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Abstract—In this work we propose a novel method to compute
the membership values of the next states of a fuzzy automaton,
using an averaging function between the membership value of
the input, and the membership value of the current state. We
validate our method by simulation.

Index Terms—fuzzy logic, fuzzy automata, membership value

I. INTRODUCTION

Fuzzy automata (FA) are fuzzy logic extensions of finite
state machines, or classic automata. Since they have been pro-
posed at the end of 1960’s [1], [2], fuzzy automata have been
applied in different domains like: medicine [3], [4], intelligent
decision support [5], intelligent hybrid control systems [6], air
quality monitoring [7], industrial applications [8], pedestrians’
intention prediction [9], [10], telecommunication systems [11],
[12], decision making in fuzzy environments [13], the study
of emotional behaviour [13], fire detection and monitoring
[14], behaviour-based control structures [15], human-robot
interaction [16], etc.

The list of applications’ domains of FA might seem long,
but, as mentioned in [17], fuzzy automata have far less
practical applications than crisp automata. A related aspect
is that, if we look in the literature, the papers that present
mathematical approaches to FA (e.g. [18], [19], etc) are more
numerous than the papers that present practical applications
of FA.

Our aim is to try to find the causes of this relative lack
of practical applications of fuzzy automata and to provide
solutions in order to increase the applicability of FA. In
this work we continue our investigation on the behaviour of
fuzzy automata. The problem that we have identified as the
main drawback of fuzzy automata is related to an undesired
behaviour that characterizes many of these FA: depending on
the input sequences applied, the membership value of some, or
of all states of the FA decreases towards a small value, even
towards zero, and cannot be increased after that. We called
this non-controlling behaviour [20].

In [20], [21], [22] we developed a VHDL framework for
modeling and simulation of fuzzy automata and we used this
framework to study the behaviour of different types of fuzzy
automata and of different operators used for computing the
membership value of the next state of the FA. Also, we

investigated by simulation some of the methods proposed in
literature in order to avoid non-controlling behaviour: state
normalization [23] and conservation of state [24] and found
that conservation of state is not very efficient, while state
normalization is computationally intensive.

In this paper, which extends the work from [25], we
propose a general solution for the problem of non-controlling
behaviour. Our solution refers to the computation of the
membership value of the next state of a fuzzy automaton, as
an average between the membership value of the input of the
FA and the membership value of the current state of the FA,
taking into account also the value of the transition from the
present state to the next state for the given input.

The paper is organized as follows: next section briefly
describes fuzzy automata, section III presents in detail our
method, while section IV shows the simulation results. The
paper ends with a section of conclusions.

II. FUZZY AUTOMATA

Fuzzy automata are based on fuzzy sets. Fuzzy sets have
been defined by L.A. Zadeh as extensions of classic, or crisp
sets, as follows [26], [27]: given an universe of discourse X
(a crisp set), a fuzzy set Ã ⊂ X is defined as

Ã = {(x, µÃ(x))|x ∈ X}

where µÃ : X → [0, 1] is called membership function.
Fuzzy sets can be continuous or discrete and each element of

a fuzzy set has a membership value (mv). Zadeh [26] defined
the intersection an union between fuzzy sets as minimum and
respectively maximum between their membership functions.
The minimum and maximum operators have been extended
to classes of operators called t-norms (for intersection) and
s-norms, or t-conorms, for union. More details about t-norms
and s-norms can be found e.g. in [27], chapter 3, section 3.2.

We consider here only discrete fuzzy automata, which are
fuzzy extensions of classic discrete automata. The inputs and
the states of a fuzzy automaton are fuzzy sets in the universes
of discourse U and X , respectively. We do not discuss the
outputs of the FA here.

When input uj is applied to a fuzzy automaton at time t
and if there is a transition from the current state xk to next
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state xi, the membership value µx(xi) of the next state xi will
be computed based on the membership value µu(uj) of the
intput uj , the membership value µx(xk) of the current state,
and on the transiton’s weight µx(xi|xk, uj).

According to [24], the membership function of the next state
will be:

µx(xi) =
∑
xk

∑
uj

[µx(xt)× µu(uj)× µx(xi|xk, uj)]

In [24] × represents algebraic product and
∑

represents
algebraic sum, but other pairs of t- and s-norms can be used.

III. OUR METHOD

A. The membership assignment function

When computing the membership value µx(xi) of the next
state, most FA use the minimum operator between the mv’s
µx(xk), µu(uj) and µx(xi|xk, uj), but this means that, if
either the input uj , or the state xk has a small mv, then the
next state will have also a small value. In a fuzzy automaton it
is possible that the next state xi will be reached by more than
a single transition, form other present states and/or for other
inputs. However, the application of the minimum operator in
the computation of the mv of the next state means that, if all
the present states have small mv’s, then the mv of the next
state cannot be increased by a high value of mv of an input,
which is, in our opinion, a counter-intuitive behaviour and the
main cause for the uncontrolling behaviour of most FA.

Different researchers have applied other operators instead
of minimum, e.g., algebraic product in [24], or other t-norms.
The problem with the t-norms is that they behave in a similar
way like minimum, and moreover, they will not produce a
result bigger than the result obtained by using minimum, since
minimum is the biggest t-norm.

A remarkable contribution to this problem was presented
by Doostfatemeh and Kremer, in [25]. They propose to use
for computing the mv of the next state, a function denoted
F1 and called membership assignment functions, defined as:
F1 : [0, 1] × [0, 1] → [0, 1]. The function F1 satisfies two
axioms (properties):

1) 0 ≤ F1(x, y) ≤ 1
2) F1(0, 0) = 0, F1(1, 1) = 1

It means that F1 should not necessary be a t-norm, but
it can be, for example, an averaging function, like arithmetic
mean or geometric mean [25], which is, in our opinion, a very
important result.

But Doostfatemeh and Kremer assumed that the inputs of
the FA are crisp, which means that their membership values
will be 1 for an active input, and they applied the function
F1 only between the membership value of the current state
and the transition weight, hence the mv of the input does not
influence the computation of the mv of the next state.

In our previous work [20], [21], [22], we applied F1 consi-
dering also the mv of the input, such that we computed the mv
of the next state as F1(F1(µu(uj), µx(xk)), µx(xi|xk, uj)),
but we used only t-norms for the function F1.

In this work we propose a new interpretation of the way
we compute the mv of the next state of a fuzzy automaton.
We consider that, if the mv µx(xk) of the present state xk is
small, but the mv, µu(uj) of the input uj if big, then the mv
of the next state should be bigger than the mv of the current
state, i.e., µx(xi) ≥ µx(xk). This can be easily achieved if we
compute the mv of the next state as an average between the
mv of the input and the mv of the current state, but cannot
be achieved by using the min operator (or another t-norm)
between µu(uj) and µx(xk).

We didn’t discuss yet the weight of the transition between
the present state xk and next state xi. We assume that many
fuzzy automata will be fuzzy extensions of crisp automata, i.e.,
they will have the same transitions like the crisp automata, but
the inputs will be fuzzy sets. This means that, if a transition is
active, its weight will be 1. If we apply an averaging function
again for the computation of the mv of the next state, then
we will unnecessarily increase the mv of the next state. For
example, if we use arithmetic mean for F1, then the mv of
the next state will be the average between 1 (the weight of the
transition) and the average of µx(xk) and µu(uj), obtaining a
value which is always ≥ 0.5. We consider that the minimum
function is better suited here because, if the weight of the
transitions will be crisp (1 for the existing transition and 0
when there is no transition), then the mv of the next state will
be the average between the mv of the input and the mv of the
current state. If the transitions are not crisp, but fuzzy, (which
means, between 0 and 1), then the minimum will limit the mv
of the next state.

The formula that we propose for computing the mv µx(xi)
of the next state xi for a transition from state xk determined
by the input uj is:

µx(xi) = min(F1(µu(uj), µx(xk)), µx(xi|xk, uj)) (1)

where F1 is an averaging function like arithmetic mean,
geometric mean, or weighted average w avg(x, y, w) = w ·
x+ (1− w) · y, where w ∈ [0, 1] is the weight. By using the
weight w we can increase or decrease the influence of µu(uj)
in the value of µx(xi).

B. Multi-membership resolution

In a FA it is possible to be simultaneous transitions to the
same state xi, from different states and/or due to different
inputs. This can happen because the inputs are fuzzy sets,
which means that several inputs can be active at the same time,
but in different degrees (i.e., having different membership
values). Also, it it possible to have several states of the fuzzy
automaton active (in different degrees) at the same time t.

If there are several paths that conduct to the same next state
xi, each path providing a membership value for µx(xi) (value
computed according to the formula (1)), how to compute a
single mv for xi? What happens if some paths give a small
value and some path a big value?

Doostfatemeh and Kremer [25] called this problem multi-
membership resolution, and they defined a multi-membership
resolution function, denoted F2, for which they gave a set
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of three axioms. Again, there are many functions that satisfy
these axioms, among which the s-norms (including maximum),
arithmetic mean, etc.

If we use an averaging function for F2, like arithmetic mean,
then the paths that provide a small value will “weaken” the
strongest path, i.e., the path that gives the highest value for
µx(xi), which we consider undesirable. The most intuitive
choice would be to use the maximum function for F2, which
is, the value of the mv of the next state will be determined
by the strongest path that leads to that state. In this work we
adopt this approach.

A possible drawback of the maximum function used for F2

is that, it is no difference if there is only one path towards
a state, or many paths, since only the strongest path counts.
If we use other s-norms instead of maximum, they will give
a final result bigger than the maximum, since the maximum
is the smallest s-norm. We believe that our results from [20],
[21], [22], where some FA using other pairs of s- and t-norms
than max and min obtained better results than the max-min
FA, can be explained mostly because the s-norm used instead
of maximum gave bigger values for the mv of the next state
than in case of using maximum.

In this work we will use only maximum for F2, because we
believe that it is easier and more intuitive to control the mv
of the next state from mv of the input, than by combining the
different paths that conduct to the same next state. Depending
on the applications, other functions may be used for F2, if
necessary.

The formula that we propose for computing the mv µx(xi)
of the next state xi, considering all possible transitions is:

µx(xi) = max
xk

[max
uj

[min(F1(µu(uj), µx(xk)), µx(xi|xk, uj))]]
(2)

C. The averaging function used for F1

The problem encountered by the weighted average function
w · x+ (1−w) presented in subsection III-A, is given by the
fact that, if µu(uj) = 0, or µx(xk) = 0, but not both of them
are zero, then the resulted value of the weighted average will
not be zero. This is a problem, since we use the value 0 for
µu(uj) or µx(xk) to show that the input uj , or respectively
the state xk, is not active at that moment. Hence, we have
to modify the formula for the weighted average function as
follows:

w avg(x, y, w) =

{
0, if x = 0 or y = 0

w · x+ (1− w) · y, if x, y > 0
,where w ∈ [0, 1].

For F1(µu(uj), µx(xk), w) we obtain:

F1 =

{
0, if µu(uj) = 0 or µx(xk) = 0

w · µu(uj) + (1− w) · µx(xk), otherwise
,where w ∈ [0, 1].

Another possibility would be to use for F1 the geometric
mean

√
x · y, resulting F1 =

√
µu(uj) · µx(xk).

In this work we implemented both formulas and we will
show the simulation results obtained.

IV. RESULTS

A. The first set of simulations

We have simulated a fuzzy automaton, whose state table is
given in table I. The state table gives the next state of the FA
for all combinations of present state and current input. The
system has four states: INIT, S (small), M (medium), and L
(large), and three inputs: small number (SN), medium number
(MN) and large number (LN). From the INIT state, the system
goes to state S if we apply a small number at the inputs, to state
M for a medium number and to state L for a large number.
From state S it goes to state M if a MN is applied, to INIT if
a LN is applied, and it remains in state S if a SN is applied.
The other transitions can be easily understood from table I.

TABLE I
THE STATE TABLE OF THE FIRST FUZZY AUTOMATON

Present Inputs
state SN MN LN
INIT S M L

S S M INIT
M S M L
L INIT M L

Inputs SN, MN and LN are fuzzy sets, presented in figure
1. We can see that a number situated in the interval [0, 100]
belongs to at least one of these fuzzy sets, but, in most cases,
it will belong to two of the mentioned fuzzy sets since the sets
are strongly overlapping. In order to increase the readability,
we scaled the interval of the membership values from [0, 1] to
[0, 100] and we did the same in the next figures, for all fuzzy
sets. In figure 1 and in the following figures we represented
on the abscissa the simulation time in simulation cycles (clock
cycles), and on the ordinate the membership functions (values)
of the fuzzy sets, scaled to the interval [0, 100]

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90

SN
MN
LN

Fig. 1. The inputs SN, MN and LN.

In order to test the functionality of the fuzzy automaton we
used our VHDL framework, and we applied a test sequence to
the FA with the same structure, but with different operators.
We used w avg operator with weights w increasing from
0 to 1 in steps of 0.1, each operator being applied to a
fuzzy automaton. Another FA uses the geometric mean. For
comparison we used also the following pairs of t- and s-
norms in other fuzzy automaton: algebraic, drastic, bounded
and nilpotent product and sum, and min and max.
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We incremented a number between 0 and 300 modulo 100
in steps of 1, such that it activated the fuzzy input sets SN,
MN and LN in different degrees, and applied this sequence to
all fuzzy automata.

In the following figures we present the evolution of states for
different fuzzy automata. Figure 2 shows the evolution of the
states of the FA which uses the w avg function with w = 0.5.
We see that all states have membership values from 0 to 100
and, even after the membership value of a fuzzy set reaches
the value 0, it can be increased again. Figure 3 presents a detail
of fig 2, only for the first 100 simulation steps, and only for
the states S, M and L (without INIT).

Figure 4 shows the evolution of the states of the FA that
uses the geometric mean, and it is quite similar with figure 2,
in the sense that the mv of all states can be increased again
after they reach the value 0.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

INIT 0.5
S 0.5
M 0.5
L 0.5

Fig. 2. The states of the automaton using w avg with w = 0.5
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INIT 0.5
S 0.5
M 0.5
L 0.5

Fig. 3. States S, M and L of the automaton using w avg with w = 0.5,
detail
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INIT
S
M
L

Fig. 4. The states of the automaton using geometric mean

For comparison, we represent the states of the max-min
automaton in figure 5. We can see that the mv’s of the states

decrease after some time, and then they can be increased again,
but not above 0.5 (above 50 in fig 5). The nilpotent automaton
behaves in a similar way like the max-min automaton. A
much worse behaviopur is exhibited by the other automata.
We exemplify it for the algebraic automaton, shown in figure
6. As we can see, the mv’s of all states of this FA decrease
to zero and cannot be increased after that. This is a totally
undesired behaviour. It is worth mentioning that all automata
using pairs of s- and t-norms use also the conserving transition
method (proposed in [24]) for computing the mv of the next
state. This method implies the use also of negated inputs in
order to avoid the decrease of thr mv of their states (see [24]
for more details).

If the conserving transition method is not applied, all FA
using s- ans t-norms will have the mv of their states zero after
a number of simulation steps, except the max-min automaton.
But even for max-min automaton, the mv’s of the states will be
smaller than in the case when conserving transition is applied.
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L

Fig. 5. The states of the automaton using max and min
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L

Fig. 6. The states of the automaton using algebraic product and sum

Figure 7 allows a comparison between the shape of the
states (for clarity, only state M is represented) of different
automata using the w avg function with the weights w = 0.1,
w = 0.5 and w = 0.9, and the automaton using the geometric
mean. We can see that the boundaries of the states are very
similar, only the shape of the state M is different.

B. The second set of simulations

This second set of simulations uses the same automaton
like in section IV-A, but the shapes of the input fuzzy sets
are different. We can see the input fuzzy sets in figure 8 and
we notice that their overlap is smaller than in the first set of
simulations.
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Fig. 7. Comparison of the M states of automata with w avg and weights
0.1, 0.5, 0.9, and automaton with geometric mean
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SN
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LN

Fig. 8. The inputs SN, MN and LN in the second case.

Figures 9, 10 and 11 present the evolution of the states
for fuzzy automata which use w avg and w = 0.5 (in fig
9), geometric mean in fig 10, and max and min in fig 11.
We can see that the mv of the states take all values in the
interval [0, 100] for the FA using w avg and geometric mean,
but, for the max-min automaton, their values do not increase
above 20, where for the first simulations, they do not increase
above 50. Hence, the shape of the inputs has a big influence
on maximum values that can be attended by the mv’s of the
states of max-min automaton, but their influence is very small
for the maximum values that can be attended by the mv’s of
the automata which use our method.

 0
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 100

 0  50  100  150  200  250  300

INIT 0.5
S 0.5
M 0.5
L 0.5

Fig. 9. The states of the automaton using w avg with w = 0.5, second case

C. Other simulations

We have simulated a second fuzzy automaton, also with four
states, which emulates the states of a patient. Its state table is
given in table II. The FA has the states VB (very bad), B (bad),
good (G) and very good (VG), and the system goes to a better
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L

Fig. 10. The states of the automaton using geometric mean, second case
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INIT
S
M
L

Fig. 11. The states of the automaton using max and min, second case

or to a worse state based on a monitored (input) parameter.
If the input parameter has the value W (worse), then the FA
goes to a worse state. On the contrary, if the input parameter
has the value I (improve), then the state of the FA goes to a
better one. If the parameter has the value S (stable), the state
remains unchanged. The results obtained are very similar to
the results obtained for the first system (i.e, the mv of the
states can be increased after it had a small value), and we do
not present them here due to space limitations.

TABLE II
THE STATE TABLE OF THE SECOND FUZZY AUTOMATON

Present Inputs
state W S B
VB VB VB B
B VB B G
G B G VG

VG G VG VG

A more challenging test was to apply averaging function
to the FA described by Reyneri in [28]. This FA describes
a circular trajectory. Its implementation is detailed in [21].
The challenge consists of the fact that the FA from [28] was
designed for max-min automata. We did not change anything
in the system (e.g., the transition matrix, the membership
functions of the inputs, etc), except the method to compute
the mv of the next state.

When we used w avg with w = 0.5 the trajectory obtained
was not the expected one. Looking into more details at the
state evolution, we observed that in the case of w avg the mv
of the next state increased too fast, compared to the system
from [21]. Hence, we decided to decrease the weight of the mv
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of the input, and after that, the FA worked well for w ≤ 0.3.
Figure 12 presents the trajectory obtained by the FA using our
method and w = 0.3 compared with the trajectory obtained
by the max-min automaton.

-100

-50

 0

 50

 100

-150 -100 -50  0  50  100  150

w=0.3
min-max

Fig. 12. Circular trajectory with automaton using w avg with w = 0.3.
Comparison with original max-min automaton.

V. CONCLUSIONS

In this work we proposed a new method to compute the
membership value of the next state of a fuzzy automaton. We
believe that our method solves the problem of noncontrol-
ling behaviour of fuzzy automata, increasing their practical
applicability. We explained the motivation behind the proposed
formula (2) for computing the mv of the next state.

Our method permits a much better control of the mv of
the next state using the mv of the inputs, compared to other
existing methods from literature. In this way we can avoid the
situation when the mv of the states of a fuzzy automaton reach
small values and cannot be increased after that. We validated
our method by simulation.

In the future we want to test our method using more
examples of fuzzy automata, including those reported for
signatures [29], [30], [31].
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