulting a large variety of fuzzy automata (FA). The states
of FA can be continuous (e.g. fuzzy automata with fuzzy
relief [13]), or discrete: fuzzy sequential circuits ([15], [16]), a
medical state monitor ([14]), fuzzy state machine ([19], based
on [20]), generalized fuzzy automata [7]. Even the time can
be fuzzy, as emphasized in [21]. Chen (in [9]) proposed a
classification of FA depending on the fuzzy or crisp character



of their inputs, states, and time, and also based on the discrete
or continuous nature of the time.

In this work we will study only the discrete synchronous
fuzzy automata, but we plan to extend our framework in order
to include for example fuzzy automata with fuzzy relief ([13]),
expressed in a discretized form.

Our model of fuzzy automata is based on the descriptions
from [15], [19] and [7], trying to ‘unify’ these approaches.
Also, in this work we do not investigate the computation of the
outputs of the FA and focus only on the evolution of the states
of FA. However, our framework contains the implementation
of the part that determines the outputs of the FA.

In [15] a fuzzy automaton is defined starting from the sets of
its inputsU , statesX and outputsY , that are called universes
of discourse. The inputs, states and outputs of the FA are fuzzy
sets in the universesU , X andY .

For every inputuj a transition matrixM(uj) is defined:

M(uj) =
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j) is the degree of transition from state
xk
t to statexi

t+1 when the inputuj is applied (at the moment
t) and all µx are fuzzy values (in the interval[0, 1]). The
authors of [15] introduce the idea of conservation of state,
which means to take into account in the computation of the
next state not only the value (degree of membership) of each
input, but also the negated value of each input. Using the
notations from ([15]), the formula for next state will be:

µx(xt+1) =
∑

xi

∑

uj

[µx(xt)× µu(ut)× µx(xt+1|xt, ut)

+µx(xt)× µu(ut)× µx(xt+1|xt, ut)]

The symbols
∑

and + denote here algebraic sum, the
symbol× represents algebraic product, andµu(ut) represents
the membership degree of the complement (negation) of input
u (at stept). The sums are for all statesxi and all inputs
uj . All matricesM(uj) are considered in [15] to be the unit
matrix of the corresponding dimension and are called inactive
paths.

It is common in literature to use forµx combinations of
maximum and minimum, but Mori, Otsuka and Mukaidono
([15]) propose to use algebraic sum and algebraic product
instead of maximum and minimum. Here we go one step
further and, based on an idea from [7], use two general
functions,F1 instead of minimum (or algebraic product), and
F2 instead of maximum (or algebraic sum). In [7]F1 is called
the membership assignment function, andF2 is called the
multi-membership resolution function. In our case,F1 is a
parametrized function that can be any t-norm, whileF2 is a
parametrized function that can be any s-norm.

III. VHDL IMPLEMENTATION

In our framework we want to test different approaches to
fuzzy automata, to use different formulae for fuzzy com-
position, t-norms and s-norms, hence the flexibility of the
implementation is a primary goal.

We have chosen VHDL (the achronym stands for Very High
Speed Integrated Circuits Hardware Description Language) as
a modeling language for the following reasons:

1) being a hardware description language, VHDL can be
used for both simulation and automatic synthesis, al-
lowing us to obtain a hardware implementation (e.g. on
a FPGA) of a fuzzy automaton. In this way we will be
able to evaluate the hardware properties of the circuit:
input-output delay, clock rate, occupied surface, etc.

2) VHDL is a high level programming language, which
permits a behavioral description of a system at a high
level of abstraction. Also, it is possible to simulate the
behaviour of both the controller (FA) and the controlled
application.

3) using VHDL, the behaviour of a FA can be represented
in different ways, for example as a signal diagram,
or to be dumped in a file in order to support further
processing.

In order to obtain a high degree of flexibility, we use a
structure of VHDL packages. Apackagecontains a collection
of declarations that can be made visible to other design units.

The first package, namedConstants defines the constants
needed in the framework. We have denoted withX the number
of states of the fuzzy automata, withU, the number of inputs
, andY is the number of outputs.

In the packageTypes we define the VHDL types used in
the framework. The types are based on the constants defined
in the previous package. First a fuzzy value type (degree of
membership)fv is defined as a subtype of real numbers, having
values in the interval[0, 1]. Starting fromfv, we define the
typesX type, U type Y type as arrays offv with dimension
X, U, Y, for the states, the inputs and the outputs of the fuzzy
automata. Also, multidimensional arrays of fuzzy values are
defined. For transition matrix we define a typeUXX type,
which is anU ×X×X array offv. Similar types are used for
computing the next state and the output of the fuzzy automata.

A third package,Functions, which is based on the previ-
ous two packages (i.e.Constants andTypes) contains the
functions used. For t-norms and s-norms we use a parametrized
implementation (i.e. the functionsF1 andF2), which allows
the selection of a t-norm (or s-norm) from a set of such
functions. The t-norms and s-norms shown in subsection
II-A are implemented here. This package contains also other
functions, necessary to compute the next state and the outputs
of the automaton. The functions necessary for implementing
the conservation of state and the state normalization techniques
are described here as well.

The specific data for a certain fuzzy automaton is read from
a text file by a procedure namedinitialize_FA(). It
returns the initial state of the FA and its transition matrix.



The initial state will be stored in a variableInit States
of type X Type, while the transition matrix will be stored
during the simulation in a variable calledPaths of type
UXX type. For modeling a FA with conservation of states we
use the variableInactive Paths, also of typeUXX type.
The variableInactive Paths is generated by a function
namedcreate_Inactive_Paths.

In order to simulate in VHDL a circuit or a system, we
describe it in terms of design units. The most important design
units are theentity and thearchitecture. The entity specifies
the name of the circuit and its interface (ports and parameters,
called generic parameters), while the actual functionality of the
circuit is described in its architecture. An entity can haveany
number of architectures, feature that allows different views
(e.g. behavioral or structural) of that entity. When an entity
becomes a component in a bigger architecture, its generic
parameters can be changed in the component instantiation
statement.

The VHDL code that describes the FA circuit entity is here:

Entity FM_circuit is
Generic (
with_conserving_transition: natural:=1;
out_file: string:="out.txt";
tf1, tf2: integer;
fa_type_state: fa_type);
--the ports of the circuit

Port(reset_i, clk_i: In bit;
with_state_normalisation: in bit;
--...);
End Entity;

The name of the circuit isFM circuit and its generic
parameters are:

1) with conserving transition: it can be1, when the
conservation of the state is applied, or0, when it is not
applied.

2) out file: it is the text file where we dump the results
of the simulation. The name of the file can be changed.

3) tf1, tf2: determines which t-norm to use for the func-
tion F1 and which co-norm to use for the functionF2.

4) fa type state: determines which kind of FA to use.
For the moment we have implemented only the ‘Crafter’
([19]) and the ‘transition matrix’ ([15]) kind of FA and
the purpose was to check by simulation that these two
types of fuzzy automata are identical, i.e., they are rather
different description styles of the same FA. In the future
we plan to implement other types of FA, e.g. fuzzy
automata with fuzzy relief ([13]).

In the current implementation the feature of state normal-
ization is modeled as a port of the circuit, not as a generic
parameter. The idea is that in this way we can apply state
normalization only at certain moments, e.g., not necessarily
after each change of state. Had the parameter been a generic,
the state normalization function would have been either active,
or inactive for the entire duration of the simulation. Otherinput

ports of the circuit are the reset (reset i) and clock (clock i)
signals.

When the reset is active the circuit (FA) goes to the
initial state. It calls the procedureinitialize_FA and the
functioncreate_Inactive_Paths.

We use the FA from [19] in order to illustrate the function-
ing of our VHDL code. The VHDL code that contains the
values for the variablesInit_States andPaths is given
below:

Paths:= (( (0.0, 0.4, 0.2, 1.0),
(0.3, 1.0, 0.0, 0.2),
(0.5, 0.0, 0.0, 1.0), --M(u1)
(0.0, 0.0, 0.0, 1.0)),

( (0.0, 0.0, 1.0, 0.0),
(0.2, 0.0, 0.0, 1.0),
(0.0, 0.0, 0.0, 1.0), --M(u2)
(1.0, 0.3, 0.0, 0.6)));

Init_States:=(1.0, 0.8, 0.6, 0.4);

In this case the initial state isx1 with a degree of member-
ship 1.0 (full membership),x2 with a degree of0.8, x3 with
0.6 andx4 with a degree of0.4.

When a fuzzy input vectorU1 = (u1 u2) is applied at the
momentt1 to the input of FA, a fuzzy composition between the
vectorU1 and the variablePaths is performed. It results an
X×X (4×4 in this case) state transition matrix that describes
the transition from the current state of the automaton to the
next state. For example, if the input vector has the membership
valuesU = (1.0 0.4) and max-min composition is applied,
then the state transition matrixTU1

will be:









xN1
xN2

xN3
xN4

xP1
0.0 0.4 0.4 1.0

xP2
0.3 1.0 0.0 0.4

xP3
0.5 0.0 0.0 1.0

xP4
0.4 0.3 0.0 1.0









In order to determine the next state of the FA, a composition
between the current state vector (Init States in this case) and
the matrixTU1

is performed. With max-min composition it re-
sults the next state vector:XN (or Xt+1) = (0.5 0.8 0.4 1.0).
For more details about the computations please refer to [19],
or to [20], chapter 12, section 12.6 “Fuzzy automata”.

The state is changed only when theclock i changes its
value from ‘0’ to ‘1’, i.e, at the rising edge of the clock signal.

The circuit is tested in a test bench where the clock and
reset signals are provided by a clock and reset generator.
Also, the inputs of the FA are given either manually (e.g.
for debugging), or are read from a text file, in order to
automatize the simulation. In order to obtain in parallel the
results of several simulations, we use the VHDL instruction
Generatethat instantiates several times theFM circuit with
different values of its generic parameters. Also, the name of
the output file is different for each instantiation. For example,



we collected in parallel the evolution of the states of the FA
with different t-norms and s-norms, and with and without
conservation of the state. Some results are shown in the next
section.

IV. RESULTS

A. General aspects

In this section we will illustrate what kind of investigations
can be performed using our framework. First we verified the
correctness of the implementation on the numerical examples
presented in [15] and [19]. We have also verified that the ‘kind’
of automata ‘Crafter’ ([19]) and ‘transition matrix’ ([15]) are
identical, being only different description styles of the same
FA. We consider that these were only preliminary simulations
and do not present detailed results for them.

We aimed to study the following problems:
1) the efficiency of different operations (t-norms and s-

norms) used for FA. For the functionsF1 we have
used different t-norms, while for functionF2 we have
used fuzzy s-norms. We consider that the operations are
efficient if the fuzzy automaton is controllable,i.e., the
degree of membership of its states can be influenced by
the FA’s inputs. The FA is not controllable if the degree
of membership of its states remain blocked at certain
values (e.g. zero) and cannot be changed from the inputs.
This problem is often reported for fuzzy automata and
fuzzy flip flops.

2) the effectiveness of some of the methods proposed in
literature in order to overcome the lack of controllability
of FAs. From the existing methods we have implemented
by now the conservation of state ([15]) and the normal-
ization of state ([16]).

For the first problem we used for the functionsF1 andF2
different pairs of s-norms and t-norms:

1) maximum and minimum, which are the most used in
literature for FA.

2) drastic sum and drastic product
3) algebraic sum and algebraic product
4) bounded sum and bounded product

We implemented four examples of fuzzy automata from
literature and tested them using our framework:

1) the FA described in [15]
2) the ’Crafter’ FA, from [19] and [20].
3) the FA described in example 1 from [7]
4) the FA described in example 4 (Figure 5) from [7].

The first FA (from [15]) is too small, having only two states
and one input. We used it mostly for checking the correctness
of our VHDL code and we do not present detailed simulation
results for it.

The fourths FA (example 4 from [7]) has a transition matrix
with very few non-zero values, and hence, for the majority
of the simulations that we performed with it, the degree of
membership of all its states quickly go to zero and cannot be
changed after that. This example is not considered relevant
in this stage of our work, but it might require more attention

from us in the future. We do not present detailed simulation
for it, either.

The second FA (’Crafter’, from [19]) and third FA, (i.e.
example 1 from [7]), behave very similarly in the sense that,
for the functions for which the one of them was controllable,
so was the other FA, while for the cases when one of them
remained stuck in certain values, the same thing happened with
the other FA.

In consequence, we will provide detailed simulation results
only for the ’Crafter’ FA in this paper.

First a reset signal is applied to the circuit and it goes to
the initial state, then we applied two types of inputs:

1) when the degrees of membership of the two inputs are
equal and their values first decrease from1.0 till 0.1
in steps of0.1, then increase again to1.0 and finally
decrease to0.1, also in steps of0.1.

2) when one input has first a degree of membership of
0.1 and the degree of membership of the other input
decreases from1.0 to 0.1 and goes back to1.0, all in
steps of0.1; then the first value changes directly to0.9
and the second input repeats its behaviour.

No methods for adjusting the degree of membership (i.e.
conservation or normalization of states) are applied in thefirst
and the second sets of simulations (subsection IV-B), while
in subsection IV-C we apply either conservation of state, or
normalization of states.

On all the following diagrams the horizontal axis contains
the simulation time, in clock cycles (the state changes onlyat
the rising edge of the clock signal), while on the vertical axis
we represent the degree of membership of the inputs and of the
states of the FA. The degrees of membership are normalized
to integer values between0 and 100 instead of real number
in the interval[0, 1]. The inputs are represented with dashed
lines, and the states with continuous lines.

B. First problem: controllability of FA

From the four pairs of s- and t-norms used for the functions
F2 andF1, only the algebraic FA proved to be controllable.
For the max-min FA, the degree of membership of its states
took the smallest value of the degree of membership of its
inputs (0.1 in this case) and after that their values could not be
increased, while for the bounded and drastic FA, the degreesof
membership of all their states went to zero and remained zero
after that, no matter what happened at inputs. In consequence
we decided to try to use different s-norms for functionF2, but
only algebraic product forF1, and the following diagrams are
for these cases.

The following figures are for the first case (equal inputs).
Figure 1 shows the results for algebraic sum and product FA,
and figure 2 for the max-product functions.

It can be observed that the max-product automaton has an
undesirable behaviour: when the degree of membership of its
inputs decreases so does the degree of membership of its
states (of all of them!), but after that, when the degree of
membership increases again, the states remain with a zero
degree of membership.
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Fig. 1. Algebraic FA with equal inputs and without conservation of state
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Fig. 2. Max-product FA with equal inputs and without conservation of state

The algebraic automaton looks more controllable, in the
sense that when the membership values of the inputs decrease
so does the degree of membership for states, but when the
degree of membership of inputs increase again, the degree of
membership of the states follows it. This means that the inputs
can control the states. It may seem a bit unusual that the degree
of membership of all of its states goes towards1.0, but this is
a behaviour that can be expected from a fuzzy automaton.

The automaton with drastic sum and algebraic product is
not represented because the degree of membership of its
states is1.0 almost all the time, which is also true for the
next simulation scenarios, which makes this type of automata
unusable.

The automata with bounded sum and algebraic product
used forF2 and F1 and the FA with Einstein sum forF2
and algebraic product forF1 behave very much the same like
the FA with algebraic sum and algebraic product not only in
this simulation scenario, but also in the other scenarios that
we simulated. Hence, they will not be presented further. (For
Einstein sum see [18], chapter 3, section 3.2.2, page 32.)

In the second simulation scenario one input has either a
low, or a high degree of membership, while the other input
changes like in the first scenario. Figure 3 is for the max-
product automaton and figure 4 is for the algebraic automaton.
Again, the degree of membership of the states of the max-
product automaton go to zero and do not increase after that,

while the algebraic automaton has a better behaviour, in the
sense that its states can be influenced by the inputs.
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C. Methods used to improve FA’s behaviour

In [15] the authors propose the method calledconservation
of state, in order to overcome the problem of the continuous
decrease of the degree of membership of the fuzzy states.
However, in [15] the method is illustrated only for a small
automaton, with only two states. We apply it to the ‘Crafter’
automaton with equal inputs (like in scenario 1) and non-equal
inputs (scenario 2), with all the s- and t-norms described in
subsection IV-B.

Figures 5 and 6 contain the results for the max-product
automaton. It can be seen that, although it takes longer than
in the case without conservation of states till the degrees of
membership of the states go to zero, this thing eventually
happens, and after the states have a zero degree, their degrees
cannot be increased further.

As can be seen from figures 7 and 8, the unpleasant surprise
is that, in what the algebraic automata are concerned, the
method of conservation of state worsens their behaviour: the
degrees of membership of their states remain very high, mostly
between0.8 and1.0. This behaviour can be explained by the
contribution given by the negated values of the degrees of the
inputs: when the degree of an input is low, its negation (i.e
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1 − degree) is high, and the consequence is that the degrees
of states remain high.

We illustrate this behaviour only for the algebraic automaton
in the two cases mentioned above (equal and non-equal
inputs), but the FA with bounded sum and algebraic product
and FA with Einstein sum and algebraic product have a very
similar behaviour. Also, the negative effects of conservation
of states has been observed on the FA from [7], example 1.

We can conclude that the conservation of state method is
not efficient, at least not for the studied automata.

In [16], Watanebe et al propose tonormalize the statesof the
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fuzzy automata in order to avoid their degrees to decrease to
zero. This means to determine the maximum value among the
degree of membership of all states and to divide all the degrees
of membership of the states to that maximum. In this way
obviously at least one state will have the value1 for its degree
of membership. We will present the effect of this method on
the max-product automaton. We apply it only to max-product
automaton because its states will go to zero otherwise. Since
the algebraic automata behave well in the studied example, we
do not need to apply this computationally intensive method to
them. We consider that the method of state normalization is too
computationally intensive for an implementation in hardware,
because it involves division operations.

Figures 9 and 10 contain the results for equal and non-
equal inputs. In the first case the states will have very soon the
maximum degree of membership and will remain unchanged,
while in the second case they will have also a high degree of
membership (between0.9 and1.0), with the exception of the
state 2.

In the ‘Crafter’ example the method of state normalization
proves to be inefficient.
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Fig. 9. Max-product FA without conservation of state and with state
normalization, equal inputs

V. CONCLUSIONS AND FUTURE WORK

In this work we have implemented a VHDL framework for
the study of fuzzy automata. Our framework ‘unifies’ the ap-
proaches presented in [15], [19] and [7]. The implementation
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Fig. 10. Max-product FA without conservation of state and with state
normalization, non-equal inputs

is flexible and, because of the parametrization of FA, it is also
efficient in performing many simulations in an easy way (even
in parallel).

The framework permits to test the efficiency of different
functions used for state transitions of FA, as shown by our
simulation results. Our simulations suggests that the maximum
and minimum functions (the most used in the literature) do not
allow the state of the automata to be controlled by its inputs.
On the other side, the algebraic sum and product, the bounded
sum and algebraic product, and the combination of Einstein
sum and algebraic product proved to be efficient.

We implemented two methods proposed in the literature in
order to avoid the degrees of membership of the states of FA
to go to zero: the conservation of state (from [15]), and the
state normalization from [16]. In our simulations both methods
gave bad results, which is a new result.

The flexibility of our framework will allow us to extend our
investigations on the performance of fuzzy automata and to do
the following tasks:

• to perform simulations and performance studies on other
examples of FA, in order to obtain general conclusions,
e.g., which functions are more suited for implementing
state transitions.

• to include in our framework other types of FA (e.g. FA
with fuzzy relief, Chen’s GFA, etc).

• to perform FPGA implementation (i.e. synthesis) of sev-
eral types of FA. The synthesis will allow us to make a
more realistic evaluation of resources used for different
types of FA. For example, a state normalization operation
used in order to maintain a non-zero state of FA can
be very costly in a hardware implementation because
it involves a division operation. Also, the Einstein sum
can be resource consuming because it uses the division
operation as well.

• to find some interesting applications for FA. Most often
the application from the current literature are either very
small examples (toy applications, e.g. [13]), or they are
extremely complex systems, like the hybrid fuzzy-crisp
automata from the works of Grantner and Fodor ([22]).
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